
Under review as a conference paper at ICLR 2022

Table 1: Detailed statistics of our NAS-Bench-MR. NAS-Bench-MR contains 4 datasets and 9 set-
tings. Considering the diversity and complexity of real-world applications (e.g.different scales/input
sizes of training data), we use a variety of challenging settings (e.g., full resolution and training
epochs) to ensure that the model is fully trained. For classification, we train models with different
numbers of classes, numbers of training samples, and training epochs. For semantic segmentation,
we train models under different input sizes. We also evaluated video action recognition models
under two settings: trained from scratch and pretrained with ImageNet-50-1000. † denotes each
sample contains multiple classes. ‡ denotes there are three basic classes (car, pedestrian, cyclist)
in KITTI, while for each object we also regress its 3D location (XYZ), dimensions (WHL), and
orientation (α). “N” – training from scratch. “Y” – training with the ImageNet-50-1000 pretrained
model. We also give the mean, std, and the validation L1 loss (%) of the neural predictor under the
main evaluation metric of each setting.

Cls-50-1000 Cls-50-100 Cls-10-1000 Cls-10c Seg Seg-4x 3dDet Video Video-p

Dataset ImNet-50-1000 ImNet-50-100 ImNet-10-1000 ImNet-50-1000 Cityscapes resized Cityscapes KITTI HMDB51 HMDB51

Input Size 224 × 224 224 × 224 224 × 224 224 × 224 512 × 1024 128 × 256 432 × 496 112 × 112 112 × 112

Epochs 100 100 100 10 530 530 80 100 100

Number of classes 50 50 10 50 19 19 3‡ 51 51

Number of training
samples per class 1000 1000 1000 1000 2975† 2975† 3712† ≈ 70 ≈ 70

Pretrained? N N N N N N N N Y

Main metric top1 Acc top1 Acc top1 Acc top1 Acc mIoU mIoU car-3D AP top1 Acc top1 Acc
Mean 82.21 48.59 85.70 57.07 72.58 62.21 76.36 19.56 30.88

Standard Deviation 2.64 3.69 1.51 4.51 5.33 3.37 4.70 3.69 4.65
Prediction Loss 0.56 1.07 0.83 1.05 0.75 0.88 0.85 1.07 1.26

APPENDIX – LEARNING VERSATILE NEURAL ARCHI-
TECTURES BY PROPAGATING NETWORK CODES

Anonymous authors
Paper under double-blind review

A DETAILS OF NAS-BENCH-MR

In this section, we provide details of the datasets and settings used to build our NAS-Bench-MR 1.
We follow the common practice and realistic settings for training and evaluation in each task, making
the scientific insights generated by our benchmark easier to generalize to real-world scenarios.

A.1 DATASETS AND SETTINGS

We randomly sample 2,500 structures from our network coding space, and train and evaluate these
same architectures for each task and setting. Each architecture is represented by a 27-dimensional
continuous-valued code. Tab. 2 shows the representation of each dimension of the code. For 9
different datasets and proxy tasks, we train a total of 22,500 models. See below for details.

ImageNet for Image Classification. The ILSVRC 2012 classification dataset (Deng et al., 2009)
consists of 1,000 classes, with a number of 1.2 million training images and 50,000 validation images.

Considering the diversity of the number of classes and data scales in practical applications, and sav-
ing training time, we construct three subsets: ImageNet-50-1000, ImageNet-50-100, and ImageNet-
10-1000, where the first number indicates the number of classes and the second one denotes the
number of images per class.

In this work, we adopt an SGD optimizer with momentum 0.9 and weight decay 1e-4. The input
size is 224 × 224. The initial learning rate is set to 0.1 with a total batch size of 160 on 2 Tesla
V100 GPUs for 100 epochs, and decays by cosine annealing with a minimum learning rate of 0. We

1Project page: https://network-propagation.github.io

1

https://network-propagation.github.io


Under review as a conference paper at ICLR 2022

Table 2: Representations of our 27-dimensional coding.

Component Codes
Nblocks Nresidual units Nchannels

Input layers i1, i2
Stage 1 b1 n1

1 c11
Stage 2 b2 n1

2, n
2
2 c12, c

2
2

Stage 3 b3 n1
3, n

2
3, n

3
3 c13, c

2
3, c

3
3

Stage 4 b4 n1
4, n

2
4, n

3
4, n

4
4 c14, c

2
4, c

3
4, c

4
4

Output layer o1

adopt the basic data augmentation scheme to train the classification models, i.e., random resizing
and cropping, and random horizontal flipping (flip ratio 0.5), and use single-crop for evaluation.

We report the top-1 and top-5 accuracies as the evaluation metric on all three benchmark datasets.
We print the training log (top-1, top-5, loss, lr) every 20 iterations and evaluate the model every 5
epochs on the ImageNet validation set. We will release four checkpoints of 25, 50, 75, 100 epochs
with the optimizer data and all the training logs for each model.

