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Abstract

We introduce MIRReS, a novel two-stage inverse rendering framework that
jointly reconstructs and optimizes explicit geometry, materials, and lighting
from multi-view images. Unlike previous methods that rely on implicit irra-
diance fields or oversimplified ray tracing, our method begins with an initial
stage that extracts an explicit triangular mesh. In the second stage, we re-
fine this representation using a physically-based inverse rendering model
with multi-bounce path tracing and Monte Carlo integration. This en-
ables our method to accurately estimate indirect illumination effects, in-
cluding self-shadowing and internal reflections, leading to a more precise
intrinsic decomposition of shape, material, and lighting. To address the
noise issue in Monte Carlo integration, we incorporate reservoir sampling,
improving convergence and enabling efficient gradient-based optimization
with low sample counts. Through both qualitative and quantitative as-
sessments across various scenarios, especially those with complex shadows,
we demonstrate that our method achieves state-of-the-art decomposition
performance. Furthermore, our optimized explicit geometry seamlessly
integrates with modern graphics engines supporting downstream applica-
tions such as scene editing, relighting, and material editing. Project page:
https://brabbitdousha.github.io/MIRReS/.

1 Introduction

Inverse rendering, the process of decomposing multi-view images into geometry, material
and illumination, is a long-standing challenge in computer graphics and computer vision.
The task is particularly ill-posed due to the inherent ambiguity in finding solutions to repro-
duce the observed image, especially when illumination conditions are unconstrained. Recent
advancements in neural radiance fields (NeRFs) Mildenhall et al. (2021) and neural implicit
surfaces (such as signed distance fields (SDFs)) Wang et al. (2021); Yariv et al. (2021) have
inspired several works Boss et al. (2021a;b); Srinivasan et al. (2021); Zhang et al. (2021b;
2022; 2021a) that employ NeRF or SDF for scene representation. These methods often
utilize auxiliary MLPs to predict materials or illumination. However, these MLP-based
methods often suffer from limited network capacity and slow convergence, resulting in dis-
torted geometries and inaccurate materials. In contrast, TensoIR Jin et al. (2023) employs a
compact TensoRF-based representation Chen et al. (2022) with explicit second-bounce ray
marching for more accurate indirect illumination. Despite their remarkable results, these
implicit methods still have two inherent disadvantages: Firstly, they represent geom-
etry as implicit density fields rather than triangular meshes, restricting their application
in the graphics industry where triangular meshes are the most widely accepted digital as-
sets. Secondly, while some methods do sample secondary rays for indirect illumination, they
rely on radiance fields instead of physically-based rendering (PBR) to obtain second-bounce
radiance, thus lacking the physical constraints necessary for precise material optimization.
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Figure 1: Capabilities of MIRRes. Given multi-view images of a 3D scene, our method
jointly optimizes geometry, materials and lighting to achieve high-quality reconstructions.
This facilitates applications including novel view synthesis, relighting, and scene editing.

To address these challenges, we propose MIRReS1, a mesh-based two-stage inverse render-
ing framework that decomposes geometry, PBR materials, and illumination from multi-view
images using physically-based multi-bounce path tracing. Our framework directly optimizes
triangle meshes to enable applications such as scene editing, relighting, and material editing
that are compatible with modern graphics engines and CAD software (see Fig. 1). The ex-
plicit use of triangular mesh representation also facilitates efficient path tracing with modern
graphics hardware, making it possible to compute multi-bounce path tracing within accept-
able timeframes. However, existing mesh-based neural inverse rendering methods, such as
NVdiffrec-MC Hasselgren et al. (2022), often suffer from unstable geometry optimizations.
These instabilities lead to artifacts such as holes and self-intersecting faces, which compro-
mise the accuracy of ray-mesh intersections and make path tracing intractable, especially
in multi-bounce cases where errors will accumulate recursively.
In particular, our paper consists of three key technologies: (a) Mesh optimization. Our
approach incorporates a two-stage geometry optimization and refinement process (Sec-
tion 3). (b) Indirect illumination estimation. We explicitly conduct physically-based
multi-bounce path tracing with Monte Carlo integration, which enforces strict physical con-
straints on materials, thereby improving the accuracy of indirect illumination and relighting
results. (c) Convergence acceleration. Recognizing that the Monte Carlo estimator ne-
cessitates a substantial sample count to maintain optimization accuracy, which inherently
slows convergence, we leverage reservoir sampling Bitterli et al. (2020) for direct illumina-
tion, which reduces the required sample count while maintaining low noise levels. Meanwhile,
coupled with a denoiser inspired by NVdiffrec-MC Hasselgren et al. (2022), our framework
achieves a considerable convergence acceleration. To summarize, our contributions include:

1. We propose MIRReS, a physically-based inverse rendering framework that jointly
optimizes the geometry, materials and lighting from multi-view input images,
achieving state-of-the-art results in both decomposition and relighting.

2. Our method utilizes multi-bounce path tracing to provide a more accurate estimation
of indirect illumination, successfully achieving promising decomposition results in
the challenging highly-shadowed scenes.

3. Our method utilizes Reservoir-based Spatio-Temporal Importance Resampling for
direct illumination, which can greatly reduce the required sample counts and accel-
erate the rendering process.

