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APPENDIX

A MORE IMPLEMENTATION DETAILS

A.1 DATASETS

The ENZYMES dataset, a collection of protein data obtained from the BRENDA database (Feragen
et al., 2013), involves the classification of enzymes into one of six primary EC categories. Detailed
statistics of this dataset are presented in Table 1.

The PROTEINS dataset, derived from the Dobson and Doig collection (Feragen et al., 2013), con-
sists of protein data with the objective of distinguishing between enzymes and non-enzymes. Table 1
provides detailed statistics of this dataset.

The D&D dataset (Dobson & Doig, 2003) comprises high-resolution protein structures taken from
a non-redundant selection of the Protein Data Bank. In this dataset, nodes represent amino acids,
and an edge is formed between two nodes if they are less than 6 angstroms apart. Detailed statistics
of the dataset can be found in Table 1.

The MUTAG dataset (Wu et al., 2018) is designed for predicting molecular properties, with nodes
representing atoms and edges corresponding to chemical bonds. Each graph carries a binary label
that indicates its mutagenic effect. Table 1 displays detailed statistics for the dataset.

The COLLAB dataset (Yanardag & Vishwanathan, 2015) focuses on scientific collaborations. In
this dataset, each graph represents the ego network of a researcher, with nodes depicting the re-
searcher and their collaborators, and edges signifying collaborations between researchers. The ego
network of a researcher can be labeled with one of three categories: High Energy Physics, Con-
densed Matter Physics, or Astro Physics, reflecting the researcher’s field of study. Detailed statistics
of the dataset can be found in Table 1.

The GraphCycle dataset (Wang et al., 2024)is a synthetic dataset. Initially, 8˜15 Barabási-Albert
graphs are generated as communities, each with 10 to 200 nodes. These BA graphs are then inter-
connected to form two predefined shapes: Cycle and Non-Cycle. Edges between nodes in different
communities are randomly added with a probability between 0.05 and 0.15. Detailed statistics of
the dataset are given in Table 1.

The GraphFive dataset (Wang et al., 2024) is a synthetic dataset. Initially,8˜15 Barabási-Albert
graphs are generated as communities, each consisting of 10 to 200 nodes. These BA graphs are
subsequently connected in five predefined shapes: Wheel, Grid, Tree, Ladder, and Star. To estab-
lish connections between nodes in different clusters, edges are randomly added with a probability
between 0.05 and 0.15. Detailed statistics of the dataset can be found in Table 1.

MultipleCycle is a self-designed synthetic dataset. Specifically, we first generate random first-level
structures, which consist of either a cycle or a non-cycle structure. For each node in this first-level
structure, we further expand it by randomly generating second-level structures, which can either be
a cycle or a non-cycle structure. Additionally, each node in the second-level structure is further
expanded into one of four third-level structures: a triangle, star, trapezoid, or cycle. The dataset
consists of four predefined categories: Pure Cycle, Pure Chain, Hybrid Cycle, and Hybrid Chain,
determined based on whether the majority of the nodes at each level form cycle-based or chain-based
structures. This hierarchical generation method ensures that each graph exhibits multiple levels
of nested structures, with connectivity and patterns varying across the different classes. Specific
statistics of the dataset are shown in Table 1.

1



Published as a conference paper at ICLR 2025

Table 1: The statistics of real-world datasets.

#Avg. Nodes #Avg. Edges #Classes #Graphs
ENZYMES 32.63 62.14 6 600

D&D 284.32 715.66 2 1178
PROTEINS 39.06 72.82 2 1113

MUTAG 17.93 19.79 2 188
COLLAB 74.49 2457.78 3 5000

GraphCycle 297.70 697.18 2 2000
GraphFive 375.98 1561.77 5 5000

MultipleGraph 175.33 263.41 4 5000

A.2 BASELINE

To simplify the Tree-like Interpretable Framework (TIF) and investigate the impact of its core com-
ponents on model performance, we designed a simplified model, named Bi-Tree.

A.2.1 SIMPLIFIED LEARNABLE GRAPH PERTURBATION MODULE

In Bi-Tree, the learnable graph perturbation module from TIF has been simplified to use a set of
fixed perturbation terms for each layer. Specifically, while TIF allows each parent node to have
independent learnable perturbation matrices, Bi-Tree defines a set of fixed perturbation matrices
P

(l)
i for each layer l, corresponding to path i. The equation is as follows:

S
(l)
k (i) = S

(l)
k + P

(l)
i , i = 1, 2, . . . ,M, (1)

where S
(l)
k represents the clustering assignment matrix generated by the graph coarsening module,

and P
(l)
i is the fixed perturbation matrix for path i in layer l.