Cityscapes for Semantic Segmentation. The Cityscapes dataset (Cordts et al., 2016) contains high-
quality pixel-level annotations of 5000 images with size 1024 × 2048 (2975, 500, and 1525 for the
training, validation, and test sets respectively) and about 20000 coarsely annotated training images.
Following the evaluation protocol (Cordts et al., 2016), 19 semantic labels are used for evaluation
without considering the void label.

To study the effect of different image resolutions in segmentation, we conduct two benchmarks with
the input size of 512 × 1024 and 128 × 256, respectively. For the small-resolution setting, we
pre-resize the Cityscapes dataset to 256× 512 before the data augmentation.

In this work, we use an SGD optimizer with momentum 0.9 and weight decay 4e-5. The initial
learning rate is set to 0.1 with a total batch size of 64 on 8 Tesla V100 GPUs for 25000 iterations
(about 537 epochs). Follows the common practice in (Zhao et al., 2017; Wang et al., 2020), the
learning rate and momentum follow the “poly” scheduler with power 0.9 and a minimum learning
rate of 1e-4. We use basic data augmentation, i.e., random resizing and cropping, random horizontal
flipping, and photometric distortion for training and single-crop testing with the test size of 1024×
2048 and 256× 512 respectively for two settings.

We report the mean Intersection over Union (mIoU), mean (macro-averaged) Accuracy (mAcc),
and overall (micro-averaged) Accuracy (aAcc) as the evaluation metrics. We print the training log
(mAcc, loss, lr) every 50 iterations and evaluate the model every 5000 iterations on the Cityscapes
validation set. We will release five checkpoints of 5000, 10000, 15000, 20000, 25000 iterations with
the optimizer data and all the training logs for each model.

KITTI for 3D Object Detection. The KITTI 3D object detection dataset (Geiger et al., 2012) is
widely used for monocular and LiDAR-based 3D detection. It consists of 7,481 training images
and 7,518 test images as well as the corresponding point clouds and the calibration parameters,
comprising a total of 80,256 2D-3D labeled objects with three object classes: Car, Pedestrian, and
Cyclist. Each 3D ground truth box is assigned to one out of three difficulty classes (easy, moderate,
hard) according to the occlusion and truncation levels of objects.

In this work, we follow the train-val split (Chen et al., 2015), which contains 3,712 training and
3,769 validation images. The overall framework is based on Pointpillars (Lang et al., 2019). The
input point points are projected into bird’s-eye view (BEV) feature maps by a voxel feature encoder
(VFE). The projected BEV feature maps (496 × 432) are then used as the input of our 2D network
for 3D/BEV detection.

Following (Lang et al., 2019), we set, pillar resolution: 0.16m, max number of pillars: 12000,
and max number of points per pillar: 100. We apply the same data augmentation, i.e., random
mirroring and flipping, global rotation and scaling, and global translation for 3D point clouds as in
Pointpillar (Lang et al., 2019). We use the one-cycle scheduler with an initial learning rate of 2e-3,
a minimum learning rate of 2e-4, and batch size 16 on 8 Tesla V100 GPUs for 80 epochs. We use
an AdamW optimizer with momentum 0.9 and weight decay 1e-2. At inference time, axis-aligned
non-maximum suppression (NMS) with an overlap threshold of 0.5 IoU is used for final selection.

2



Under review as a conference paper at ICLR 2022

100 90 50 10 10-C

100

90

50

10

10-C

1.000 0.970 0.838 0.451 0.514

0.970 1.000 0.843 0.460 0.526

0.838 0.843 1.000 0.535 0.577

0.451 0.460 0.535 1.000 0.738

0.514 0.526 0.577 0.738 1.000

Correlation of epoch numbers
0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Architecture ranking under Seg metrics

mIoU
mAcc
aAcc

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Architecture ranking under 3dDet metrics

Car-3D
Car-BEV
Ped-3D
Ped-BEV

(a) (b) (c)
Figure 1: (a) Spearman’s rank correlation of the different number of epochs (checkpoints of 10, 50,
90, 100 epochs during training on ImageNet-50-1000). ‘10-C’ denotes using the convergent learning
rate for 10 epochs, i.e., the proxy setting used in RegNet (Radosavovic et al., 2020). (b) Architecture
rankings under the evaluation metrics of semantic segmentation (mIoU, mAcc, aAcc). (c) Architec-
ture rankings under the evaluation metrics of 3D object detection (car/pedestrian 3D/bird’s-eye view
detection AP).

We report standard average precision (AP) on each class as the evaluation metric. We will release
five checkpoints of 76, 77, 78, 79, 80 epochs with the optimizer data and detailed evaluation results
(Car/Pedestrian/Cyclist easy/moderate/hard 3D/BEV/Orientation detection AP) of each checkpoint
for each model. Due to the unstable training of the KITTI dataset, we provide the last five check-
points for researchers to tune hyperparameters from different criteria, such as the single model best
performance, the average best performance, and the last epoch best performance.