2 Related work

2.1 Neural scene representations

As an alternative to traditional representations (e.g. mesh, point clouds, volumes, etc. ),
neural representations have achieved great success in novel view synthesis and 3D modeling.
Neural radiance fields (NeRF) Mildenhall et al. (2021) uses MLPs to implicitly encode a

1Name taken from “Multi-bounce Inverse Rendering using Reservoir Sampling”.
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scene as a neural field of volumetric density and RGB radiance values, and uses volume
rendering to produce promising novel view synthesis results. To address the limited ex-
pression ability and slow speed of the vanilla MLP representation, follow-up works leverage
voxels Fridovich-Keil et al. (2022); Sun et al. (2022), hashgrids Müller et al. (2022), ten-
sors Chen et al. (2022), polygon rasterization Chen et al. (2023), adaptive shells Wang et al.
(2023b), etc. to achieve high-fidelity rendering result and real-time rendering speed. In ad-
dition to NeRF-based methods, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) proposes
to use point-based 3D Gaussians to represent a scene, enabling fast rendering speed due to
the utilization of rasterization pipeline, stimulating follow-up works on quality improvement
or many other applications Yu et al. (2024); Tang et al. (2023a); Liang et al. (2023). Some
other works also seek to combine neural and traditional representations, leveraging both
strengths. For example, NeRF2Mesh Tang et al. (2023b) designs a two-stage reconstruction
pipeline, which refines the textured mesh surface extracted from the NeRF density field to
obtain delicate textured mesh recovery. In this work, we also employ a two-stage geometry
optimization strategy combining neural implicit representation and triangle meshes.

2.2 Inverse rendering

The task of inverse rendering aims to estimate the underlying geometry, material and light-
ing from single or multi-view input images. Due to inherent ambiguity between the decom-
posed properties and the input images, inverse rendering is an extremely ill-posed problem.
Some methods simply the problem under constrained assumptions, such as controllable
lights Bi et al. (2020); Luan et al. (2021); Nam et al. (2018). Physically-based methods Li
et al. (2018); Zhang et al. (2020); Jakob et al. (2022); Loubet et al. (2019) account for
global illumination effects via differentiable light transports and Monte-Carlo path tracing.
The emergence of neural representations has stimulated abundant neural inverse rendering
frameworks Jin et al. (2023); Zhang et al. (2021b; 2023), which utilize neural fields as the
positional functions of material and geometry properties, along with lighting as trainable
parameters such as Spherical Harmonics (SH), Spherical Gaussian (SG), environment maps,
etc. , and then jointly optimize them by rendering loss via differentiable rendering. However,
neural fields also face challenges, such as low expressive capacity and high computational
overhead caused by ray marching. Meanwhile, other methods also utilize explicit geome-
try representations, such as mesh Munkberg et al. (2022); Hasselgren et al. (2022) or 3D
Gaussian Kerbl et al. (2023); Liang et al. (2023). Table 1 lists representative recent in-
verse rendering methods and compares their settings with our method. Our method is the
first inverse rendering framework that supports multi-bounce raytracing to estimate indirect
lighting more accurately.
Table 1: Comparison between existing inverse rendering methods and our
method.

Method Geometry Lighting Indirect Lighting Sampling
NeRFactor Implicit Environment ✗ N/A
TensoIR Implicit Ray tracing ✓ Importance sampling

NVdiffrec-MC Mesh Ray tracing ✗ Importance sampling
NeILF++ Implicit Implicit ✓ Stratified sampling

GS-IR 3DGS Split-sum ✓ N/A
Ours Mesh Multi-bounce Path tracing ✓ Reservoir sampling

3 Method overview

This section outlines our proposed inverse rendering framework which utilizes multi-bounce
raytracing and reservoir sampling. Given multi-view image captures of an object under
unknown environment lighting conditions, along with their corresponding camera poses,
our method jointly reconstructs the geometry, spatially-varying materials, and environment
lighting. Unlike most recent approaches that use neural implicit geometry representations
(e.g. NeRF or neural SDF), our method adopts a triangle mesh for an explicit geometry
representation. This choice is crucial because optimizing mesh topology directly from multi-
view images requires robust initialization. Inspired by NeRF2Mesh Tang et al. (2023b), we
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Figure 2: Overview of our inverse rendering pipeline. Our two-stage process starts
with the extraction of a coarse mesh from a radiance field, followed by joint optimization of
geometry, material, and lighting using physically-based rendering techniques. Key compo-
nents such as multi-bounce path tracing, Monte Carlo integration, and reservoir sampling
are highlighted to showcase their roles in enhancing the accuracy and efficiency of the re-
construction process.

employ a two-stage training process: initially, we train a neural radiance and signed distance
field to extract a coarse mesh from the input images. The second stage, which forms the core
of our pipeline, simultaneously optimizes scene material and lighting through our physically-
based rendering and refines the mesh geometry. Fig. 2 provides an overview of our pipeline.

3.1 Stage 1: Radiance Field and Coarse Mesh Acquisition

The main purpose of this stage is to initialize a radiance field and geometry that will facilitate
optimization in stage 2. We use an efficient off-the-shelf NeRF-based method (InstantNGP
Müller et al. (2022)) to train a neural radiance field and a neural density field, with position
x and view direction d as inputs, density σ and radiance color c as outputs:

σ, f = Fσ(x), c = Fc(x, d, f) (1)

Although we can extract a coarse mesh from the density field Fσ using the Marching Cubes
algorithm, the NeRF-based volumetric representation inherently lacks geometric constraints.
This limitation leads to the extraction of geometry with imperfections such as holes and
sawtooth patterns, which adversely affect optimization in stage 2. Therefore, we additionally
use NeuS2 Wang et al. (2023a)–a SOTA SDF-based reconstruction method–to extract the
coarse mesh Mcoarse = {V, F} (where V denotes vertices and F denotes faces). The density
field Fσ is then discarded, while Fc continues to be optimized in stage 2 for geometry
refinement.