A.2.2 BINARY TREE STRUCTURE WITH LINEAR ROUTERS

Bi-Tree constructs a binary tree structure, where each parent node has only two child nodes. Unlike
TIF, which uses multi-level routers, Bi-Tree simplifies each layer’s routers to linear transformations
instead of multi-layer perceptrons (MLP). Specifically, the router computes the routing logits r

(l)
k

based on the node embeddings Z(l)
final,k:

r
(l)
k = Wr,k · Z(l)

final,k + br,k, (2)

where Wr,k is the weight matrix for parent node k, and br,k is the bias term.

A.3 HYPER-PARAMETER SETTINGS

The hyper-parameters used in our framework include batch size, optimizer, learning rate, and epoch.
Additionally, several key hyper-parameters control the various loss terms in the model. Specifically,
α1 controls the contribution of the edge prediction loss Llink, which ensures the preservation of
graph connectivity during the hierarchical graph coarsening process. α2 governs the perturbation
regularization loss Lperturb, balancing similarity regularization Lsimilarity and diversity regularization
Ldiversity to ensure the embeddings remain diverse yet close to the original during the learnable graph
perturbation module. α3 adjusts the entropy regularization loss Lentropy, which promotes diverse
path selection in the adaptive routing module. The specific settings are provided in Table 2.

Table 2: The statistics of hyper-parameters setting.

ENZYMES PROTEINS D&D MUTAG COLLAB GraphCycle GraphFive MultipleGraph
Batch Size 64 64 128 64 64 128 128 128
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Learning Rate 0.001 0.003 0.001 0.001 0.003 0.01 0.01 0.01
Epoch 500 500 500 500 500 500 500 500
α1/α2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2
α3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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A.4 MORE DETAILED EXPLANATION OF THE NOTATION

To enhance the readability of the formulas, we will provide a symbol table to further elaborate on
the specific meanings of each subscript, offering detailed explanations for each subscript and its
function. This will particularly focus on how these subscripts are used in the tree structure model
to represent different levels, nodes, and perturbation terms, helping readers better understand our
notation system. For details, please refer to Table 3, 4, 5, 6, 7, 8 and 9.

Table 3: Node-related symbols.

Symbol Subscript/Superscript Meaning and Role

vi i The i-th node in the graph, representing a specific node.
Z(l) l Node embedding matrix after graph convolution at layer l, containing embeddings for all nodes.
Z(l),k k, l Node embeddings belonging to node k at layer l, used for representing tree nodes.
Z(l),k(i) k(i), l Embeddings of node k perturbed by the i-th perturbation at layer l.
Ẑ(l),k k, l Final aggregated embedding for node k at layer l, used for routing and decisions.

Table 4: Feature and weight-related symbols.

Symbol Subscript/Superscript Meaning and Role

X None Input feature matrix, containing the original graph’s node features.
X(l),k k, l Feature matrix of node k at layer l, describing its feature state.
X(l),k(i) k(i), l Feature matrix of node k after applying the i-th perturbation at layer l.
X(l+1) l + 1 Feature matrix of the coarsened graph at layer l + 1.
W(l) l Weight matrix of the graph convolution at layer l, used for learning graph structural features.

W(1),r,k, W(2),r,k r, k Router weight matrices for node k at layer l, used to compute path selection probabilities.
b(1),r,k, b(2),r,k r, k Bias terms for the router of node k at layer l.

Table 5: Graph structure-related symbols.

Symbol Subscript/Superscript Meaning and Role

A None Adjacency matrix of the original graph, representing node connectivity.
Â ˆ Adjacency matrix with self-loops added, improving the stability of graph convolution operations.
A(l) l Adjacency matrix of the graph at layer l, describing node connectivity in the coarsened graph.

A
(l+1),̂il,k

pooled pooled, îl,k, l + 1 Adjacency matrix of the coarsened graph generated for the selected path îl,k.