HMDB51 for Video recognition. We train video recognition models on the HMDB51
dataset (Kuehne et al., 2011), consisting of 6,766 videos with 51 categories. We use the first train-
ing and validation split composing of 3570 and 1530 videos for evaluation, respectively. The video
containing less than 64 frames is filtered, resulting in 2649 samples for training.

Considering the difficulty of learning temporal information, in addition to training from scratch,
we also conduct training using models of ImageNet-50-1000 as pretraining. To model the temporal
information, we replace the last 2D convolutional layer before the final classification layer of HRNet
and its counterparts with a 3D convolutional layer.

In this work, the input size is set to 112 × 112. We adopt an Adam optimizer with momentum 0.9
and weight decay 1e-5. The initial learning rate is set to 0.01 with a total batch size of 80 on 4 Tesla
V100 GPUs for 100 epochs, and decays by cosine annealing with a minimum learning rate of 0. We
adopt random resizing and cropping, random brightness 0.5, random contrast 0.5, random saturation
0.5, random hue 0.25, and random grayscale 0.3 as data augmentation.

We report the top-1 and top-5 accuracies as the evaluation metric on both two settings. We print the
training log (top-1, top-5, loss, lr) every 10 iterations and evaluate the model every 10 epochs on the
validation set. We will release the last checkpoint and all the training logs for each model.

A.2 ANALYSIS OF NAS-BENCH-MR

We summarize detailed statistics of our NAS-Bench-MR in Tab. 1. We also give the mean, std, and
the validation L1 loss (%) of our neural predictors under the main evaluation metric of each setting.

From Spearman’s rank correlation of nine benchmarks in our main paper, we observe that:

(1) The four main tasks have different preferences for the architecture, and their correlation co-
efficients are between -0.003 (segmentation and video recognition) and 0.639 (segmentation and
classification). This may be because segmentation can be seen as per-pixel image classification.

(2) Different settings in the same task also have different preferences for the architecture, and their
correlation coefficients are between 0.3 (Cls-50-1000 and Cls-50-100) and 0.818 (Cls-50-100 and
Cls-10c). From Fig. 1 (a) we also see that different training epochs result in a significant perfor-
mance change. In this way, the proxy 10-epoch training setting (Radosavovic et al., 2020) may not
generalize well to real-world scenarios.

3



Under review as a conference paper at ICLR 2022

Table 3: Comparative results (%) of NCP on the Cityscapes validation set. The first two architec-
tures are searched using neural predictors that are trained on the Cityscapes dataset with an input
size of 512×1024 (Seg) and the resized Cityscapes dataset with an input size of 128×256 (Seg-4x),
respectively. The last model is searched by joint optimization of both the two predictors. λ is set to
0.5 during the network codes propagation process. All models are trained from scratch. FLOPs is
measured using 512× 1024.

Method Params FLOPs
Cityscapes Cityscapes ADE20K
512× 1024 128× 512 512× 512

mIoU mACC aACC mIoU mACC aACC mIoU mACC aACC

ResNet18-PSP (Zhao et al., 2017) 12.94M 108.53G 73.21 79.86 95.51 62.66 70.17 93.25 33.45 40.95 77.78
ResNet34-PSP (Zhao et al., 2017) 23.05M 193.12G 76.17 82.66 95.99 64.17 72.37 93.48 32.78 41.23 77.52
HRNet-W18s (Wang et al., 2020) 5.48M 22.45G 76.21 84.43 95.86 64.49 73.58 93.71 34.39 44.65 77.60
HRNet-W18 (Wang et al., 2020) 9.64M 37.01G 77.73 85.61 96.20 65.19 74.85 93.66 34.84 45.27 77.80

NCP-Net-512× 1024 (Fig. 15) 7.91M 29.34G 77.15 84.73 96.01 62.40 71.70 93.34 33.32 42.97 77.41
NCP-Net-128× 512 (Fig. 16) 2.61M 31.37G 70.91 80.20 95.21 65.89 75.19 93.79 27.52 35.88 73.85
NCP-Net-Both (Fig. 17) 7.82M 50.90G 77.35 84.65 96.23 64.98 73.82 93.83 35.65 45.64 77.94

Table 4: Video recognition results (%) of NCP on the HMDB51 dataset. The first two models are
searched using neural predictors that are trained on HMDB51 from scratch (Video) and using models
of ImageNet-50-1000 as pretraining (Video-p). The last model is searched by joint optimization
of both two predictors. We also show the classification accuracy of the pretrained model on the
ImageNet-50-1000 dataset (the column of “Cls-Pretraining”). Note that the last 2D convolutional
layer before the final classifier is replaced with a 3D convolutional layer (3 × 3 × 3) for all models
to capture the temporal information. λ is set to 0.5. FLOPs is calculated using an input size of
112× 112.