3.2 Stage 2: Mesh Refinement and Intrinsic Decomposition

The goal of this stage is to refine the coarse mesh Mcoarse obtained from stage 1 and to
decompose material and environment lighting parameters into a fine mesh Mfine.

Rendering: Starting with the extracted mesh M and a camera ray r(t) = o + td from
origin o in direction d, we firstly use nvdiffrast Laine et al. (2020) to compute the ray-mesh
intersection:

x = intersect(r, M) (2)
This differentiable process allows for gradient descent optimization and differentiable ren-
dering. Our pipeline jointly employs two rendering methods: radiance field rendering and
physically-based surface rendering, which will be used by the tasks of mesh refinement and
intrinsic decomposition, respectively.
Radiance field rendering: With the appearance field Fc from the NeRF network in the
first stage, we produce the rendering result directly from the intersected surface point x.
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Unlike NeRF which uses ray marching and volume rendering, we directly feed the intersected
surface point x from Eq. (2) into the appearance field to produce the ray color CRF(r):

CRF(r) = Fc(x, d, f). (3)

Physically-based surface rendering: Given the surface shading point x, we render the shading
color by the rendering equation Kajiya (1986), which is an integral over the upper hemisphere
Ω at x:

CPBR(r) =
∫

Ω
Li(x, ωi)fr(x, ωi, d, m)(ωi · n)dωi, (4)

where Li(x, ωi) denotes the incident lighting from direction ωi, m denotes the spatially-
varying material parameters at x, fr denotes the bidirectional reflectance distribution func-
tion (BRDF), and n denotes the surface normal at x.
In the context of multi-bounce path tracing, the incident light Li(x, ωi) is the composition
of direct light, which is the environment illumination in this work, and the indirect light:

Li(x, ωi) = V (x, ωi) Lenv(ωi) + Lind(x, ωi) , (5)

Direct environment illumination (Section 4.1)

Direct Light Visibility

Indirect light (Section 4.2)

Mesh refinement: As mentioned in Section 1, implicit geometry representation may
introduce bias and inaccuracy in indirect illumination estimation. Therefore, we opt to
optimize a triangular mesh to represent scene geometry. DMTet Shen et al. (2021) used by
NVdiffrec-MC Hasselgren et al. (2022) is an existing approach for direct mesh optimization,
but it suffers from topological inconsistencies and geometric instability, which in turn affects
the accuracy of path tracing. Instead, we opt for a stable and continuous optimization
approach. Inspired by NeRF2Mesh Tang et al. (2023b), we assign a trainable offset ∆vi

to each mesh vertex vi ∈ V to refine the geometry, and optimize them along with the
appearance fields Fc by minimizing the loss of radiance field rendering. Specifically, given
a camera s with known intrinsic and extrinsic parameters and its reference image Iref(s),
we use radiance field rendering (Eq. (3)) to produce an image IRF(s), and then optimize
∆vi and the parameters of Fc by minimizing the L2 loss between the rendering result and
reference image:

LRF = ∥IRF(s) − Iref(s)∥2
2 (6)

Similarly, we also use physically-based surface rendering (Eq. (4)) to produce an image
IPBR(s). Owing to the differentiability of nvdiffrast’s ray-mesh intersection, the gradient
of the L2 loss between the PBR rendering result and the reference image can be back-
propagated to ∆vi:

LPBR = ∥IPBR(s) − Iref(s)∥2
2 (7)

In summary, ∆vi is jointly optimized by LRF and LPBR in stage 2, which refines the
geometry from Mcoarse to Mfine. Since ∆vi is continually changing during the optimization
and does not change the face topology of the mesh, our mesh refinement approach ensures
geometry stability and ensures the feasibility of multi-bounce path tracing.

Intrinsic decomposition: Based on the mesh geometry, we now describe how we repre-
sent and optimize the spatially-varying material and environment lighting.
We adopt the physically-based BRDF model from Disney Burley & Studios (2012), which
requires 2 material parameters: diffuse albedo and roughness. We encode the spatially-
varying material parameters of the scene using a neural field Fm, which predicts the material
parameters m given an input position x: m = Fm(x). We implement Fm as a small MLP
with a multi-resolution hashgrid Müller et al. (2022). The predicted m is a 4-channel vector,
which will be further split by channel into the diffuse albedo (3) and roughness (1).
Following NVdiffrec-MC Hasselgren et al. (2022), we represent the environment lighting
as an HDR environment map with 256×512 pixels, where all pixel colors are trainable
parameters.
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4 Direct and indirect lighting

As described in Eq. (5), the incident lighting in the rendering equation is divided into two
components: direct and indirect. These are estimated through reservoir sampling (Sec-
tion 4.1) and multi-bounce raytracing (Section 4.2), respectively.

