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A APPENDIX

A.1 REMEDIAL LEARNING GRADIENT DERIVATION

In the setting of Remedial Learning, we construct these sets.

D ∩Dc
new = {(Xi, Yi)}i=K+1...N , Dc ∩ Dnew = {(X ′

i, Y
′
i)}i=K+1...N , and (9)

D ∩Dnew = {(Xi, Yi)}i=1...K (10)

The gradient then formulates as∑
(Xi,Yi)∈

{(Xi,Yi)}i=K+1...N

∇θL((Xi, Yi), Ŷi)−
∑

(Xi,Yi)∈
{(X′

i,Y
′
i)}i=K+1...N

∇θL((X ′
i, Y

′
i), Ŷi) =

∑
(Xi,Yi)∈D

∇θL((Xi, Yi), Ŷi) (11)

− 1(Xi,Yi)∈
D∩Dnew

[
∇θL((Xi, Yi), Ŷi)

]
− (

∑
(Xi,Yi)∈Dnew

∇θL((Xi, Yi), Ŷi)− 1(Xi,Yi)∈
D∩Dnew

[
∇θL((Xi, Yi), Ŷi)

]
)

(12)

=
∑

(Xi,Yi)∈D

∇θL((Xi, Yi), Ŷi)−
∑

(Xi,Yi)∈D∩Dnew

∇θL((Xi, Yi), Ŷi)−
∑

(Xi,Yi)∈Dnew

∇θL((Xi, Yi), Ŷi) +
∑

(Xi,Yi)∈D∩Dnew

∇θL((Xi, Yi), Ŷi)

(13)

=
∑

(Xi,Yi)∈D

∇θL((Xi, Yi), Ŷi)−
∑

(Xi,Yi)∈Dnew

∇θL((Xi, Yi), Ŷi) (14)

= ∇θL(D)−∇θL(Dnew) (15)

A.2 FURTHER ARGUMENT FOR NON-RECOVERABILITY FROM GRADIENTS

We discuss the behaviour for non-softmax activated models. In this case, a single output logit of the
model can be inferred in the |Dforget| = 1 case. If |Dforget| > 1, the summation operation makes
the data non-recoverable. In this case, the j-th component map M(θ∗)(x) is a non-linear function
F : Rd → R. In this case the non-recoverability of the gradient depends on the model, and its
invertability, specifically the component map F . If F is bijective, then this violates our definition
of non-recoverability, and if F is injective, then the input data x can be recovered by performing a
search, as only a single data point will produce this gradient. However, classification models without
the softmax function are rare, and within that subset, those which are invertible or injective are even
rarer. Additionally, within the small subset of models for which these conditions apply, a large,
exhaustive, and computationally intensive search over the input space will still be required (in the
injective but not surjective case) to recover the input x.

Additionally, we can consider other models trained with different loss functions. In these landscapes
the recoverability of the model depends first on the injectivity of the derivative of the loss function
with respect to Dforget when |Dforget| = 1 amd when |Dforget| > 1. For example, for models
trained with MSE, the derivative of the loss function is 2

N

∑
xi∈Dforget

(yi − M(θ∗)(xi)), which
is a summation over differences - inherently not injective in both cases and thus does not permit
recoverability of data.

A.3 EXPERIMENTAL DETAILS

In this section we detail our experimental setup for the RELOAD algorithm. We carry out a set
of empirical evaluations of the method, comparing it against other state-of-the-art unlearning
baselines. The empirical metrics we consider for unlearning are detailed in Table 6, and the metrics
for remedial learning are detailed in Table 7.

We train ResNet-18 and VGG16-BN models on CIFAR-10 (Krizhevsky, 2012), CIFAR-100
(Krizhevsky et al.), and SVHN (Netzer et al., 2011) for image classification for 182 epochs. We
apply the cross-entropy loss function and a learning rate of 0.1 with a batch size of 256. We
conducted these experiments over 10 random seeds to obtain average results and standard deviation
measurements. The results in our tables are reported in the format µ±σ where µ is the average value
and σ is the standard deviation, across the 10 seeds.
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The 10 seeds we selected for unlearning experiments were seeds {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and for
remedial learning we used seeds {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Hardware. All experiments were run on 4 CPU cores, 20 GB of RAM, and 1 NVIDIA T4 GPU.

Baseline Implementations. Implementations for baselines were taken from the reference imple-
mentations for SCRUB, SSD, EU-k, and CF-k. Implementations for FT and GA were taken from
the repository for SalUn.

Hyperparameters. Hyperparameters for RELOAD were chosen through a hyperparameter sweep.
The chosen hyperparameters for the unlearning tasks are presented in Table 4 and the hyperparam-
eters for the remedial learning tasks are presented in Table 5.

We empirically find that the cumulative distribution function of the knowledge-values for forget-
ting 10% of data from a ResNet-18 model trained on SVHN forms a sigmoid-like curve around
10−1. This further evidences the existence of clear differences in the knowledge-values for different
parameters. Experimentally, we select the thresholding hyperparameter α using a hyperparameter
sweep. We have included in ablation (Appendix ??), a study with varying learning rates (η) and
thresholds (α).

Experiment Alpha (α) Priming Learning Rate Retraining Learning Rate

SVHN + ResNet-18 0.1 0.243 0.098
SVHN + VGG16-BN 0.1 0.496 0.496
CIFAR-10 + ResNet-18 0.1 0.44 0.33
CIFAR-10 + VGG16-BN 0.1 0.167 0.39
CIFAR-100 + ResNet-18 0.1 0.18 0.33
CIFAR-100 + VGG16-BN 0.1 0.325 0.164

Table 4: Hyperparameter Settings for Unlearning

Experiment Alpha (α) Priming Learning Rate Retraining Learning Rate

SVHN + ResNet-18 0.13 0.068 0.365
SVHN + VGG16-BN 0.14 0.14 0.195
CIFAR-10 + ResNet-18 0.147 0.074 0.415
CIFAR-10 + VGG16-BN 0.27 0.106 0.278
CIFAR-100 + ResNet-18 0.16 0.09 0.136
CIFAR-100 + VGG16-BN 0.22 0.173 0.103

Table 5: Hyperparameter Settings for Remedial Learning
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Unlearning Evaluation Metrics

Statistic Abbr. Description

Accuracy on
datasetnew
(↑)

NA Model accuracy on theDnew. In unlearning, a higher accuracy indicates that
the unlearning process has not negatively impacted the model’s performance
on the retained data.

Diff. in
Accuracy on
Dforget (↓)

∆FA The change in accuracy on the forget set between the current model and
M(θ∼). A smaller difference, approaching the accuracy of the retrained
model, indicates that the unlearning method has been more effective in ”for-
getting” the forget set.