B ADDITIONAL VISUAL EXPLANATIONS

B.1 ADDITIONAL VISUAL EXPLANATIONS FOR THE TREE STRUCTURE

To comprehensively evaluate the interpretability of our proposed TIF, we provide an example that
contains the input graph, the root-to-leaf path, the coarsened graphs of each layer, and the final
prediction. We conduct a detailed analysis of the multi-granular graph-level nodes and root-to-
leaf paths it captures. To facilitate the observation of relationships between structures at different
granularities, we visualize our framework’s reasoning process for the MultipleCycle dataset and use
different colors to distinguish between various substructures, as illustrated in Figure 1. We observe
that TIF effectively captures both local substructures in finer explanations and global structure in
coarser explanations, ensuring that key features at different granularities are preserved. The routing
module selects the most informative paths through the tree based on multi-granular complexity.

Below, we will take Figure 1 as an example and provide a detailed analysis of the entire process,
starting from the input graph, progressing through each intermediate layer and the root-to-leaf path,
and finally arriving at the output graph and prediction results and elaborate correlation between the
coarsened graph at each layer and the ground-truth.

Firstly, the input graph is a sample from the MultipleCycle dataset, and its category is “Hybrid
Cycle”. It corresponds to different ground truths at different levels of granularity. Specifically:

• Its first-level structure is set as a cycle structure based on the ground truth at this granularity level,
which determines its cycle attribute.
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Table 6: Clustering-related symbols.

Symbol Subscript/Superscript Meaning and Role

S(l) l Clustering assignment matrix at layer l, representing the probabilities of nodes belonging to different clusters.
S(l),k k, l Clustering assignment matrix for node k at layer l.
S(l),k(i) k(i), l Clustering assignment matrix for node k under the i-th perturbation at layer l.

Table 7: Loss and regularization-related symbols.

Symbol Subscript/Superscript Meaning and Role

Llink link Edge prediction loss, ensuring connectivity of the adjacency matrix during graph coarsening.
Lsimilarity similarity Similarity regularization, constraining perturbed embeddings to remain close to the original embeddings.
Ldiversity diversity Diversity regularization, promoting differences between perturbed embeddings.
Lentropy entropy Entropy regularization, encouraging diversity in path selection.
LCE CE Cross-entropy loss, optimizing classification objectives.
Ltotal total Total loss function, combining classification, edge prediction, perturbation, and entropy losses.

Table 8: Path and routing-related symbols.

Symbol Subscript/Superscript Meaning and Role

r(l),k k, l Routing logits for node k at layer l, used to compute path selection probabilities.
p(l),k,i k, i, l Path selection probability for node k at layer l, representing the likelihood of selecting branch i.
îl,k l, k Optimal path index for node k at layer l, selected based on the maximum probability.

Path(l),k k, l Path set at layer l, describing the paths associated with node k.

Table 9: Parameters and hyperparameters.

Symbol Subscript/Superscript Meaning and Role

λi i Weight of the similarity regularization term, controlling the strength of the i-th perturbation.
µ None Weight of the diversity regularization term, controlling variation between perturbations.

α1, α2, α3 1, 2, 3 Weight coefficients for edge prediction, perturbation, and entropy regularization terms, respectively.
M None Number of perturbation branches for each node.
N None Number of nodes in the current layer.
K(l) l Number of clusters at layer l.
L None Total number of layers in the tree.
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• Its second-level structure is built on the first-level structure, configured as a mixed combination
of cycle and non-cycle structures according to the ground truth at this granularity level. The
clockwise sequence is cycle, non-cycle, cycle, and cycle, which determines its mixed attribute.
(for more detailed information on the dataset, please refer to Appendix A.1.)

Therefore, the final prediction for the input graph in this dataset requires the model to determine:

• whether its first-level granular structure is cycle or non-cycle.
• whether its second-level granular structure represents a mixed combination.

In other words, the model is expected to analyze and make determinations at different granularity
levels for this dataset.

Secondly, when the input graph is fed into the model. After passing through a series of graph
convolution layers and being processed by the Graph Perturbation Module and Routing Module at
the root node of the TIF, the model produces four finer graphs.

We can observe that the finer graphs clearly display the second-level structure of the input graph
(in the figures, different colors are used to annotate the nodes of the finer graphs, distinguishing the
various second-level structures). From left to right:

• The first finer graph shows a second-level structure starting from the top-left and proceeding clock-
wise as cycle, non-cycle, cycle, and non-cycle (this structure is not clearly represented).

• The second finer graph shows a second-level structure proceeding clockwise as non-cycle, cycle
(which is somewhat ambiguous and not purely cycle), cycle, and cycle.