Method Params FLOPs Video-Scratch Cls-Pretraining Video-Pretrained
top1 top5 top1 top5 top1 top5

ResNet18 (He et al., 2016) 12.10M 0.59G 21.50 54.93 82.72 93.88 27.84 60.50
ResNet34 (He et al., 2016) 22.21M 1.20G 19.89 52.94 83.40 94.28 31.22 63.53
HRNet-W18s (Wang et al., 2020) 14.35M 0.86G 24.55 55.87 83.04 95.16 30.96 61.21
HRNet-W18 (Wang et al., 2020) 20.05M 1.41G 24.11 55.33 83.48 94.04 32.48 64.30

NCP-Net-Scratch (Fig. 18) 2.56M 0.69G 28.47 62.18 81.88 93.84 37.54 68.50
NCP-Net-Pretrained (Fig. 19) 1.72M 1.00G 27.49 62.01 82.48 94.80 39.14 69.66
NCP-Net-Both (Fig. 20) 2.39M 1.16G 27.14 62.28 83.92 94.76 40.21 70.29

(3) The correlation coefficient matrix is related to the model performance of multi-task joint opti-
mization using NP. The higher the correlation coefficient of the two tasks, the greater the gain of
joint optimization. If the correlation coefficient of the two tasks is too low, joint optimization may
reduce the performance on both tasks.

(4) We show the architecture ranking under different metrics for different tasks in Fig. 1 (b) and (c).
We noticed that the three metrics (i.e., mIoU, mAcc, aAcc) in segmentation are positively correlated,
which means only one (e.g., mIoU) needs to be optimized to obtain a good model under all three
metrics. However, in the 3D object detection task, different metrics are not necessarily related,
which makes multi-objective optimization especially important.

B INTRA-TASK GENERALIZABILITY

In this section, we explore the effect of multiple proxy settings such as different input sizes (512 ×
1024 and 128× 256), and pretraining strategies (pretraining from classification or training from the
scratch for video recognition) in designing network architectures. We search architectures under
single (e.g., 512× 1024) or multiple (e.g., both resolutions) to validate the effectiveness of NCP for
different intra-task settings.

Tab. 3 and 4 show the intra-task cross-setting generalizability of our searched NCP-Net and some
manually-designed networks, such as ResNet (He et al., 2016) and HRNet (Wang et al., 2020), on
the Cityscapes dataset and the HMDB51 dataset, respectively. We see that:

4



Under review as a conference paper at ICLR 2022

(1) Generally, the network searched on a specific setting performs the best under this setting but
poor under other settings, which means that NCP can optimize and customize model structures
for a specific setting. For example, Tab. 3 shows NCP customizing structures for different input
resolutions on Cityscapes, which is essential for practical applications in real-world scenarios.

(2) Benefiting from the high correlation between different settings of the same task, joint optimiza-
tion of multiple settings within the same task (for both segmentation and video recognition) usually
has a positive effect, i.e., improving the performance on each setting, at the cost of the increasing
model size (larger FLOPs). However, different tasks may not necessarily correlate, e.g.segmentation
+ video recognition. This can be verified by Spearman’s correlation, as discussed in our main paper.

(3) In Tab. 3, we apply the searched segmentation network to the ADE20K dataset (Zhou et al.,
2017) to show the generalizability of the searched architectures. The network trained with a large
input resolution (512×1024) has better performance than the network trained with a small resolution
(128× 256).

Moreover, the jointly searched architecture using both resolutions shows better generalizability than
those two with a single objective. It also demonstrated that the network searched on our NAS-Bench-
MR has stronger transfer capability to real-world scenarios, compared to the previous benchmarks
such as (Dong & Yang, 2020; Ying et al., 2019) that uses a small input size.

(4) For both the segmentation and the video recognition tasks, our joint searched networks outper-
form manually-designed networks, such as HRNet (Wang et al., 2020) and ResNet (He et al., 2016),
and achieve better generalizability to other settings and datasets, e.g., ADE20K.

C NCP ON NAS-BENCH-201

In this section, we apply our NCP to the NAS-Bench-201 benchmark (Dong & Yang, 2020) to show
its effectiveness. We first briefly introduce NAS-Bench-201 and then state the difference between
our NAS-Bench-MR and NAS-Bench-201. Lastly, we detail the experiment.

C.1 NAS-BENCH-201

40

42

44

46

Ac
c 

(%
)

80 100 120 140 160
FLOPs

0

2

Figure 2: Visualization of the architecture prop-
agation process on the NAS-Bench-201 bench-
mark (Dong & Yang, 2020) (ImageNet-16). F
represents the propagated model in each step.
NCP finds the optimal structure from a low-Acc
and high-FLOPs starting point with only 6 steps
by optimizing accuracy and FLOPs constraints si-
multaneously.

NAS-Bench-201 employs a DARTS-like (Liu
et al., 2019) search space including three stacks
of cells, connected by a residual block (He
et al., 2016). Each cell is stacked N = 5
times, with the number of output channels as
16, 32, and 64 for the first, second, and third
stages, respectively. The intermediate residual
block is the basic residual block with a stride
of 2. There are 6 searching paths in the space
of NAS-Bench-201, where each path contains 5
options: (1) zeroize, (2) skip connection, (3) 1-
by-1 convolution, (4) 3-by-3 convolution, and
(5) 3-by-3 average pooling layer, resulting in
15,625 different models in total.