Diff. in Error
on Dforget (↓)

∆FE The reduction in error on the forget set between the current model and
M(θ∼). A smaller difference, approaching the error of the retrained model,
signifies that the unlearning method has been more effective at ”forgetting”
the forget set.

Diff. in MIA
Success Rate
on Dforget (↓)

∆FMIA Difference in success rate of a membership inference attack (MIA) on the
forget set between the current model andM(θ∼). In this work, we use the
attack from Shokri et al. (2017) implemented in the repository for Kurmanji
et al. (2023). A success rate approaching that of the retrained model implies
the forgotten data is indistinguishable to an MIA on in-distribution data that
the model was not trained on.

Symmetric
KL-Divergence
on Dnew (↓)

NSKL Symmetric KL-Divergence between the logits of the current model and those
ofM(θ∼). This metric is averaged over all instances in the Dnew. A lower
Symmetric KL divergence indicates an unlearning method that behaves sim-
ilarly on the Dnew to a model retrained from scratch without the forget set.

Symmetric
KL-Divergence
on Dforget (↓)

FSKL The Symmetric KL-Divergence between the logits of the current model and
those ofM(θ∼). This metric is averaged over all instances in the Dforget.
A lower Symmetric KL divergence indicates that the unlearning method that
behaves similarly on the Dforget to a model retrained from scratch without
the forget set.

Cost (↓) Cost Ratio of the runtime of the unlearning method to the runtime of retraining a
baseline model from scratch without the forget set. A lower cost indicates a
more computationally efficient method.

Table 6: Evaluation Statistics for Unlearning.
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Remedial Learning Evaluation Metrics

Statistic Abbr. Description

Accuracy on
Dnew (↑)

NA Model accuracy on Dnew. In remedial learning, a higher accuracy indicates
that the remedial learning process has correctly adapted the model to its new
training set.

Accuracy on D
(↑)

OA Model accuracy on D. In the case of backdoor attacks or noisy remedial learn-
ing, a higher value indicates the relearned model correctly has lost its reliance
on the backdoor pattern. In label correction setting, the desirable value is the
percentage of samples that did not have their labels flipped (in our experiments,
90%).

Accuracy on
D(test)

new (↑)
TA Model accuracy on a held out test-set. A higher accuracy indicates that the

relearned model generalizes well to in-distribution tasks outside of its old and
new training set.

Accuracy on
Transformed
D(§)

new (↑)

TNA Model accuracy on Dnew with backdoors added to each instance. A higher
accuracy indicates that the relearned model does not rely on the presence of the
backdoor to make its inference, and that despite the presence of the backdoor,
it correctly classifies.

Accuracy on
D(test,§)

new (↑)
TTA Model accuracy on D(test)

new with backdoors added to each instance. A higher
accuracy indicates that the relearned model does not rely on the presence of the
backdoor to make its inference, and that despite the presence of the backdoor,
it correctly classifies data that is in-distribution but outside of its old and new
training sets.

Cost (↓) Cost Ratio of the runtime of the remedial learning method to the runtime of retrain-
ing a baseline model from scratch without the forget set. A lower cost indicates
a more computationally efficient method.

Table 7: Evaluation Statistics for Remedial Learning.
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Mislabelling Class Pairings

In the below tables we list out the semantically similar classes we chose for each of the 3 datasets,
CIFAR-10, CIFAR-100, and SVHN, to perform targeted mislabelling attacks against.

Original Class Original Label Flipped Class Flipped Label
0 airplane 2 bird
2 bird 0 airplane
3 cat 5 dog
5 dog 3 cat
1 automobile 9 truck
9 truck 1 automobile

Table 8: Flip mappings for CIFAR-10 with class labels

Superclass Original Class Original Label Flipped Class Flipped Label
Aquatic mammals 0 beaver 1 dolphin

Flowers 50 orchid 53 sunflower
Insects 75 bee 77 butterfly

Vehicles 1 60 bicycle 61 bus
Large carnivores 17 lion 18 tiger

Large omnivores/herbivores 24 cattle 26 elephant
Small mammals 37 mouse 38 rabbit

Fruits and vegetables 82 apple 83 mushroom
Household furniture 56 chair 58 table

Trees 92 maple tree 93 oak tree

Table 9: Flip mappings for CIFAR-100 with class labels

Original Class Flipped Class
0 6
1 7
2 5
3 8
4 9
5 3
6 0
7 1
8 3
9 4

Table 10: Flip mappings for SVHN

A.4 REMEDIAL LEARNING JUSTIFICATION

Machine learning models mimic their training data, and as such data which is incorrectly labelled,
contains transformed samples (eg. backdoor-injected samples), is biased, or is corrupted can make
a huge impact on the downstream performance of a model.

Aside from existing label-flip attacks, backdoor attacks, and the possibility of corrupted data, there
is also the need to account for human error. To apply supervised machine learning algorithms large
amounts of data need to be properly labeled for the learning procedure. This is not always feasible
under a budget, and human labeling is not error-free. Ho-Phuoc (2018) shows that human annotation
on CIFAR-10 has an accuracy of 94.91%. Crowdsourcing labels is also not a reliable approach
due to human errors, or potentially adversarial attacks through mislabelling (Lin et al., 2021). In
remedial learning, we assume that a subset of the labelled training data is incorrect, and that a labeler
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Figure 4: Impact of Learning Rate (η) on RELOAD performance

Figure 5: Impact of Threshold (α) on RELOAD performance

mislabels data a percentage of the time. As demonstrated by Fard et al. (2017), biased labelling can
greatly damage the classification accuracy of a target class with little effect on the other classes. This
provides the motivation for studying the case of remedial learning.

A.5 ABLATION STUDIES

A.5.1 LEARNING RATE η AND THRESHOLD α

We study the effect of different learning rates on the unlearning performance exhibited by the
RELOAD algorithm. For this study, we select the case of randomly forgetting 10% of the training
data from a ResNet-18 model trained on CIFAR-100.

As shown in Figure 4, we observe that the choice of learning rate has a significant impact on per-
formance. This is particularly true in the case of ∆FA, ∆FE, ∆FMIA, and ∆AUC measurements -
which are the primary metrics evaluating how well the model has forgotten Dforget. Based on these
plots, we choose η = 0.33.

Figure 5 shows the effect of varying the proportion of the parameters that are selected for reinitiali-
sation (α). We observe that the choice of threshold has an impact on the performance of the RELOAD
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algorithm and that its selection involves a tradeoff between the different metrics we consider. Thus,
the best choice of α should ideally be selected through a hyperparameter search.