4.1 Direct lighting using reservoir sampling

Substituting the direct light part of Eq. (5) into Eq. (4) gives the rendering equation of
direct light:

Cdir
PBR(r) =

∫
Ω

≡ f(ωi)

V (x, ωi) Lenv(ωi) fr(x, ωi, d, m)(ωi · n) dωi ≈ 1
N

N∑
i=1

f(ωi)

pdir (ωi)
, (8)

In the second part of the equation, we estimate the integral with Monte Carlo integration,
with N samples drawn from a particular distribution pdir(ωi) , where only V (x, ωi) and
pdir(ωi) are unknown, while the remaining terms are either analytically determined or train-
able parameters. Therefore, determining V (x, ωi) and finding an appropriate pdir(ωi) is key
to the estimation.
Visibility estimation: Unlike implicit-based methods like TensoIR Jin et al. (2023), which
estimate the visibility function V (x, ωi) by the transmittance function in volume render-
ing, our method can directly estimate V (x, ωi) by a ray-mesh intersection. We implement
our ray-mesh intersection algorithm with customized CUDA kernels, which significantly
improves computational efficiency and enables us to increase the sample count for a more
precise and low-variance estimation. Please refer to the appendix for implementation details.
Reservoir sampling: To reduce the variance of direct lighting estimation (i.e. to reduce
rendering noise, see Fig. 3), we utilize reservoir sampling Bitterli et al. (2020), an advanced
resampled importance sampling (RIS) technique Talbot (2005) to determine the appropriate
pdir(ωi). According to the multiple importance sampling (MIS) theory Veach & Guibas
(1995), the variance of the Monte Carlo estimator will reduce when pdir(ωi) is closer to the
integrand f(ωi). A distribution pdir(ωi) ∝ Lenv(ωi)fr(x, ωi, d, m) will be an ideal solution,
but it is impossible to analytically sample from such a probability distribution as it does
not have a closed-form expression.

Reservoir w/o Reservoir

Figure 3: Comparison
on rendering noise with
or without reservoir sam-
pling with sample count
1.

To address this, Resampled Importance Sampling (RIS) Tal-
bot (2005) provides a more advanced technique to approximate
the target distribution pdir(ωi) ∝ L · f . Firstly, an easy-to-
sample proposal distribution qdir(ωi) is chosen, from which m
samples S = {ω1, ..., ωm} are generated as candidates. In our
implementation, we choose qdir(ωi) ∝ Lenv(ωi), which can be
directly sampled from our environment map. Then, we evalu-
ate p̂dir(ωi) = L(ωi) · f(ωi) for each candidate sample ωi ∈ S,
and assign a weight γi = p̂dir(ωi)

qdir(ωi) to it. Finally, we resam-
ple from S according to the weight γi. Weighted-averaging the
sampled results after repeating for N times forms an N -sample
RIS estimator of

Cdir
PBR(r) ≈ 1

N

N∑
i=1

 f (ωi)

p̂dir (ωi)
1
m

m∑
s=1

p̂dir (ωs)
qdir (ωs)

 . (9)

RIS sample weight (i.e. γs)

We note that the hat notation p̂dir(ωi) means it is not necessarily a normalized PDF,
since the normalization term can be reduced in Eq. (9). Intuitively, this sampler behaves
as if weighting the RIS sample weight γi to adjust for the difference between the proposal
distribution qdir and the target distribution pdir.
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In addition, we also exploit spatial reuse and temporal reuse, incorporating samples from
neighboring pixels and previous frames as candidates in Eq. (9). Please refer to our appendix
for details. As in Fig. 3, our reservoir sampling strategy significantly reduces the rendering
noise under the same sample count compared to the standard Monte Carlo estimator.

4.2 Indirect lighting using multi-bounce path tracing

Similar to Eq. (8), we can also give the rendering equation of indirect light and estimate it
by Monte Carlo integration:

Cind
PBR(r) =

∫
Ω

Lind(x, ωi)fr(x, ωi, d, m)(ωi · n)dωi, (10)

≈ 1
N

N∑
k=1

Lind(x, ωk
i )fr(x, ωk

i , d, m)
(
ωk

i · n
)

pind

(
ωk

i

) . (11)

In Eq. (11), after sampling N second-bounce rays rk(t) = x + tωk
i from an appropriate

probability distribution pind(ωi), we need to estimate their radiance values Lind(x, ωi) to
complete the Monte Carlo estimation. The pind(ωi) of indirect lighting is straightforward:
we apply multiple importance sampling combining light importance sampling and GGX ma-
terial importance sampling Heitz (2018), similar to NVdiffrec-MC Hasselgren et al. (2022).

Estimating Lind(x, ωi) is relatively complicated.
Most existing inverse rendering methods consider-
ing indirect lighting adopt an implicit strategy to es-
timate indirect illumination, using neural radiance
fields to cache the outgoing radiance values of rk.
The radiance values of rk are estimated by the stan-
dard volume rendering process in NeRF. The disad-
vantage of this strategy is obvious: the accuracy of
indirect lighting is determined by the neural radi-
ance field without any physical constraints. NeRF
models inevitably contain estimation errors (espe-
cially in scenes with high-frequency details), so that
the indirect lighting estimation will be biased and
inaccurate.

Figure 4: Our rendering results of di-
rect (b), indirect (c), and full (a) light-
ing in the Lego scene. Note that
the sharp light visibility in (d) demon-
strates the accuracy of our path-tracing
rendering model and our reconstruction
geometry.