NAS-Bench-201 train these models on the
ImageNet-16 (with an input size of 16×16) and
Cifar10 (with an input size of 32×32) datasets.
Since the ImageNet dataset is closer to practical
applications, we use the models in ImageNet-
16 as a comparison in the following section.

C.2 DIFFERENCES

There are some differences between the NAS-Bench-201 benchmark and our NAS-Bench-MR.

(1) NAS-Bench-201 and NAS-Bench-MR are of different magnitudes (15,625 v.s. 1023). (2) The
number of channels/blocks/resolutions is fixed in NAS-Bench-201, while it is searchable in our

5



Under review as a conference paper at ICLR 2022

0 2 4 6 8 10 12 14 16 18
FLOPs (G)

82

83

84

85

86

Ac
c 

(%
)

NCP Net(Ours)

ResNet18

ResNet34
ResNet50

ResNet101

HRNet-W18s

HRNet-W18

HRNet-W32

HRNet-W48

Neural Predictor

Image Classification

0 20 40 60 80 100 120 140 160 180
FLOPs (G)

70

72

74

76

78

m
IO

U 
(%

)

NCP Net(Ours)

ResNet18
ResNet34

ResNet50

HRNet-W18s

HRNet-W18

HRNet-W32
Pointpillar

3D Detection

0 100 200 300 400 500
FLOPs (G)

72

74

76

78

80

m
IO

U 
(%

)

NCP Net S(Ours)

NCP Net M(Ours)

NCP Net L(Ours)

ResNet18-PSP

ResNet34-PSP ResNet50-PSP

ResNet101-PSP
HRNet-W18s

HRNet-W18

HRNet-W32
HRNet-W48

Auto-DeepLab

Semantic Segmentation

0 1 2 3 4 5
FLOPs (G)

14

18

22

26

30

Ac
c 

(%
)

NCP Net S(Ours)

NCP Net M(Ours)

NCP Net L(Ours)

ResNet18
ResNet34

ResNet50 ResNet101

HRNet-W18s
HRNet-W18 HRNet-W32

HRNet-W48

Video Recognition
Figure 3: Comparisons of the efficiency (i.e., FLOPs) and the performance (e.g., Acc, mIoU,
AP) on four computer vision tasks, i.e., image classification (ImageNet), semantic segmentation
(CityScapes), 3D detection (KITTI), and video recognition (HMDB51) between the proposed ap-
proach and existing methods. Each method is represented by a circle, whose size represents the
number of parameters. F represents the optimal model with both high performance and low FLOPs.
Our approach achieves superior performance compared to its counterparts on all four tasks.

search space. In this way, our search space is more fine-grained and suitable for customizing to
tasks with different preferences (high- and low-level features, deeper and shallower networks, wider
and narrower networks, etc.). (3) The architecture in NAS-Bench-201 is represented as a one-hot
encoding (choose one of five operators). While in our NAS-Bench-MR, the continuous-valued code
is more appealing to the learning of the neural predictor. (4) NAS-Bench-201 is built based on a
single setting while NAS-Bench-MR contains multiple settings.

We then conduct experiments and show that despite the above many differences, NCP works well
on NAS-Bench-201, demonstrating the generalization ability of NCP to other benchmarks.

C.3 EXPERIMENTS

In this work, we formulate each architecture in NAS-Bench-201 to a 6∗5 = 30-dimensional one-hot
encoding. We then use our continuous network propagation strategy to traverse architectures in the
space with higher-Acc and lower-FLOPs as optimization goals. Given an initial one-hot encoding,
our NCP treats it as a continuous-valued coding and utilizes the argmax operation to obtain an
edited one-hot coding after every several iterations.

In the experiment, we use the argmax operation after every 10 iterations, termed as a step. As shown
in Fig. 2, our NCP finds the optimal structure from a low-Acc and high-FLOPs starting point with
only 6 steps (60 iterations). The entire search process takes less than 10 seconds. Compared to other
neural predictor-based methods such as (Wen et al., 2020; Luo et al., 2020) that need to predict the
accuracy of a large number of architectures, NCP is more efficient.

From Fig. 2 we observe that from the second to fourth steps, the performance of the searched model
vibrates. This may be because of the instability caused by one-hot encoding. NCP finds an optimal
model with an accuracy of 46.8 and FLOPs of only 90.36 (the highest accuracy in NAS-Bench-201
is 47.33%), showing its effectiveness and generalizability.

6



Under review as a conference paper at ICLR 2022

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Cls

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Seg

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128
Ch

an
ne

l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Video

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

3dDet

Channel
Block
ResUnit

Figure 4: Visualization of the searched models by NCP for four different tasks (λ = 0.5). The
27-dimensional array in each row represents a network structure.

Algorithm 1 The network propagation process.
1. Learn a neural predictor FW (·) and fix it;
2. Initialize an architecture code e;
3. Set the target metrics, such as tacc and tflops;
for each iteration do

4. Re-set new target metrics (optional);
5. Forward FW (e) and calculate the loss;
6. Back-propagate and calculate the gradient ∆e;
7. Select an optimal dimension l (optional);
8. update e based on the gradient ∆e;

end for
9. Round and decode e to obtain the final architecture.