A.5.2 METHODS OF SELECTING KNOWLEDGEABLE PARAMETERS

In designing the knowledge values for identifying knowledgeable parameters, we considered several
other approaches in addition to the final formula 8. This includes the salient weight formula first
introduced by Fan et al. (2023), in choosing the parameters with the highest magnitude gradients
on D − Dnew. Empirically, forgetting was not properly achieved, and in some cases re-initializing
these parameters caused model collapse.

Secondly, as performed by Foster et al. (2023), we considered the importance value produced by
an approximation to the Fisher Information Matrix. This increased computational overhead and
produced similar but slightly poorer on average results. Thirdly, we took inspiration from Hassibi
et al. (1993) and designed a 2nd-order hessian-based formula (Equation 16) which we only studied
in the unlearning case. This approach offered no noticeable performance increase and drastically
increased computational overhead on Hessian computing, even with KFAC (Martens & Grosse,
2015) and EKFAC (Gao et al., 2020) approximations. This made this method infeasible.

1

2
δWT (HDnew −HDforget

) · δW (16)

A.5.3 PRIMING STEPS

In designing the priming step, we considered the possibility of needing multiple steps to appropri-
ately scrub the global information from the model parameters. Theoretically, this notion violates
the blind nature of the unlearning setup, and was thus undesirable. Empirically, we noted that using
multiple priming steps does not improve forgetting and can lead to further performance degradation
on Dnew requiring more retraining to get to a final unlearned model.

A.5.4 RETRAINING METHODS

Aside from using the classic training setup that was originally used to train the model, we considered
a teacher-student setup to speed up retraining. We use the original model M(θ∗) as the teacher and
the re-initialised model as the student. In theory distillation training is faster. Empirically, this
process reached the same target downstream performance as classic training in the same amount of
time, and yielded poorer forgetting results measured on ∆FA. We hypothesize that through distilling
on Dnew, implicit knowledge about Dforget in M(θ∗), is taught and recovered by the re-initialised
model.
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A.6 RANDOM 10% FORGETTING - ADDITIONAL EXPERIMENTS

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.60±0.07 91.88±0.70 0.08±0.12 0.54±0.02 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.41±0.24 7.15±0.72 0.06±0.13 0.01±0.02 0.00±0.00 0.06±0.03 0.67±0.06

FT 98.24±0.19 3.83±0.41 0.12±0.01 0.02±0.00 0.27±0.01 0.05±0.01 0.49±0.04

SSD 22.87±34.01 70.85±29.15 2.08±0.83 0.04±0.01 0.00±0.00 7.99±3.52 7.56±3.06

SCRUB 98.43±0.23 7.17±0.63 0.05±0.13 0.01±0.02 0.02±0.00 0.06±0.02 0.66±0.04

CF-k 98.31±0.27 7.22±0.69 0.06±0.13 0.01±0.02 0.29±0.01 0.06±0.02 0.56±0.04

EU-k 98.35±0.25 7.22±0.71 0.06±0.13 0.01±0.02 0.29±0.01 0.06±0.02 0.57±0.04

SalUn 99.83±0.05 0.33±0.18 0.10±0.01 0.01±0.00 0.14±0.00 0.06±0.02 0.56±0.04

Fisher 99.40±0.22 4.28±0.40 0.12±0.01 0.02±0.00 1.08±0.03 0.06±0.02 0.57±0.03

RELOAD 99.48±0.11 2.20±0.58 0.30±0.13 0.04±0.01 0.34±0.11 0.12±0.01 0.54±0.08

Table 11: 10% Random Forgetting on CIFAR-10 (VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on NA, ∆FA by large margins. RELOAD performs competitively on the ∆FE,
∆FMIA, FSKL, and NSKL metrics, but is outperformed. RELOAD incurs a higher computational cost than
other baselines, but performs better across all metrics than other baselines.

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.99±0.01 94.40±0.72 0.23±0.08 0.50±0.01 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.38±0.21 3.86±0.66 0.21±0.07 0.04±0.02 0.00±0.00 0.06±0.02 0.66±0.06

FT 98.24±0.21 1.45±0.53 0.16±0.03 0.03±0.01 0.27±0.00 0.05±0.01 0.48±0.04

SSD 20.02±29.99 75.65±26.45 1.88±0.62 0.01±0.02 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 98.41±0.20 3.89±0.70 0.21±0.07 0.04±0.02 0.02±0.00 0.06±0.02 0.65±0.04

CF-k 98.28±0.23 3.81±0.71 0.21±0.07 0.05±0.02 0.21±0.00 0.06±0.02 0.55±0.04

EU-k 98.31±0.21 3.83±0.71 0.21±0.07 0.05±0.01 0.21±0.00 0.07±0.02 0.56±0.04

SalUn 99.78±0.05 3.68±0.48 0.26±0.02 0.01±0.01 0.16±0.01 0.06±0.02 0.55±0.04

Fisher 99.51±0.17 3.83±0.44 0.07±0.01 0.02±0.00 1.83±0.06 0.07±0.02 0.56±0.04

RELOAD 99.49±0.10 1.83±0.83 0.05±0.04 0.00±0.00 0.26±0.09 0.12±0.01 0.53±0.07

Table 12: 10% Random Forgetting on CIFAR-10 (ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on NA, ∆FE, ∆FMIA by large margins. RELOAD performs competitively on the
∆FA, FSKL, and NSKL metrics, but is outperformed by FT. RELOAD incurs a higher computational cost than
other baselines other than FT.
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Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.99±0.00 95.16±0.30 0.20±0.02 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.38±0.21 4.40±0.41 0.18±0.02 0.05±0.01 0.00±0.00 0.06±0.02 0.66±0.06

FT 98.24±0.21 4.33±0.37 0.18±0.02 0.04±0.01 0.26±0.02 0.05±0.01 0.48±0.04

SSD 20.02±29.99 75.41±26.74 1.89±0.62 0.02±0.03 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 98.41±0.20 4.47±0.40 0.19±0.02 0.05±0.01 0.02±0.00 0.06±0.02 0.65±0.04

CF-k 98.28±0.23 4.47±0.39 0.19±0.02 0.05±0.01 0.17±0.01 0.06±0.02 0.55±0.04

EU-k 98.31±0.21 4.48±0.40 0.19±0.02 0.06±0.01 0.17±0.01 0.07±0.02 0.56±0.04

SalUn 99.86±0.04 1.98±0.48 0.09±0.02 0.04±0.01 0.17±0.00 0.06±0.02 0.55±0.04

Fisher 99.61±0.14 0.15±0.06 0.00±0.00 0.01±0.01 2.17±0.04 0.07±0.02 0.56±0.04

RELOAD 99.76±0.16 0.08±0.08 0.01±0.00 0.00±0.00 0.12±0.01 0.05±0.03 0.19±0.02

Table 13: 10% Random Forgetting on SVHN (ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on NA, ∆FA, ∆FE, ∆FMIA, FSKL, and NSKL by large margins. RELOAD
performs competitively on the Cost, but incurs a higher computational cost than other baselines other than FT,
CF-k, EU-k.