• The third finer graph shows clockwise as cycle, non-cycle, cycle, and cycle.
• The fourth finer graph shows clockwise as cycle, non-cycle, cycle, and non-cycle.

The model selects the third finer graph, which best reflects the structural information of the input
graph. From an interpretability perspective, this layer of finer graphs in the TIF tree model captures
the second-level structural information of the input graph. Furthermore, the model selects the finer
graph that most effectively represents the second-level structure of the input graph (clockwise: cycle,
non-cycle, cycle, cycle). From the perspective of ground truth, the model selects the finer graph that
is closest to the ground truth structure and layout of the input graph at this granularity level.

Subsequently, the selected finer graph undergoes another series of graph convolution layers and is
processed by the Learnable Graph Perturbation Module and the Adaptive Routing Module at the
next layer of the TIF. The model then produces four coarser graphs.

We can observe that the coarser graphs clearly capture the first-level structure of the input graph,
which is the cycle structure. To illustrate this correspondence, we have used different colors in the
figures to annotate the nodes of the coarser graphs, aligning them with the structures of the finer
graphs from the previous layer. From left to right:

• The first coarser graph has two nodes extending outward as small structures from the cycle.
• The second coarser graph has three discontinuous nodes extending outward from the cycle.
• The third coarser graph has two nodes extending outward as small structures from the cycle.
• The fourth coarser graph has three nodes extending outward as small structures from the cycle

structure, corresponding to the second-level structure depicted in the finer graph from the previous
layer (three cycles organized consecutively).

The model selects the fourth coarser graph, which best represents the structural information of the
input graph, as the root node of the TIF. From an interpretability perspective, this layer of coarser
graphs in the TIF captures the first-level structural information of the input graph. Additionally,
the model selects the coarser graph that not only most effectively represents the first-level structural
information of the input graph but also retains the second-level structural information (clockwise:
cycle, non-cycle, cycle, cycle, i.e., three cycles organized consecutively). From the perspective of
ground truth, the model selects the finer graph that is closest to the ground truth structure and layout
of the input graph at this granularity level, while also most accurately preserving the ground truth
structural information from the previous granularity level.
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Finally, at the root node of the TIF, the prediction is performed, and the model successfully identifies
the data as “Hybrid Cycle”. From an interpretability perspective, the TIF effectively captures and
explains the key attributes of the MultipleCycle dataset at two distinct granularity levels.

• The second-level granularity characterizes the attributes of being purely cycle, purely non-cycle,
or a mixed combination of cycle and non-cycle structures.

• The first-level granularity identifies whether the structure is cycle or non-cycle.

Based on these attributes at the two different granularity levels, the model successfully makes the
final prediction for the input graph, completing the classification task.

In addition, the relationship between each coarsened graph and the ground truth lies in the fact that
each coarsened graph in the TIF strives to represent the critical structures constructed by the ground
truth at the granularity level that the layer aims to explain for the input graph. That is, the coarsened
graph obtained at each level by TIF corresponds to the ground truth at that level of granularity.

The selected path(root-to-leaf path)  
The unselected path
The most accurate explanation
Relatively less optimal explanation

original graph(input graph) 

router

router

finer graph 

coarser graph 

prediction

Thumbnail

ground truth

first-level structure

second-level structure

Cycle Cycle Non-Cycle Non-Cycle

Cycle Cycle Non-Cycle Non-Cycle

Figure 1: An example which contains the input graph, the root-to-leaf path, the coarsened graphs of
each layer, and the final prediction.

B.2 ADDITIONAL VISUAL EXPLANATIONS ON DIFFERENT DATASETS

In this section, we will present additional visualization outcomes of explanations on different
datasets. We visualize the explanations generated by our framework on the PROTEINS and D&D
datasets. The outcomes are presented in Figure 2 and Figure 3. For clarity of presentation, we only
show partial sections of the full explanations for the finer graph granularity and moderate graph
granularity. It can be easily observed that TIF effectively captures both local substructures and
global graph patterns, ensuring that key features at different granularities are preserved.
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For example, in the PROTEINS dataset, compared to the explanations for non-enzymes, the expla-
nations for enzymes at the protein molecular level, or the coarser graph granularity, display more
long loops and tighter connections. At the amino acid level, or the moderate graph granularity,
enzyme explanations show relatively fixed structural combinations. At the functional group level,
or the finer graph granularity, enzyme explanations reveal denser connections at the active sites.