D NCP ON DIFFERENT SINGLE TASKS

We also use NCP to find the optimal architecture on the four basic vision tasks, i.e., image clas-
sification, semantic segmentation, 3D detection, and video recognition. Quantitative comparisons
in Fig. 3 show that the architectures found by NCP outperform well-designed networks, such as
HRNet (Wang et al., 2020) and ResNet (He et al., 2016).

We visualize the searched architectures by NCP in Fig. 4 to show it can customize different repre-
sentations for different tasks (objectives). We see that:

(1) Segmentation requires the most high-level information in the last two branches of the last stage,
and the video recognition model contains the least low-level semantics in the first two stages.

(2) The classification model contains more channels than other tasks, because the FLOPs constraint
for classification is the weakest, i.e., classification costs fewer FLOPs than segmentation under the
same architecture.

(3) The 3D detection model mainly utilizes the first two branches, which means it may rely more on
high-resolution representations.

E DETAILS OF NCP

In this section, we provide supplementary details and complexity analysis of our NCP. The algorithm
of Network Coding Propagation (NCP) is shown in Algorithm 1. Code is available.

E.1 IMPLEMENTATION DETAILS

In this work, for each task, 2000 and 500 structures in the benchmark are used as the training set and
validation set to train the neural predictor. The optimization goal is set to higher performance (main
evaluation metric of each task) and lower FLOPs.

Intuitively, large models can achieve moderate performance on multiple tasks by stacking redun-
dant structures. On the contrary, the lightweight model tends to pay more attention to task-specific
structural design due to limited computing resources, making it more suitable for generalizability
evaluation. To this end, we set λ = 0.5 to obtain lightweight models unless specified.

7



Under review as a conference paper at ICLR 2022

Table 5: Searching time of predictor-based searching methods. Our NCP is the fastest as it evaluates
all dimensions of the code with only one back-propagation without top-K ranking. The time is
measured on a Tesla V100 GPU.

Model Searching Time Notes

Neural Predictor Wen et al. (2020) > 1 GPU day Predict the validation metric of 10,000 random archite-
ctures and train the top-10 models for final evaluation.

NetAdapt Yang et al. (2018) 5min Traverse each dimension of the code, predict its per-formance,
and then edit the dimension with the highest accuracy improvement.

NCP (Ours) 10s (70 iterations) Maximize the evaluation metrics along the gradient dir-
ections by propagating architectures in the search space.

We employ a three-layer fully connected network with a dropout ratio of 0.5 as the neural predictor.
The first layer is a shared layer for all metrics with a dimension of 256. The second layer is a
separated layer for each metric with a dimension of 128. Then for each evaluation metric, a 128-
by-1 fully-connected layer is used for final regression. During training, we use an Adam optimizer
with a weight decay of 1e-7. The initial learning rate is set to 0.01 with batch size 128 on a single
GPU for 200 epochs, and decays by the one cycle scheduler. The metric prediction is learned
using the smoothL1 loss. In the network propagation process, unless specified, we use continuous
propagation with an initial code of {b, n = 2; c, i, o = 64} and learning rate of 3 for 70 iterations in
all experiments.

E.2 TIME COMPLEXITY

Tab. 5 shows the searching time of three predictor-based searching methods. NCP is the fastest as it
traverses all dimensions of the code with only one back-propagation without the top-K ranking.

Suffering from the random noise in random search and the neural predictor, existing methods (Wen
et al., 2020; Luo et al., 2020) often need to train the top-K models for final evaluation, which is
costly (e.g., training a segmentation model on Cityscapes costs 7 hours on 8 Tesla V100 GPUs).
NCP uses gradient directions as guidance to alleviate the randomness issue.

F VISUALIZATION AND ANALYSIS

F.1 ANALYSIS OF TASK TRANSFERRING

We visualize the network coding propagation process of our cross-task architecture transferring, e.g.,
an architecture transferring from the classification task to the segmentation task by using the optimal
coding on classification as initialization and using the neural predictor trained on segmentation for
optimization. The detailed transferring visualizations of every two of the four tasks are shown in
Fig. 5-8 with many interesting findings. For example, all networks in segmentation try to increase
the number of channels of the 4th branch of stage 4, while the networks in classification try to
decrease it; the networks in video recognition keep it at an intermediate value.

F.2 ANALYSIS OF SINGLE- AND MULTI-TASK SEARCHING

We visualize the searched architectures (Fig. 9-10) and the network propagation process of each
architecture (Fig. 15-20) in Tab. 3-4.

Classification. Manually-designed classification models often use gradually decreasing resolution
and gradually increasing the number of channels, because intuitively the learning of classification
task requires low-resolution high-level semantic information. However, under different data scales
and number of classes, the situation is different, as shown in Fig. 11-14. For example, by reduc-
ing the training samples from 1000 to 100 (from Fig. 11 to Fig. 12), the number of convolutional
channels and the number of residual units in the 1st branch of stage 4 are increased during propaga-
tion, showing the high-resolution low-level information is important when the training samples are
insufficient.