In contrast, physically-based rendering methods conduct multi-bounce path tracing to pro-
duce an unbiased estimation of Lind(x, ωi). However, due to the low performance of implicit
representations, recursively performing multi-bounce path tracing leads to intractable com-
putation. Therefore, the aforementioned implicit strategy can be regarded as a compromise
on the computation costs.
Benefiting from our efficient mesh-based representation, we can directly perform path tracing
to estimate Lind(x, ωi) as shown in Fig. 4. We first sample a new ray rind(t) = x + tdind

starting from x as the second bounce, and then we trace rind(t) and intersect it with the
mesh at point x̂. The indirect lighting is estimated by:

Lind(x, ωi) = CPBR(rind) =
∫

Ω
Li(x̂, ωi)fr(x̂, ωi, dind, m̂)(ωi · n̂)dωi. (12)

Note that Eq. (12) is a recursive computation. In practice, we only consider the first three
bounces, which balances the computation costs and accuracy. It is also worth mentioning
that we detach the gradients of indirect rays due to the limited GPU memory.

5 Experiments

5.1 Overview

Implementation and training details: We implement MIRReS using Pytorch frame-
work Paszke et al. (2019) with CUDA extensions in SLANG.D Bangaru et al. (2023). We
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customize CUDA kernels in our rendering layer to perform efficient reservoir sampling and
multi-bounce path tracing. We also utilize nvdiffrast Laine et al. (2020) for differentiable
ray-mesh intersection. We run our training and inference on a single NVIDIA RTX 4090
GPU, with the entire two-stage training process taking approximately 4.5 hours.
Training follows the structure described in Section 3. The first stage’ is identical to the
training of InstantNGP Müller et al. (2022) and NeuS2 Wang et al. (2023a), for which we
refer to their papers for details such as training losses. Our model is trained by rendering
loss (Eqs. (6) and (7)) along with several regularization terms, which are fully specified in
the appendix.
Datasets: We evaluate our method on two benchmark datasets for inverse rendering: (1)
TensoIR synthetic dataset Jin et al. (2023), which provides ground-truth geometry, material
parameters, and relighted images, and (2) Objects-with-Lighting (OWL) real dataset Um-
menhofer et al. (2024), from which we select four scenes (Antman, Tpiece, Gamepad, and
Porcelain Mug) containing ground-truth relighted images and environment maps. All ob-
jects exhibit spatially-varying materials and complex global illumination effects such as
diffuse inter-reflections and specular highlights, making inverse rendering particularly chal-
lenging.
Metrics: To assess geometry reconstruction, we use the Mean Angular Error (MAE) for
normal estimation and the Chamfer Distance (CD) for mesh accuracy. For intrinsic decom-
position, we evaluate albedo reconstruction quality, novel view synthesis of physically-based
surface rendering, and relighting performance. We use the widely-used Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) as evaluation metrics. It is worth mentioning that due to the in-
herent ambiguity between the scale of albedo and illumination, we apply a scaling strategy
similar to TensoIR Jin et al. (2023). For the TensoIR dataset, each RGB channel of all
albedo results is scaled by a global scalar; for the OWL dataset, the exposure level for each
relighting result is also scaled.

NVD-MC TensoIR Ours GT NVD-MC TensoIR Ours GT

Figure 5: Qualitative comparison of the reconstructed mesh on the TensoIR
dataset. Zoom in for details.

5.2 Comparisons

We compare our method against state-of-the-art inverse rendering techniques, including
TensoIR Jin et al. (2023) (implicit-based), GS-IR Liang et al. (2023) (3D Gaussian Splatting-
based), NVdiffrec-MC Hasselgren et al. (2022) (mesh-based, denoted as NVD-MC in figures
and tables). We demonstrate that MIRRes outperforms these baselines in both qualitative
and quantitative evaluations.

Table 2: Quantitative comparison of reconstructed geometry, albedo and relight-
ing, novel view synthesis on the TensoIR dataset. “CD” denotes Chamfer distance,
while “N-MAE” denotes normal MAE. Metrics are averaged over all testing images in all
dataset scenes. We highlight the best , second-best , third-best results, accordingly.

Method Geometry Albedo Relighting
CD↓ N-MAE↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NVD-MC 0.073 5.050 28.875 0.957 0.082 27.810 0.907 0.110
TensoIR 0.083 4.100 29.275 0.950 0.085 28.580 0.944 0.081
GS-IR N/A 4.948 30.286 0.941 0.084 24.374 0.885 0.096
Ours 0.056 3.305 32.348 0.970 0.054 32.363 0.965 0.055
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Figure 6: Qualitative comparison of albedo, relighting and normal results on the
TensoIR dataset. The environment map used for relighting is shown in the inset. Images
are rendered in high resolution to facilitate detailed examination when zoomed in.

Comparison on geometry reconstruction: The first two columns of Table 2 report
the quantitative comparisons of the normal MAE and the chamfer distance between the
reconstructed mesh and the ground truth mesh. On average, our method achieves 23.3%
lower mesh error and a 19.4% lower normal error compared to the second-best baseline. We
also provide qualitative results of reconstructed meshes in Fig. 5 and normal maps in the last
row of Fig. 6. Note that GS-IR lacks mesh extraction, making Chamfer distance inapplicable.
TensoIR struggles with high-frequency details and sharp edges due to implicit density field
limitations. NVdiffrec-MC suffers from artifacts such as holes and uneven surfaces, especially
in reflective objects (e.g., the dish in the Hotdog scene). MIRRes, leveraging a two-stage
approach, produces refined meshes with higher quality.