This observation offers us new insights into differentiating graphs with varying properties, even
without specialized knowledge. In the future, we plan to collaborate with domain experts to perform
a more thorough analysis.

Enzymes

Non-Enzymes

Node with more connections

Specific structural combination

finer graph granularity explanation(partial view)

finer graph granularity explanation(partial view)

moderate graph granularity explanation(partial view)

moderate graph granularity explanation(partial view)

coarser graph granularity explanation

coarser graph granularity explanation

Figure 2: Explanations generated by our framework on the PROTEINS dataset.

Enzymes

Non-Enzymes

Node with more connections

Specific structural combination

finer graph granularity explanation(partial view)

finer graph granularity explanation(partial view)

moderate graph granularity explanation(partial view)

moderate graph granularity explanation(partial view)

coarser graph granularity explanation

coarser graph granularity explanation

Figure 3: Explanations generated by our framework on the D&D dataset.

B.3 ADDITIONAL VISUAL EXPLANATIONS ON DIFFERENT METHODS

In this section, we observe that TIF effectively captures both local substructures in finer explanations
and global graph patterns in coarser explanations, ensuring that key features at different granularities
are preserved. The adaptive routing module dynamically selects the most informative paths through
the tree based on multi-granular complexity. We also process the same samples using the GIP, GSAT,
and ProtGNN and compare the explanations it generates with those produced by our Framework, as
illustrated in Figure 4. Our standard for explaining quality is the ability to accurately capture the
important features and structural information at each granularity level. Different colors represent
structural information learned or captured from the previous level of granularity. Therefore, models
like GIP only provide a template based on the entire graph, so the generated explanation is depicted
in gray. Compared to those models, TIF’s capability to span from fine-grained local interactions
to coarse-grained global structures provides a more transparent and interpretable decision-making
process, elucidating how various levels of graph information contribute to final model predictions.

C MORE DETAILED EXPERIMENTAL RESULTS

C.1 PREDICTION PERFORMANCE WITH STD VALUE

To validate the predictive performance of our approach, we compare our framework with widely
used GNNs and interpretable GNN models on real-world and synthetic datasets. We apply three
independent runs and report the results along with their corresponding std values in Table 10.
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A Sample From Class “Hybrid Cycle”A Sample From Class “Pure Chain”A Sample From Class “Pure Cycle”

GIP GIPGIPOur framework Our framework Our framework

ProtGNN ProtGNNProtGNNGSAT GSAT GSAT

Figure 4: Explanation comparison generated by TIF, GIP, GSAT and ProtGNN on MultipleCycle.

Table 10: Comparison of different methods in terms of classification accuracy (%) and F1 score (%)
along with their corresponding standard deviations.

Method ENZYMES D&D PROTEINS MUTAG COLLAB GraphCycle GraphFive MultipleCycle

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

GCN 57.23±0.81 51.32±0.33 76.15±2.77 69.12±1.02 78.89±0.90 72.21±3.14 71.82±4.27 63.18±4.36 72.56±1.09 65.78±3.75 79.45±1.04 71.56±1.02 57.37±0.81 53.44±0.55 59.64±4.70 55.56±3.34
DGCNN 59.12±3.30 54.89±1.88 78.23±0.78 71.76±1.59 75.36±1.92 71.43±3.53 58.67±0.80 49.21±0.42 74.88±2.38 68.22±1.44 81.12±2.72 75.34±3.11 57.29±3.33 54.43±2.87 60.71±1.07 56.33±2.41
Diffpool 61.01±2.26 56.98±2.55 81.56±1.31 75.43±4.68 79.52±0.78 78.22±0.87 84.12±2.18 72.45±2.60 72.89±1.39 70.12±1.17 78.34±4.23 71.87±4.59 55.46±1.21 53.57±1.57 56.87±2.03 53.21±2.22
RWNN 54.76±1.43 48.12±3.22 76.89±1.99 74.67±2.18 76.12±1.36 70.89±1.40 88.21±0.21 85.04±0.41 73.45±1.52 68.45±1.97 78.89±1.48 78.76±2.53 56.25±0.42 52.45±1.22 57.16±5.56 54.09±4.10

GraphSAGE 58.12±1.22 44.89±1.32 79.34±5.31 79.23±6.77 79.04±2.15 68.45±2.08 74.23±3.27 71.78±3.62 71.23±1.58 65.45±2.51 77.45±1.49 72.12±2.47 59.11±0.34 52.72±0.36 62.66±0.21 59.34±0.77