8



Under review as a conference paper at ICLR 2022

0 20 40 60

74

76

Predicted mIoU (%)

0 20 40 601

2
GFLOPs

0 20 40 60
1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128 Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128 Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Cls Seg

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60
25
26
27

Predicted Acc (%)

0 20 40 60
1

2 GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128 Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Cls Video

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60

77.0

77.5
Predicted Car-3D AP (%)

0 20 40 60
1.5
2.0
2.5 GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 608

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Cls 3dDet

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 5: Visualization of our network propagation process of the optimal model in classification
transferring to other three tasks (λ = 0.5).

0 20 40 60
82.5

85.0

Predicted Acc (%)

0 20 40 60
1

2

GFLOPs
0 20 40 60

1

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Seg Cls

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60
15
20
25 Predicted Acc (%)

0 20 40 600.50

0.75
GFLOPs

0 20 40 60
1

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128
Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4 Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Seg Video

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60

76

78

Predicted Car-3D AP (%)

0 20 40 600.75

1.00

1.25
GFLOPs

0 20 40 60
1

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128
In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128 Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Seg 3dDet

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 6: Visualization of our network propagation process of the optimal model in segmentation
transferring to other three tasks (λ = 0.5).

Segmentation. From Fig 15, Fig 16, and Fig 17 we observe the differences of the network editing
process of segmentation models. For example, compared to the two models optimized at a single
resolution, the model optimized at both input resolutions reduces the numbers of residual units of
the first two stages and increases the number of blocks of stage 2, resulting in more fusion modules
and fewer parallel units.

Segmentation and Video Recognition. From the visualization of found architecture codes in
Fig. 9 and 10, we can find, it is not always that the larger the model, the better the performance.
Different objectives result in different customized architecture codes. For example, segmentation
tends to select architectures with fewer input channels, while video recognition architectures often
have more output channels.

REFERENCES

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. 3d object proposals for accurate object class detection. In NeurIPS, pp. 424–432,
2015. 2

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, pp. 3213–3223, 2016. 2

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009. 1

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In ICLR, 2020. 5

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In CVPR, pp. 3354–3361, 2012. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016. 4, 5, 7

9



Under review as a conference paper at ICLR 2022

0 20 40 60
82.5

85.0
Predicted Acc (%)

0 20 40 60
1

2

3

GFLOPs
0 20 40 60

1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4

Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Video Cls

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60

72.5
75.0

Predicted mIoU (%)

0 20 40 60

1.0

1.5
GFLOPs

0 20 40 60
1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128 In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128
Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Video Seg

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60

76

78

Predicted Car-3D AP (%)

0 20 40 60
0.75

1.00

1.25
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128 Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4 Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Video 3dDet

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 7: Visualization of our network propagation process of the optimal model in video action
recognition transferring to other three tasks (λ = 0.5).

0 20 40 60
82.5

85.0 Predicted Acc (%)

0 20 40 60
1.5
2.0
2.5

GFLOPs
0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 608

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

3dDet Cls

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60
70

75

Predicted mIoU (%)

0 20 40 60
1.0

1.5 GFLOPs

0 20 40 60
1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128 Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 608

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

3dDet Seg

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

0 20 40 60
25
26
27

Predicted Acc (%)

0 20 40 600.75

1.00
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128 Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 608

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4 Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

3dDet Video

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 8: Visualization of our network propagation process of the optimal model in 3D object
detection transferring to other three tasks (λ = 0.5).

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb:
A large video database for human motion recognition. In ICCV, pp. 2556–2563, 2011. 3

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In CVPR, pp. 12697–12705, 2019.
2

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR, 2019. 5

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture
search with gbdt. arXiv preprint arXiv:2007.04785, 2020. 6, 8

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, pp. 10428–10436, 2020. 3

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning
for visual recognition. IEEE TPAMI, 2020. 2, 4, 5, 7

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In ECCV, pp. 660–676. Springer, 2020. 6, 8

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
ECCV, pp. 285–300, 2018. 8

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In ICML, pp. 7105–7114, 2019.
5

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In CVPR, pp. 2881–2890, 2017. 2, 4

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, pp. 633–641, 2017. 5

10



Under review as a conference paper at ICLR 2022

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Seg-512x1024

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Seg-128x512

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Seg-Both

Channel
Block
ResUnit

Figure 9: Visualization of the searched segmen-
tation models in Tab. 3 by our NCP for intra-task
generalizability (λ = 0.5). The 27-dimensional
array in each row represents a network structure.

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Video-Scratch

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Video-Pretrained

Channel
Block
ResUnit

In-layersStage1 Stage2 Stage3 Stage4 Out-layer
0

32
64
96

128

Ch
an

ne
l

0
1
2
3
4

Bl
oc

k 
& 

Co
nv

Video-Both

Channel
Block
ResUnit

Figure 10: Visualization of the searched video
recognition models in Tab. 4 by our NCP for
intra-task generalizability (λ = 0.5). The 27-
dimensional array in each row represents a net-
work structure.