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.99±0.00 95.08±0.31 0.24±0.02 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.40±0.23 4.43±0.44 0.21±0.02 0.03±0.01 0.00±0.00 0.06±0.02 0.65±0.06

FT 98.30±0.18 4.49±0.43 0.22±0.02 0.03±0.01 0.24±0.03 0.05±0.01 0.49±0.04

SSD 22.88±34.01 70.45±29.04 1.80±0.69 0.01±0.01 0.00±0.00 7.99±3.52 7.56±3.06

SCRUB 98.43±0.22 4.50±0.41 0.22±0.02 0.03±0.01 0.02±0.00 0.06±0.02 0.66±0.04

CF-k 98.34±0.24 4.51±0.42 0.22±0.02 0.04±0.01 0.21±0.03 0.06±0.02 0.55±0.05

EU-k 98.34±0.23 4.51±0.42 0.22±0.02 0.04±0.01 0.21±0.03 0.06±0.02 0.56±0.05

SalUn 99.94±0.02 3.88±0.62 0.13±0.01 0.04±0.01 0.15±0.00 0.06±0.02 0.55±0.05

Fisher 99.55±0.18 0.04±0.04 0.00±0.00 0.00±0.00 1.46±0.03 0.06±0.02 0.56±0.05

RELOAD 99.50±0.11 0.65±0.72 0.04±0.04 0.00±0.00 0.26±0.10 0.12±0.01 0.53±0.08

Table 14: 10% Random Forgetting on SVHN (VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than the other baselines.
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Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 97.80±0.33 68.25±0.49 1.82±0.06 0.50±0.01 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.41±0.25 26.40±1.18 1.64±0.07 0.14±0.03 0.00±0.00 0.06±0.03 0.66±0.06

FT 98.27±0.20 12.65±1.81 1.16±0.07 0.08±0.02 0.25±0.03 0.06±0.01 0.50±0.03

SSD 22.86±34.01 61.38±15.72 2.57±0.55 0.02±0.05 0.00±0.00 8.01±3.53 7.57±3.07

SCRUB 98.43±0.23 26.62±1.10 1.66±0.06 0.14±0.03 0.02±0.00 0.06±0.02 0.66±0.04

CF-k 98.30±0.27 26.26±1.25 1.68±0.06 0.15±0.02 0.27±0.04 0.06±0.02 0.56±0.04

EU-k 98.35±0.25 26.16±1.26 1.67±0.06 0.15±0.02 0.27±0.04 0.06±0.02 0.57±0.04

RELOAD 99.51±0.09 3.37±1.55 0.40±0.07 0.02±0.01 0.24±0.11 0.11±0.01 0.51±0.03

Table 15: 10% Random Forgetting on CIFAR-100(VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.

A.7 RANDOM 30% FORGETTING

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.99±0.01 94.40±0.72 0.23±0.08 0.50±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 17.20±30.17 77.46±26.25 8.86±6.48 0.02±0.02 0.01±0.02 0.01±0.00 0.06±0.02 0.66±0.06

FT 99.69±0.24 3.92±0.53 0.19±0.02 0.02±0.01 0.02±0.00 0.28±0.01 0.05±0.01 0.48±0.04

SSD 19.85±29.65 74.50±25.90 1.82±0.58 0.01±0.02 0.01±0.02 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 82.59±1.39 12.72±1.51 0.31±0.04 0.00±0.00 0.00±0.00 0.07±0.00 0.06±0.02 0.65±0.04

CF-k 99.58±0.11 6.28±0.19 0.27±0.01 0.05±0.00 0.05±0.00 0.11±0.00 0.06±0.02 0.55±0.04

EU-k 99.59±0.15 6.28±0.22 0.27±0.01 0.05±0.01 0.05±0.01 0.22±0.01 0.07±0.02 0.56±0.04

SalUn 99.63±0.08 2.97±0.50 0.37±0.02 0.02±0.02 0.02±0.02 0.20±0.00 0.06±0.02 0.55±0.04

Fisher 99.50±0.18 2.37±0.47 0.08±0.01 0.02±0.00 0.02±0.01 1.79±0.03 0.07±0.02 0.56±0.04

RELOAD 99.51±0.15 1.35±0.83 0.05±0.02 0.00±0.00 0.00±0.00 0.30±0.10 0.12±0.01 0.53±0.07

Table 16: 30% Random Forgetting on CIFAR-10(ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.
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Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.93±0.02 94.40±0.72 0.23±0.08 0.50±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 18.97±28.44 73.93±23.07 0.43±0.01 0.05±0.03 0.01±0.01 0.01±0.00 0.06±0.02 0.66±0.06

FT 99.37±0.21 4.41±0.53 0.27±0.02 0.02±0.01 0.02±0.00 0.27±0.01 0.05±0.01 0.48±0.04

SSD 22.73±29.27 70.55±23.73 1.67±0.60 0.01±0.02 0.01±0.02 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 14.29±5.02 77.10±5.08 2.02±0.57 0.01±0.01 0.01±0.00 0.08±0.00 0.06±0.02 0.65±0.04

CF-k 99.46±0.19 8.16±0.27 0.40±0.02 0.05±0.01 0.05±0.00 0.15±0.00 0.06±0.02 0.55±0.04

EU-k 99.47±0.19 8.17±0.27 0.40±0.02 0.05±0.01 0.05±0.00 0.30±0.01 0.07±0.02 0.56±0.04

SalUn 99.73±0.06 0.90±0.25 0.25±0.01 0.01±0.01 0.01±0.00 0.18±0.00 0.06±0.02 0.55±0.04

Fisher 99.37±0.21 3.66±0.30 0.13±0.01 0.02±0.01 0.02±0.01 1.07±0.02 0.07±0.02 0.56±0.04

RELOAD 98.43±1.49 2.46±1.63 0.07±0.05 0.00±0.00 0.00±0.00 0.57±0.13 0.12±0.01 0.53±0.07

Table 17: 30% Random Forgetting on CIFAR-10(VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.98±0.01 94.40±0.72 0.23±0.08 0.50±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 36.61±42.78 45.98±28.62 4.71±3.85 0.06±0.08 0.06±0.07 0.01±0.00 0.06±0.02 0.66±0.06