ProtGNN 53.21±1.57 43.89±2.36 76.12±1.21 75.23±2.49 76.89±0.52 72.45±1.87 80.34±2.45 61.23±3.83 70.12±0.97 67.89±1.04 80.12±1.21 72.34±2.04 56.38±4.21 54.32±4.37 60.26±3.38 58.41±3.67
KerGNN 55.67±4.22 48.45±2.03 72.89±1.48 68.23±2.36 76.12±2.30 71.12±2.10 71.45±1.08 62.12±1.22 74.12±1.66 69.12±1.97 80.21±0.72 73.89±0.68 58.06±0.11 50.82±1.02 63.22±0.05 57.94±0.33
π-GNN 55.34±0.88 47.12±0.76 79.12±1.10 73.89±1.85 72.34±3.77 68.12±2.21 90.12±0.43 75.12±2.09 73.45±1.52 68.34±3.05 81.45±2.22 76.78±5.62 60.14±0.05 54.07±0.31 64.74±1.21 62.48±1.97

GIB 45.12±3.22 31.67±1.73 77.34±1.69 66.45±0.90 75.12±6.34 70.34±1.05 91.03±4.88 82.12±1.26 73.34±1.79 61.89±1.65 80.67±1.74 74.12±1.98 59.78±0.15 59.24±0.17 63.23±2.63 63.02±2.70
GSAT 61.34±0.65 55.12±1.47 72.12±1.13 67.12±3.22 74.45±0.79 71.89±1.48 94.35±1.12 82.34±1.93 75.87±3.56 63.78±2.59 80.12±0.14 75.08±0.57 59.58±3.09 54.13±2.70 66.49±1.50 65.24±1.53
CAL 61.12±3.24 58.12±4.44 78.12±2.88 68.78±4.76 74.56±4.09 67.12±4.21 89.78±6.99 85.12±8.31 77.12±4.78 64.12±6.25 81.42±2.33 78.12±2.40 56.49±1.44 50.93±2.59 61.77±0.42 58.94±1.73
GIP 60.61±2.41 57.41±2.80 79.32±1.01 75.78±0.36 79.55±0.61 75.28±0.90 91.21±2.25 86.73±2.92 77.49±4.26 67.47±2.11 82.15±1.38 78.31±2.66 60.38±3.33 54.98±1.52 68.72±0.02 66.45±1.34

Ours 58.66±1.44 55.44±2.50 84.19±0.88 81.01±0.76 79.96±0.97 77.21±0.34 94.44±2.44 86.23±3.52 77.29±2.08 67.82±3.27 84.77±0.92 78.49±1.16 64.35±3.55 55.07±2.87 69.04±0.21 67.91±2.77

C.2 EFFICIENCY STUDY

In this section, we analyze the efficiency of the proposed TIF framework and compare its efficiency
with several interpretable baselines.

The modular design of TIF ensures efficient computation by progressively reducing the number of
nodes through hierarchical coarsening, while controlled perturbations and adaptive routing maintain
computational feasibility without compromising model diversity and interpretability.

The running efficiency of the proposed TIF framework is analyzed as follows. In Table 11, we
present the time required to complete the training of each interpretable model. The dataset is divided
into 10 equal subsets for 10-fold cross-validation, with the time taken by each model being the
average of the times required for each fold. Specifically, in each iteration, one fold is held out as
the validation set, while the remaining 9 folds are used for training. It should be noted that π-GNN
requires an additional pre-training process that takes nearly 72 hours, which significantly impacts
its overall computational efficiency. Therefore, the efficiency of π-GNN is considerably lower than
our framework. It can be seen that our framework is only slightly less efficient than the KerGNN
model and GIP model. Given that our model outperforms KerGNN and GIP in terms of prediction
and explanation performance on the vast majority of datasets, as analyzed above, we believe that
this slight additional time cost is justified.

C.3 ADDITIONAL ABLATION STUDIES

C.3.1 IMPACT OF THE COMPRESSION RATIO

In this section, we extend the analysis on the impact of the compression ratio q on model perfor-
mance, conducting experiments across datasets such as MUTAG, and PROTEINS. The results are
presented in Figure 5 and Figure 6.