Comparison on decomposition and relighting results: We perform a comprehensive
comparison of the decomposed albedo, environment lighting and novel view synthesis results
by PBR rendering. In this paragraph, we’ll report both qualitative and quantitative results
on TensoIR dataset and OWL dataset, respectively.
TensoIR dataset: Qualitatively, as shown in Fig. 6, our method produces superior decompo-
sition results to all baselines. TensoIR and GS-IR have difficulties in correctly decomposing
the lighting effects from the materials, leading to artifacts such as baked-in shadows on the
albedo texture. NVdiffrec-MC produces suboptimal results due to their unstable geometry
reconstruction, resulting in hole-like artifacts. On the other hand, thanks to our physically-
based design to capture direct and indirect lighting, we successfully produce high-quality
recovered material, eliminating the highly challenging shadow-like artifacts on the material
textures. We also produce more realistic relighting results, including more accurate shadows,
specular highlights and inter-reflections. In contrast, due to the baked-in shadows, base-
line methods (like TensoIR) suffer from incorrect shadows and highlights in their relighting
results. Please refer to the appendix for comprehensive per-scene decomposition results.
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Further, we also report quantitative comparisons in Table 2, where our method achieves
significant advantages over baselines in all results.
Objects-with-Lighting (OWL) dataset: We report quantitative comparisons on relighting and
novel view synthesis in Table 3. Note that we use the NeuS Wang et al. (2021)-reconstructed
mesh provided by the dataset as the initial coarse mesh in stage 1, rather than using NeuS2,
which we empirically find better quality. We also incorporate metallic as an additional
learnable channel in the output of the material network for this dataset. Our method
achieves the best scores in all metrics, outperforming all the baselines by a large margin.
We also provide per-scene qualitative comparisons in the appendix.

Table 3: Quantitative comparison of novel view synthesis and relighting on the
Object-with-Lighting dataset. Metrics are averaged across all testing images from 4
selected scenes: Antman, Tpiece, Gamepad, Porcelain Mug.

Method Relighting Novel View Synthesis
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NVD-MC 21.110 0.970 0.066 34.409 0.967 0.059
TensoIR 26.382 0.966 0.038 37.127 0.985 0.045
GS-IR 18.761 0.101 0.314 30.527 0.793 0.096
Ours 28.827 0.977 0.031 38.223 0.986 0.030

5.3 Ablation studies

We conduct ablation studies to validate the effectiveness of our two key components: reser-
voir sampling and multi-bounce ray tracing. Specifically, we quantitatively compare the
albedo PSNR in Table 4 using models with and without these components. The results
show that both contribute to an increase in PSNR, with the full model achieving the best
overall performance.

Table 4: Ablation studies on reservoir sampling and multi-bounce raytracing.
Reservoir Multi-bounce Albedo PSNR Relighting PSNR

✗ ✗ 31.950 28.992
✓ ✗ 32.529 31.239
✗ ✓ 33.752 31.694
✓ ✓ 34.348 33.788

We also perform additional ablation studies on Indirect illumination, Number of SPPs, and
Neural radiance field rendering, with detailed results provided in the appendix.

6 Conclusion

We introduce a two-stage, physically-based inverse rendering framework that jointly recon-
structs and optimizes explicit geometry, materials, and illumination from multi-view images.
In the first stage, we train a neural radiance field and extract a coarse mesh as the initial
geometry. In the second stage, we refine this mesh geometry using trainable offsets while
optimizing materials and illumination through a physically-based inverse rendering model
that leverages multi-bounce path tracing and Monte Carlo integration. To improve con-
vergence in Monte Carlo rendering, we integrate sampling with multi-importance sampling,
reducing variance and maintaining low rendering noise even at low sample counts. Our
experiments, particularly in scenes with complex shadows, demonstrate that our method
achieves state-of-the-art performance in scene decomposition, effectively recovering shape,
material, and lighting.
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Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte carlo
ray tracing through edge sampling. ACM Transactions on Graphics (TOG), 37(6):1–11,
2018.

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting
for inverse rendering. arXiv preprint arXiv:2311.16473, 2023.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing discontinuous
integrands for differentiable rendering. ACM Transactions on Graphics (TOG), 38(6):
1–14, 2019.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. Unified shape and svbrdf recovery
using differentiable monte carlo rendering. In Computer Graphics Forum, volume 40, pp.
101–113. Wiley Online Library, 2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural
graphics primitives with a multiresolution hash encoding. ACM transactions on graphics
(TOG), 41(4):1–15, 2022.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans,
Thomas Müller, and Sanja Fidler. Extracting triangular 3d models, materials, and lighting
from images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8280–8290, 2022.

F Murtagh. Multiscale transform methods in data analysis. University of Ulster, Coleraine,
pp. 1–8, 1998.

Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H Kim. Practical svbrdf acquisition of
3d objects with unstructured flash photography. ACM Transactions on Graphics (TOG),
37(6):1–12, 2018.

12



Published as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching
tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Advances in
Neural Information Processing Systems, 34:6087–6101, 2021.

Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and
Jonathan T Barron. Nerv: Neural reflectance and visibility fields for relighting and view
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7495–7504, 2021.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Justin F Talbot. Importance resampling for global illumination. Brigham Young University,
2005.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Gen-
erative gaussian splatting for efficient 3d content creation. In The Twelfth International
Conference on Learning Representations, 2023a.

Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and
Gang Zeng. Delicate textured mesh recovery from nerf via adaptive surface refinement. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17739–
17749, 2023b.