FT 99.96±0.02 24.94±0.90 1.02±0.04 0.13±0.01 0.13±0.01 0.27±0.02 0.05±0.01 0.48±0.04

SSD 11.89±32.69 65.53±14.26 3.15±0.75 0.03±0.07 0.02±0.06 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 23.96±2.23 48.86±2.24 1.97±0.13 0.01±0.01 0.01±0.00 0.07±0.00 0.06±0.02 0.65±0.04

CF-k 98.85±0.40 21.38±1.27 0.92±0.04 0.12±0.01 0.11±0.01 0.10±0.01 0.06±0.02 0.55±0.04

EU-k 98.30±0.55 20.18±0.68 0.89±0.04 0.11±0.01 0.11±0.01 0.21±0.02 0.07±0.02 0.56±0.04

SalUn 97.33±0.30 40.31±3.78 1.20±0.04 0.10±0.01 0.10±0.01 0.20±0.00 0.06±0.02 0.55±0.04

Fisher 97.76±0.78 1.54±0.27 0.08±0.01 0.03±0.01 0.03±0.01 1.77±0.03 0.07±0.02 0.56±0.04

RELOAD 99.56±0.06 1.47±1.05 0.08±0.05 0.01±0.01 0.00±0.00 0.32±0.04 0.12±0.01 0.53±0.07

Table 18: 30% Random Forgetting on CIFAR-100(ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.
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Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.85±0.02 94.40±0.72 0.23±0.08 0.50±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 10.75±30.87 62.76±11.35 2.10±0.05 0.15±0.09 0.02±0.05 0.01±0.00 0.06±0.02 0.66±0.06

FT 98.30±0.53 15.86±1.34 1.40±0.06 0.06±0.01 0.06±0.01 0.28±0.01 0.05±0.01 0.48±0.04

SSD 11.72±32.14 62.23±12.36 2.43±0.19 0.02±0.04 0.02±0.05 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 1.60±0.66 65.78±0.92 2.39±0.10 0.01±0.00 0.01±0.00 0.08±0.00 0.06±0.02 0.65±0.04

CF-k 97.61±0.61 29.83±0.65 1.95±0.04 0.14±0.01 0.14±0.01 0.15±0.00 0.06±0.02 0.55±0.04

EU-k 97.71±0.78 29.84±0.84 1.95±0.04 0.14±0.01 0.14±0.01 0.30±0.01 0.07±0.02 0.56±0.04

SalUn 98.86±0.27 3.28±1.23 0.42±0.04 0.00±0.00 0.00±0.00 0.18±0.00 0.06±0.02 0.55±0.04

Fisher 97.39±0.91 14.19±0.81 0.56±0.02 0.07±0.02 0.07±0.01 1.06±0.02 0.07±0.02 0.56±0.04

RELOAD 88.95±9.23 8.94±5.71 0.18±0.09 0.00±0.00 0.00±0.00 0.60±0.02 0.12±0.01 0.53±0.07

Table 19: 30% Random Forgetting on CIFAR-100(VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 100.00±0.00 94.72±0.12 0.25±0.01 0.50±0.00 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 36.70±41.55 59.35±39.81 6.22±5.55 0.02±0.03 0.02±0.03 0.01±0.00 0.06±0.02 0.66±0.06

FT 100.00±0.00 4.73±0.20 0.19±0.01 0.04±0.01 0.04±0.01 0.28±0.01 0.05±0.01 0.48±0.04

SSD 20.64±29.80 75.32±26.33 1.89±0.63 0.01±0.03 0.01±0.03 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 97.23±0.29 0.49±0.21 0.02±0.01 0.00±0.00 0.00±0.00 0.08±0.00 0.06±0.02 0.65±0.04

CF-k 100.00±0.01 4.79±0.22 0.19±0.01 0.05±0.01 0.05±0.01 0.10±0.00 0.06±0.02 0.55±0.04

EU-k 99.98±0.05 4.76±0.25 0.18±0.01 0.05±0.01 0.05±0.01 0.19±0.00 0.07±0.02 0.56±0.04

SalUn 99.65±0.09 1.84±0.31 0.09±0.01 0.02±0.01 0.02±0.01 0.22±0.00 0.06±0.02 0.55±0.04

Fisher 99.62±0.14 0.09±0.02 0.00±0.00 0.01±0.01 0.01±0.01 2.12±0.03 0.07±0.02 0.56±0.04

RELOAD 99.58±0.30 0.08±0.06 0.01±0.01 0.00±0.01 0.00±0.01 0.11±0.05 0.12±0.01 0.53±0.07

Table 20: 30% Random Forgetting on SVHN(ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.
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Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) ∆AUC (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 100.00±0.00 94.40±0.72 0.23±0.08 0.50±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 16.05±29.50 79.62±26.16 0.25±0.01 0.05±0.03 0.01±0.02 0.01±0.00 0.06±0.02 0.66±0.06

FT 100.00±0.00 4.84±0.16 0.23±0.01 0.03±0.01 0.03±0.01 0.28±0.00 0.05±0.01 0.48±0.04

SSD 24.17±28.49 71.83±25.07 1.85±0.60 0.01±0.02 0.01±0.02 0.01±0.00 8.30±3.11 7.83±2.70

SCRUB 24.26±14.07 70.72±13.55 1.85±0.38 0.01±0.00 0.01±0.00 0.08±0.00 0.06±0.02 0.65±0.04

CF-k 99.60±0.14 4.84±0.16 0.23±0.01 0.04±0.01 0.04±0.01 0.12±0.00 0.06±0.02 0.55±0.04

EU-k 99.60±0.14 4.85±0.16 0.23±0.01 0.04±0.01 0.04±0.01 0.25±0.00 0.07±0.02 0.56±0.04

SalUn 99.91±0.04 0.81±0.12 0.04±0.01 0.00±0.00 0.00±0.00 0.19±0.00 0.06±0.02 0.55±0.04

Fisher 99.53±0.16 0.04±0.03 0.00±0.00 0.00±0.00 0.00±0.00 1.43±0.01 0.07±0.02 0.56±0.04

RELOAD 99.37±0.15 0.10±0.09 0.02±0.01 0.00±0.00 0.00±0.00 0.15±0.01 0.12±0.01 0.53±0.07

Table 21: 30% Random Forgetting on SVHN(VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than other baselines other than FT, CF-k, and EU-k.