As discussed in the main text, we observe that both classification accuracy and interpretability ac-
curacy tend to decline when the compression ratio is either too high or too low. Specifically, a
low compression ratio may introduce noisy structures, thereby hindering the extraction of global
information, while a high compression ratio might lead to the loss of critical information.
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Table 11: Time consumption of different methods. The table shows the time required (in seconds)
to finish training for each interpretable model on various datasets. “*” indicates the method requires
an additional pre-training process which takes nearly 72 hours.

Methods ENZYMES D&D COLLAB MUTAG GraphCycle GraphFive

ProtGNN 10245.65s 19312.87s 38021.49s 9239.15s 14396.76s 5022.81s
KerGNN 384.73s 1313.59s 1927.34s 401.34s 198.45s 458.22s
π-GNN* 406.18s 966.94s 1747.55s 462.94s 283.74s 429.82s

GIB 711.57s 2923.67s 4681.74s 3107.31s 1159.82s 1208.78s
GSAT 482.61s 1388.45s 2979.63s 828.19s 568.27s 649.34s
GIP 437.51s 1134.20s 2008.77s 452.26s 235.67s 423.87s

Ours 433.17s 1109.70s 2251.30s 503.18s 359.69s 488.15s

C.3.2 IMPACT OF THE NUMBER OF PATHS

In this section, we present further results on the impact of the number of paths on model perfor-
mance, covering datasets such as ENZYMES, COLLAB, and FiveGraph shown in Figure 7.

Consistent with the observations in the main text, the experiments reveal that the model achieves the
best interpretability when the number of paths is set to four, while performance deteriorates when
the number of paths is either too few or too many. Specifically, with only two paths, the model’s
choice space is constrained, resulting in insufficient information fusion and an inability to fully
leverage the diversity of the graph structure. Conversely, when the number of paths is increased to
eight, although potential information channels are expanded, additional noise is introduced, making
it challenging for the model to focus on the most critical features. Thus, setting the number of paths
to four strikes a balance between information utilization and noise control, effectively improving the
model’s interpretability and stability.

C.3.3 IMPACT OF DIFFERENT MECHANISMS

In this section, we further examine routing complexity and perturbation effect by replacing the MLP-
based routing module with a simpler linear structure(without the inter-layer adaptive routing mech-
anism, w/o IAR) and replacing the perturbation module(without the perturbation module, w/o PM).
Experiments were conducted across various datasets such as ENZYMES, COLLAB, and GraphFive,
with results for classification accuracy and interpretability accuracy presented in Figure 8.

As shown in the figure, the experimental results indicate that the performance is slightly inferior
when these mechanisms are used individually, while the combination of these mechanisms achieves
the best performance. This superiority stems from the fact that the combination of these mechanisms
helps to identify common characteristics in the graph from the perspective of global structure inter-
actions, thereby effectively enhancing the model’s ability to extract global information and interpret
key features in complex graph structures.

Specifically, the hierarchical graph coarsening module iteratively aggregates components with sim-
ilar features or close connections at each layer, forming graph-level representations with higher
levels of abstraction. Meanwhile, the graph perturbation module integrates learnable perturbation
mechanisms within each lateral layer, resulting in graph-level representations that better reflect the
hierarchical structure’s layer-wise characteristics. The combination of these mechanisms is crucial
for improving the overall performance of the model.

C.3.4 IMPACT OF LEARNABLE GRAPH PERTURBATION MODULE

In this section, we analyze the impact of the Learnable Graph Perturbation Module on the model and
its effectiveness in enhancing diversity. Based on TIF, we created two variants. The first variant re-
places the original perturbation terms for each parent node with a set of learnable perturbation terms
shared across all parent nodes in each layer(simplified version, SV). The second variant degrades
the model by removing the branching structure entirely, effectively eliminating the Learnable Graph
Perturbation Module(without the perturbation module, w/o PM).
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Experiments were conducted across various datasets, with results for classification accuracy and
interpretability accuracy presented in Figure 9.

As shown in the figure, the experimental results indicate that TIF outperforms the other two vari-
ants in both classification and interpretability tasks. This suggests that TIF’s perturbation structure
effectively captures and learns information that benefits both classification tasks and interpretability.
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Figure 5: The influence of different compression ratios on the model on the MUTAG dataset.
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Figure 6: The influence of different compression ratios on the model on the PROTEINS dataset.
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Figure 7: The influence of different numbers of paths per node on the model’s effectiveness.
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Figure 8: The influence of different modules on the model’s effectiveness.
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Figure 9: The influence of the learnable graph perturbation module on the model’s effectiveness.
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