Benjamin Ummenhofer, Sanskar Agrawal, Rene Sepúlveda, Yixing Lao, Kai Zhang, Tian-
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Appendix

A Implementation and Training Details

Visibility estimation. We here describe our visibility estimation based on an explicit
ray-mesh intersection computation (as described in Section 4.1). Based on our mesh-based
geometry, our method can directly determine V (x, ωi) by a ray-mesh intersection in our
path tracing framework. With the intersection point x obtained from nvdiffrast, we
sample an outgoing direction ωi to construct the visibility test ray ri(t) = x + tωi. Then,
we conduct a ray-mesh intersection test to determine whether the ray is occluded. V (x, ωi)
will be 0 if ri(t) is occluded, otherwise 1. Benefiting from our mesh-based representation,
we implement a linear BVH (LBVH Karras (2012)) using CUDA kernels to significantly
accelerate the ray-mesh intersection calculation. Our LBVH is updated in each iteration to
match the mesh refinement.

Network details. In stage 1, the density and appearance fields Fσ, Fc follow the stan-
dard Instant-NGP configuration Müller et al. (2022), using a hash grid with 16 levels, 2
feature dimensions per entry, a coarsest resolution of Nmin = 16, and a finest resolution of
Nmax = 2048, followed by a 4-layer MLP with 64 hidden channels. In stage 2, the mate-
rial network Fm uses the same hash grid configuration, followed by a 2-layer MLP with 32
hidden channels.

Training details. Apart from the rendering losses (Eqs. (6) and (7)) mentioned in the
main text, we also add several additional regularizations to stabilize the training, described
as follows:
To prevent drastic changes in vertex offset ∆v during optimization, we apply the Laplacian
smooth loss and vertices offset regularization loss from NeRF2Mesh Tang et al. (2023b):

Lsmooth =
∑

i

∑
j∈Xi

1
|Xi|

∥(vi + ∆vi) − (vj + ∆vj)∥2
, (13)

Loffset =
∑

i

∥∆vi∥2
, (14)

where Xi is the set of adjacent vertex indices of vi.
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We also apply the smoothness regularizers for albedo kd, roughness ρ, and normal n pro-
posed by NVdiffrec-MC Hasselgren et al. (2022) for better intrinsic decomposition:

Lk = 1
|X|

∑
xi∈X

|k (xi) − k (xi + ϵ)| , k ∈ {kd, ρ, n}, (15)

where X is the set of world space positions on the surface, and ϵ is a small random offset
vector.
Additionally, for better disentangling material parameters and light, we adopt the same
monochrome regularization term of NVdiffrec-MC Hasselgren et al. (2022):

Llight = |Y (cd + cs) − V (Iref)| , (16)

where cd and cs are the demodulated diffuse and specular lighting terms, Y (x) =
(xr + xg + xb) /3 is a luminance operator, V (x) = max (xr, xg, xb) is the HSV value compo-
nent. For more details and discussions of this loss, please refer to NVdiffrec-MC Hasselgren
et al. (2022).

Denoiser. We adopt the Edge-Avoiding À-Trous Wavelet Transform (EAWT) Dammertz
et al. (2010) as an efficient and stable denoiser. This method uses a wavelet decomposition,
where the input c0(p) is iteratively smoothed using a B3-spline kernel h Murtagh (1998).
At each level i, the signal is decomposed into a residual ci+1 as follows:

ci+1(p) = ci(p) ∗ hi, (17)

where hi expands its support by inserting 2i−1 zeros between coefficients at each step,
ensuring computational efficiency.
To preserve edges during smoothing, a data-dependent weighting function w(p, q) is intro-
duced. This function incorporates information from the ray-traced input image (rt), normal
buffer (n), and position buffer (x):

w(p, q) = wrt · wn · wx, (18)

where
wrt(p, q) = exp

(
−|Ip − Iq|2

σ2
rt

)
(19)

is based on color differences between pixels p and q. The σ-parameters control the sensitivity
to variations. These weights ensure that the filter adapts to the scene structure, preventing
excessive edge blurring.
The computation of ci+1(p) involves a normalization factor k, defined as:

k =
∑
q∈Ω

hi(q) · w(p, q). (20)

Using k, ci+1(p) is then computed as:

ci+1(p) = 1
k

∑
q∈Ω

hi(q) · w(p, q) · ci(q). (21)

We perform three iterations of this process, balancing accuracy and computational efficiency.

Spatial-temporal Reuse. Eq. (9) can be implemented in a straightforward way by gen-
erating and storing all m candidate samples before selecting a final sample. However, this
approach is computationally demanding. To address this, we utilize weighted reservoir
sampling (WRS) Chao (1982) , which transforms RIS into a streaming way. That is, we
maintain a reservoir structure r = {yr, γr

sum, Mr} for each pixel, where yr is the selected
sample, γr

sum is the sum of the weights, and Mr is the number of samples seen so far. When
a new candidate (ωs, γs) comes in, we update γr

sum, Mr and decide whether to select the
new sample based on the ratio of γs

γr
sum

.
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After the final sample is selected for each primary ray (or pixel), we exploit both spatial
reuse and temporal reuse. Specifically, we merge reservoirs from neighboring pixels (spatial
reuse) and previous frames (temporal reuse).
As i increases, the influence of temporal reuse gradually extends to encompass contributions
from all past i frames. Similarly, spatial reuse progressively incorporates information from a
larger region of the screen. This expansion occurs because, in each iteration, a pixel’s reser-
voir merges with information from its neighboring pixels, and in subsequent frames, those
neighboring pixels’ reservoirs have already integrated data from their own surroundings.
Consequently, both spatial and temporal reuse effectively propagates information across
increasingly broader spatial and temporal domains.