A.8 RANDOM 100 IN CLASS FORGETTING - ADDITIONAL EXPERIMENTS

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 98.99±0.25 92.81±0.52 0.24±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.30±0.04 5.43±0.55 0.21±0.01 0.04±0.00 0.00±0.00 0.07±0.00 0.63±0.04

FT 98.38±0.15 3.19±0.41 0.15±0.02 0.02±0.00 0.27±0.00 0.05±0.01 0.46±0.03

SSD 10.04±0.06 83.15±0.87 2.07±0.02 0.00±0.00 0.01±0.00 9.39±0.08 8.80±0.05

SCRUB 98.33±0.04 6.70±0.55 0.22±0.01 0.05±0.00 0.02±0.00 0.07±0.00 0.63±0.03

CF-k 98.27±0.06 5.23±0.55 0.21±0.01 0.05±0.01 0.23±0.03 0.07±0.00 0.54±0.02

EU-k 98.28±0.07 5.25±0.54 0.22±0.01 0.05±0.01 0.23±0.03 0.07±0.00 0.52±0.03

SalUn 99.74±0.04 4.11±0.45 0.27±0.02 0.01±0.01 0.16±0.00 0.07±0.00 0.54±0.02

Fisher 99.45±0.02 3.60±0.21 0.06±0.01 0.02±0.00 1.78±0.03 0.07±0.00 0.52±0.03

RELOAD 97.00±1.09 3.46±0.86 0.08±0.02 0.01±0.01 0.31±0.09 0.11±0.03 0.52±0.09

Table 22: 100 In Class Random Forgetting on CIFAR-10(ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on ∆FE. RELOAD performs competitively on NA, ∆FA, ∆FMIA, NSKL, and
FSKL but is outperformed. FT which performs well, empirically makes little adjustment to the actual FA value.
RELOAD also incurs a higher computational cost than the other baselines.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.56±0.08 92.02±0.32 0.37±0.01 0.50±0.01 1.00±0.00 0.00±0.00 0.00±0.00

GA 99.02±0.05 6.94±0.32 0.33±0.01 0.04±0.01 0.00±0.00 0.10±0.00 0.91±0.03

FT 98.72±0.30 3.50±0.37 0.23±0.01 0.02±0.01 0.27±0.01 0.08±0.01 0.65±0.03

SSD 9.99±0.04 81.88±0.50 2.12±0.30 0.01±0.01 0.01±0.00 10.88±0.79 10.25±0.83

SCRUB 97.31±3.57 5.79±2.28 0.14±0.08 0.04±0.01 0.03±0.00 1.37±0.45 1.75±0.45

CF-k 99.03±0.05 6.95±0.33 0.33±0.01 0.05±0.01 0.37±0.08 0.10±0.01 0.79±0.02

EU-k 99.02±0.05 6.96±0.35 0.33±0.01 0.05±0.01 0.37±0.08 0.10±0.00 0.78±0.04

SalUn 99.80±0.02 0.33±0.36 0.12±0.01 0.01±0.00 0.14±0.00 0.10±0.01 0.79±0.02

Fisher 99.32±0.03 3.81±0.46 0.10±0.01 0.02±0.00 1.07±0.03 0.10±0.00 0.78±0.04

RELOAD 98.57±0.24 1.88±1.62 0.14±0.09 0.01±0.01 0.15±0.07 0.10±0.01 0.57±0.09

Table 23: 100 In Class Random Forgetting on CIFAR-10 (VGG16-BN). The top row presents the value
of M(θ∼) on each metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute
difference in the value of the corresponding method on this metric to the value ofM(θ∼) on the metric. These
results show that RELOAD outperforms all baselines on ∆FA, ∆FE, ∆FMIA, FSKL indicating it behaves the
closes toM(θ∼) onDforget. RELOAD performs competitively on NA and NSKL, falling behind of the leading
method by 0.46 for NA and 0.02 for NSKL. RELOAD incurs a higher computational cost than most baselines,
but is cheaper than FT, CF-k, and EU-k. Other experimental settings are presented in Appendix A.8

.

Method NA (↑) FA (∆↓) FE (∆↓) FMIA (∆↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 95.50±0.24 70.05±1.99 1.13±0.07 0.83±0.20 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.32±0.03 23.33±1.06 1.00±0.06 0.07±0.06 0.00±0.00 0.07±0.00 0.65±0.06

FT 98.22±0.23 16.84±1.08 0.82±0.06 0.05±0.03 0.27±0.00 0.05±0.01 0.48±0.04

SSD 10.01±0.05 68.67±1.97 5.75±0.99 0.38±0.14 0.00±0.00 9.33±0.06 8.72±0.04

SCRUB 98.35±0.03 27.55±1.43 1.02±0.06 0.07±0.06 0.02±0.00 0.07±0.00 0.65±0.04

CF-k 98.22±0.11 21.84±0.88 0.99±0.05 0.07±0.06 0.21±0.01 0.07±0.00 0.54±0.04

EU-k 98.24±0.03 21.95±0.78 0.99±0.05 0.07±0.06 0.21±0.01 0.07±0.00 0.55±0.04

SalUn 99.57±0.02 12.08±3.13 0.48±0.07 0.02±0.02 0.14±0.00 0.07±0.00 0.54±0.04

Fisher 97.50±0.06 10.72±1.98 0.19±0.04 0.03±0.04 1.81±0.04 0.07±0.00 0.55±0.04

RELOAD 99.47±0.09 3.44±1.46 0.20±0.16 0.02±0.02 0.26±0.11 0.12±0.01 0.53±0.08

Table 24: 100 In Class Random Forgetting on CIFAR-100(ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value of M(θ∼) on each
metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value
of the corresponding method on this metric to the value of M(θ∼) on the metric. These results show that
RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, and ∆FMIA, by large margins. RELOAD performs
competitively on NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost
than the other baselines.
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Method NA (↑) FA (∆↓) FE (∆↓) FMIA (∆↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 93.85±1.04 65.26±2.16 1.95±0.10 0.93±0.02 1.00±0.00 0.00±0.00 0.00±0.00

GA 98.31±0.03 28.55±2.02 1.70±0.04 0.03±0.02 0.00±0.00 0.07±0.00 0.65±0.04

FT 98.14±0.25 11.44±1.77 1.07±0.09 0.01±0.01 0.28±0.01 0.06±0.01 0.47±0.03

SSD 10.00±0.03 63.86±2.12 2.70±0.13 0.45±0.04 0.00±0.00 9.36±0.05 8.75±0.04

SCRUB 98.33±0.02 30.59±1.25 1.76±0.05 0.04±0.01 0.02±0.00 0.07±0.00 0.63±0.03

CF-k 98.15±0.12 26.86±2.16 1.75±0.07 0.04±0.01 0.34±0.07 0.07±0.00 0.54±0.03

EU-k 98.22±0.04 25.37±1.35 1.68±0.06 0.03±0.02 0.33±0.07 0.07±0.00 0.55±0.03

SalUn 99.40±0.04 7.56±0.47 0.31±0.16 0.00±0.00 0.13±0.00 0.07±0.00 0.54±0.03

Fisher 97.16±0.03 19.55±0.59 0.67±0.05 0.03±0.00 1.05±0.04 0.07±0.00 0.55±0.03

RELOAD 99.47±0.04 1.84±1.26 0.14±0.04 0.03±0.02 0.29±0.01 0.12±0.01 0.51±0.02

Table 25: 100 In Class Random Forgetting on CIFAR-100(VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on NA, ∆FA, and ∆FE by large margins. RELOAD performs competitively on
∆FMIA, NSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
the other baselines.