0 20 40 60

84

86

Predicted Acc (%)

0 20 40 60
1

2

GFLOPs
0 20 40 60

1

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 608

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 11: Visualization of our network propaga-
tion process of “NCP-Net-A” (λ = 0.7) for clas-
sification.

0 50 100 150 200
50

55
Predicted Acc (%)

0 50 100 150 200

1

2
GFLOPs

0 50 100 150 2001

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 50 100 150 200
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 50 100 150 200
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 50 100 150 2008

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 50 100 150 200
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 50 100 150 200
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 50 100 150 200
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 50 100 150 200
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 12: Visualization of our network propa-
gation process of “NCP-Net-B” (λ = 0.7) for
classification.

0 50 100 150 200
86

88
Predicted Acc (%)

0 50 100 150 200
1

2

GFLOPs
0 50 100 150 2001

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 50 100 150 200
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 50 100 150 2008

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 50 100 150 200
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 50 100 150 200
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 50 100 150 200
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 50 100 150 200
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 50 100 150 200
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 13: Visualization of our network propa-
gation process of “NCP-Net-C” (λ = 0.7) for
classification.

0 20 40 60
83
84
85

Predicted Acc (%)

0 20 40 60
1

2

GFLOPs
0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 608

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 14: Visualization of our network propa-
gation process of “NCP-Net-ABC” (λ = 0.7) for
classification.

11



Under review as a conference paper at ICLR 2022

0 20 40 60

75.0

77.5

Predicted mIoU (%)

0 20 40 60
1

2
GFLOPs

0 20 40 60
1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128
In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4 Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4

Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 15: Visualization of our network propaga-
tion process of “NCP-Net-512× 1024” in Tab. 3
(λ = 0.5).

0 20 40 60

64

66

Predicted mIoU (%)

0 20 40 60

1

2
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 608

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 608

32

56

80

104

128
Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 608

32

56

80

104

128 Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4

Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4

Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 16: Visualization of our network propaga-
tion process of “NCP-Net-128× 512” (λ = 0.5)
in Tab. 3 for segmentation.

0 20 40 6074

76
Predicted mIoU (%)

0 20 40 60

1.5

2.0

GFLOPs
0 20 40 60

1

2

3

4

Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128
In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128
Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 608

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4 Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 17: Visualization of our network propa-
gation process of “NCP-Net-Both” (λ = 0.5) in
Tab. 3 for segmentation.

0 20 40 60
22.5
25.0
27.5 Predicted Acc (%)

0 20 40 60

1

2
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128
Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 608

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 18: Visualization of our network propa-
gation process of “NCP-Net-Scratch” in Tab. 4
(λ = 0.5).

0 20 40 60
35

40 Predicted Acc (%)

0 20 40 60

1

2
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 60
8

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4

Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4
Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 19: Visualization of our network propaga-
tion process of “NCP-Net-Pretrained” (λ = 0.5)
in Tab. 4 for video recognition.

0 20 40 60
22.5

25.0

27.5
Predicted Acc (%)

0 20 40 60

1

2
GFLOPs

0 20 40 601

2

3

4
Stage1: N_blocks
Stage2: N_blocks
Stage3: N_blocks
Stage4: N_blocks

0 20 40 60
8

32

56

80

104

128

In-layers: N_channels0
In-layers: N_channels1
Out-layer: N_channels

0 20 40 60
8

32

56

80

104

128

Stage1: N_channels in branch1
Stage2: N_channels in branch1
Stage2: N_channels in branch2

0 20 40 608

32

56

80

104

128

Stage3: N_channels in branch1
Stage3: N_channels in branch2
Stage3: N_channels in branch3

0 20 40 60
8

32

56

80

104

128

Stage4: N_channels in branch1
Stage4: N_channels in branch2
Stage4: N_channels in branch3
Stage4: N_channels in branch4

0 20 40 60
Iterations

1

2

3

4
Stage1: N_units in branch1
Stage2: N_units in branch1
Stage2: N_units in branch2

0 20 40 60
Iterations

1

2

3

4
Stage3: N_units in branch1
Stage3: N_units in branch2
Stage3: N_units in branch3

0 20 40 60
Iterations

1

2

3

4

Stage4: N_units in branch1
Stage4: N_units in branch2
Stage4: N_units in branch3
Stage4: N_units in branch4

Figure 20: Visualization of our network propa-
gation process of “NCP-Net-Both” (λ = 0.5) in
Tab. 4 for video recognition.

12


	Details of NAS-Bench-MR
	Datasets and Settings
	Analysis of NAS-Bench-MR

	Intra-task Generalizability
	NCP on NAS-bench-201
	NAS-Bench-201
	Differences
	Experiments

	NCP on different single tasks
	Details of NCP
	Implementation Details
	Time Complexity

	Visualization and Analysis
	Analysis of Task Transferring
	Analysis of Single- and Multi-task Searching