B More Experimental Results

B.1 Per-scene Qualitative Results in TensoIR Dataset

We provide per-scene qualitative comparisons of all 4 scenes in the TensoIR synthetic dataset
in Figs. 11 and 12. We compare the results of material (albedo, roughness), normal, novel
view synthesis (NVS), and relighting results under 2 different environment maps per scene.
Owing to our more accurate material estimation, we produce more realistic relighting results,
including more accurate shadows, specular highlights and inter-reflections.

B.2 Per-scene Qualitative Results in OWL Dataset

We provide per-scene qualitative comparisons on the real-captured OWL dataset in Fig. 13
and Fig. 14. Our method demonstrates superior quality in the relighting appearances, while
baseline methods suffer from color bias (e.g. Tpiece scene in Fig. 13), incorrect lighting effects
(e.g. highlights in Gamepad scene in Fig. 14) or missing details (e.g. textures in Antman
scene in Fig. 13). Although it is impossible to obtain ground truth material parameters in
the real dataset, it can be intuitively observed that our method produces more reasonable
material estimations.

B.3 More Ablation Studies

Indirect illumination: Fig. 7 illustrates the reconstructed albedo using our full model and
an ablation model without indirect lighting, verifying that introducing indirect illumination
can significantly improve the quality of material estimation.

Ours w/o Indirect GT
Figure 7: Ablation studies on indirect illumination. Due to the lack of indirect illumi-
nation, specular reflections near the plate are heavily embedded in the reconstructed albedo.
In contrast, with indirect illumination, our method achieves a cleaner albedo recovery.

Number of SPPs: We analyze the novel view synthesis PSNR of the Hotdog scene across
four different configurations with varying SPPs (from 4 to 64) as shown in Fig. 8. The
configurations include path tracing without indirect illumination (PT), path tracing with
indirect illumination (PT full), path tracing with reservoir sampling but without indirect
illumination (ReSTIR), and path tracing with both reservoir sampling and indirect illumina-
tion (ReSTIR full). The results demonstrate that the “ReSTIR full” configuration achieves
the highest PSNR across all SPPs, confirming the efficacy of both reservoir sampling and
indirect illumination. While the PSNR for “PT” is higher than “PT full”, this does not
mean the indirect illumination has a negative effect. Due to the lack of indirect illumina-
tion, “PT” bakes the specular reflection into the albedo, while “PT full” cannot capture
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Figure 8: Novel view synthesis PSNR of hotdog across various SPPs.

the specular reflections due to the severe rendering noise at low SPP. As SPP increases, the
specular reflections reconstructed by “PT full” become more accurate, while lower render-
ing variance leads to more specular ambiguity in “PT”, causing a decline in PSNR. At the
same time, Fig. 8 shows that a configuration with SPP higher than 32 does not necessarily
improve the reconstruction accuracy. Thus, we use 32 SPP as the default configuration for
all our experiments in this section.
Neural radiance field rendering: As described in Section 3.2, we employ two rendering
methods: neural radiance field rendering and physically-based surface rendering, to jointly
optimize the reconstructed geometry. Here we demonstrate the necessity of the neural
radiance field rendering. As illustrated in Fig. 9, relying solely on surface rendering (the third
column) leads to inaccuracies in the geometry, which subsequently affects the reconstruction
of materials.

GT w/ radiance w/o radiance

Figure 9: Effect of neural radiance field rendering. Top: Results of novel view syn-
thesis. Bottom: Reconstructed normals.

C Limitations and Future Work

The performance of our optimization relies on the initial coarse geometry obtained in stage
1. While NeuS2 generally reconstructs plausible geometries in most cases, the extracted
mesh still contains noticeable errors, particularly in areas with high specularity or fine de-
tails. These inaccuracies can lead to incorrect material estimation and compromised novel
view synthesis in the affected areas (see Fig. 10). Enhancing the geometry optimization
capabilities remains an area for future research. It would also be possible to combine our
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Normal Albedo NVS NVS-GT

Figure 10: Limitations: incorrect material estimation on the NeRF Synthetic
dataset. The primary challenges are due to high-frequency details and highly specular
regions, as shown in the Lego scene and the Hotdog scene, respectively.

method with recent methods targeting specular reflections Ge et al. (2023); Wu et al. (2024);
Wang et al. (2024) to achieve higher-quality reconstruction and rendering of highly specu-
lar scenes. Furthermore, our physically-based inverse rendering framework currently does
not account for the gradients of non-primary rays, which could potentially improve recon-
struction accuracy. However, including these gradients would significantly increase memory
demands and computational costs. Exploring efficient methods for gradient computation is
another avenue for future work.
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Figure 11: Qualitative results on Lego and Ficus scenes in TensoIR dataset. The
corresponding environment map for relighting is placed on the bottom right of the GT
relighting result.
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Figure 12: Qualitative results on the Hotdog and Armadillo scenes from the
TensoIR dataset. The corresponding environment map used for relighting is displayed at
the bottom right of each GT relighting result.
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Figure 13: Qualitative comparison on the Object-with-Lighting dataset (part 1).
Chosen from Antman and Tpiece scenes.
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Figure 14: Qualitative comparison on the Object-with-Lighting dataset (part 2).
Chosen from Gamepad and Porcelain Mug scenes.
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