Method NA (↑) FA (∆↓) FE (∆↓) FMIA (∆↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.999±0.001 95.09±0.19 0.20±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 99.57±0.02 4.46±0.24 0.22±0.01 0.03±0.01 0.00±0.00 0.05±0.00 0.51±0.02

FT 99.99±0.001 4.47±0.23 0.22±0.01 0.03±0.01 0.27±0.00 0.00±0.00 0.43±0.02

SSD 14.55±3.93 84.19±1.55 2.05±0.01 0.00±0.00 0.01±0.00 8.51±0.03 7.84±0.02

SCRUB 99.79±0.01 9.55±9.76 0.36±0.34 0.03±0.01 0.02±0.00 0.03±0.00 0.50±0.03

CF-k 99.76±0.01 4.53±0.25 0.23±0.01 0.04±0.01 0.24±0.02 0.03±0.00 0.50±0.02

EU-k 99.63±0.02 4.54±0.23 0.23±0.01 0.04±0.01 0.24±0.02 0.05±0.00 0.47±0.02

SalUn 99.94±0.01 5.04±1.37 0.16±0.04 0.03±0.01 0.14±0.01 0.03±0.00 0.50±0.02

Fisher 99.48±0.02 0.09±0.06 0.00±0.00 0.00±0.00 1.42±0.14 0.05±0.00 0.47±0.02

RELOAD 99.67±0.14 0.93±1.21 0.05±0.06 0.01±0.01 0.14±0.08 0.06±0.02 0.21±0.02

Table 26: 100 In Class Random Forgetting on SVHN (VGG16-BN)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on ∆FA, ∆FE, and FSKL, by large margins. RELOAD performs competitively on
NA, ∆FMIA, and NSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the
other baselines.

A.9 CROSS PATTERN BACKDOOR ATTACK REMEDIATION - ADDITIONAL EXPERIMENTS

Metrics. In Table 7.
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Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 87.46±0.56 20.00±0.00 98.87±0.14 82.68±0.45 19.81±0.03 N/A

Retrain 98.98±0.04 98.53±0.02 98.88±0.02 92.48±0.00 91.90±0.00 1.00±0.00

GAR 60.18±37.89 59.34±37.09 61.52±39.32 57.29±34.88 56.54±34.12 0.08±0.01

GRDA 65.82±31.39 65.16±30.64 66.90±32.50 62.87±28.47 62.34±27.80 0.05±0.00

FT 94.36±4.34 93.90±4.07 94.42±4.34 86.87±4.39 86.50±4.14 0.37±0.02

SSD 30.71±24.06 23.93±13.18 31.78±26.91 30.25±22.90 23.94±13.43 0.01±0.00

SCRUB 12.44±3.50 12.44±3.51 12.44±3.50 12.43±3.45 12.42±3.44 0.04±0.01

CF-k 70.01±27.07 69.62±26.66 70.28±27.40 66.56±24.27 66.29±23.80 0.29±0.03

EU-k 70.10±27.00 69.71±26.60 70.34±27.34 66.75±24.08 66.41±23.63 0.29±0.03

RELOAD 99.89±0.10 99.62±0.45 99.65±0.43 90.81±0.99 90.51±0.82 0.08±0.06

Table 27: Cross Pattern Backdoor Attack on CIFAR-10 (ResNet-18). ↑: the goal is to have as high of a value
as possible, ↓: the goal is to have as low of a value as possible. These results show that RELOAD outperforms
all baselines on NA, TNA, OA, TA, and TTA. The small differences between the values of NA and TNA, and
TA and TTA for RELOAD indicate that it successfully removed the influence of an injected backdoor. RELOAD
incurs a higher computational cost than most baselines, but is cheaper than FT, CF-k, and EU-k.

Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 87.46±0.56 20.00±0.00 98.87±0.14 82.68±0.45 19.81±0.03 N/A

Retrain 99.69±0.02 99.29±0.02 99.59±0.02 92.39±0.00 91.50±0.00 1.00±0.00

GAR 96.32±0.41 94.78±0.52 99.11±0.15 89.15±0.20 87.31±0.22 0.08±0.01

GRDA 96.06±0.25 94.16±0.27 97.83±0.43 88.94±0.14 86.73±0.16 0.05±0.00

FT 98.38±0.28 97.54±0.37 98.47±0.26 90.17±0.42 89.28±0.47 0.41±0.01

SSD 30.71±24.06 23.93±13.18 31.78±26.91 30.25±22.90 23.94±13.43 0.01±0.00

SCRUB 12.44±3.50 12.44±3.51 12.44±3.50 12.43±3.45 12.42±3.44 0.06±0.01

CF-k 70.01±27.07 69.62±26.66 70.28±27.40 66.56±24.27 66.29±23.80 0.53±0.09

EU-k 70.10±27.00 69.71±26.60 70.34±27.34 66.75±24.08 66.41±23.63 0.53±0.09

RELOAD 99.89±0.10 99.62±0.45 99.65±0.43 90.81±0.99 90.51±0.82 0.12±0.07

Table 28: Cross Pattern Backdoor Attack on CIFAR-10(VGG16-BN)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The
top row presents the values ofM(θ∗) on these metrics. These results show that RELOAD outperforms all the
baselines on NA, TNA, OA, TA, and TTA. RELOAD incurs a higher computational cost than the other baselines.

Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 81.42±0.48 19.88±0.09 98.77±0.79 60.48±0.32 16.91±0.17 N/A

Retrain 97.21±0.03 95.11±0.05 96.61±0.03 68.41±0.00 66.25±0.00 1.00±0.00

GAR 90.31±1.72 85.45±2.94 95.50±1.09 65.48±0.52 62.06±1.42 0.09±0.01

GRDA 86.21±1.73 81.59±2.43 88.68±2.06 62.92±1.00 59.96±1.45 0.05±0.01

FT 93.60±0.88 91.29±1.15 93.86±1.07 65.07±0.59 63.27±0.68 0.44±0.06

SSD 9.12±25.69 2.79±5.65 10.73±30.76 7.01±19.02 2.48±4.71 0.01±0.00

SCRUB 78.63±0.94 81.66±2.27 97.41±0.98 57.37±0.55 59.50±1.06 0.06±0.01

CF-k 90.08±1.17 86.67±1.41 93.46±1.13 64.66±0.56 62.16±0.88 0.49±0.07

EU-k 90.07±1.15 86.44±1.41 93.37±1.09 64.61±0.56 61.96±0.92 0.48±0.08

RELOAD 99.84±0.14 99.35±0.59 99.77±0.19 59.37±6.07 59.12±6.04 0.21±0.09

Table 29: Cross Pattern Backdoor Attack on CIFAR-100(VGG16-BN)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible.
The top row presents the values ofM(θ∗) on these metrics. These results show that RELOAD outperforms all
the baselines on NA, TNA, and OA. RELOAD performs competitively on TA and TTA but is outperformed.
RELOAD also incurs a higher computational cost than the other baselines.
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Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 85.50±0.37 25.41±9.03 98.46±0.20 64.96±0.37 21.17±5.93 N/A

Retrain 99.69±0.02 99.29±0.02 99.59±0.02 92.39±0.00 91.50±0.00 1.00±0.00

GAR 96.32±0.41 94.78±0.52 99.11±0.15 89.15±0.20 87.31±0.22 0.05±0.00

GRDA 96.06±0.25 94.16±0.27 97.83±0.43 88.94±0.14 86.73±0.16 0.03±0.00

FT 98.38±0.28 97.54±0.37 98.47±0.26 90.17±0.42 89.28±0.47 0.22±0.00

SSD 17.46±23.58 11.00±3.17 18.90±28.14 16.92±21.76 11.02±3.11 0.00±0.00

SCRUB 81.58±0.30 92.06±0.15 99.53±0.24 75.25±0.46 84.89±0.13 0.03±0.00

CF-k 92.99±0.34 90.96±0.77 97.34±0.29 85.21±0.24 83.29±0.77 0.24±0.00

EU-k 93.03±0.35 91.06±0.87 97.43±0.26 85.31±0.29 83.31±0.79 0.24±0.00

RELOAD 99.87±0.06 99.36±0.83 99.72±0.28 72.45±0.91 71.80±0.96 0.03±0.01

Table 30: Cross Pattern Backdoor Attack on CIFAR-100(ResNet-18)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The
top row presents the values ofM(θ∗) on these metrics. These results show that RELOAD outperforms all the
baselines on NA, TNA, and OA. RELOAD performs competitively on TA and TTA but is outperformed by FT.
RELOAD also incurs a competitive computational cost and is only more expensive than SSD.

Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 76.01±4.06 24.29±1.93 93.59±5.42 72.66±4.40 24.98±1.90 N/A

Retrain 99.99±0.00 99.99±0.00 99.99±0.00 95.45±0.00 95.41±0.00 1.00±0.00

GAR 81.74±36.14 76.10±33.27 82.44±36.52 77.83±33.89 72.77±31.29 0.08±0.00

GRDA 34.08±34.81 31.40±34.41 31.87±35.31 33.38±33.19 30.92±32.79 0.05±0.00

FT 99.70±0.82 99.50±0.94 99.69±0.82 94.60±0.71 94.31±0.89 0.40±0.01

SSD 18.21±19.48 12.76±2.80 19.90±24.81 17.96±18.32 12.97±3.55 0.01±0.00

SCRUB 6.75±0.00 6.76±0.00 6.76±0.00 6.71±0.00 6.71±0.00 0.05±0.00

CF-k 93.19±2.46 90.95±7.44 97.24±4.70 87.31±1.90 85.08±5.93 0.37±0.01

EU-k 93.26±2.49 91.05±7.58 97.09±4.94 87.39±1.86 85.16±5.97 0.37±0.01

RELOAD 99.21±0.94 98.62±2.66 99.10±1.26 94.32±3.05 94.14±3.61 0.28±0.18

Table 31: Cross Pattern Backdoor Attack on SVHN (VGG16-BN)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The
top row presents the values ofM(θ∗) on these metrics. These results show that FT outperforms RELOAD and
other baselines on all metrics but is very computationally expensive. RELOAD performs competitively on all
metrics, and is narrowly outperformed by FT while providing a significantly lower computational cost.

Method NA (↑) TNA (↑) OA (↑) TA (↑) TTA (↑) Cost (↓)

Original 75.29±0.68 23.92±2.31 96.12±2.45 71.35±0.43 24.38±2.06 N/A

Retrain 100.00±0.00 100.00±0.00 99.99±0.00 95.26±0.00 95.22±0.00 1.00±0.00

GAR 99.36±0.04 95.62±1.02 100.00±0.00 94.35±0.15 90.40±1.06 0.07±0.00

GRDA 96.60±2.49 47.19±37.23 49.87±44.15 91.15±3.03 44.57±35.54 0.05±0.00

FT 100.00±0.00 100.00±0.00 100.00±0.00 95.30±0.13 95.24±0.15 0.36±0.01

SSD 19.65±20.04 14.57±4.22 21.80±26.80 19.96±18.52 15.33±4.49 0.01±0.00

SCRUB 23.42±7.68 23.40±7.69 23.35±7.70 24.42±8.17 24.43±8.17 0.05±0.00

CF-k 99.19±0.12 97.21±0.42 99.59±0.22 93.14±0.16 90.59±0.40 0.25±0.00

EU-k 99.19±0.11 97.02±0.42 99.57±0.22 93.12±0.14 90.32±0.37 0.24±0.00

RELOAD 99.57±0.16 99.54±0.18 99.57±0.17 94.69±0.78 94.68±0.77 0.13±0.05

Table 32: Cross Pattern Backdoor Attack on SVHN (ResNet-18)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The
top row presents the values ofM(θ∗) on these metrics. These results show that FT outperforms RELOAD and
other baselines on all metrics but is very computationally expensive. RELOAD performs competitively on all
metrics, and is narrowly outperformed by FT while providing a significantly lower computational cost.

A.10 TARGETED MISLABELLING CORRECTION - ADDITIONAL EXPERIMENTS

Label Flip Attack. In this setting, we select 1 class from D and selectively change the labels
of its training samples to construct D. The specific class pairings are detailed in Appendix A.3.
Using the original dataset with the correct labels as Dnew, we evaluate RELOAD and the other
baselines on correcting the mislabelling. The results of this experiment are shown in Appendix
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A.10. Observe that the effect of this label flip attack produces a trained model (Original) which
has degraded performance on NA and TA. Notice that RELOAD successfully remedies the effects of
this attack, achieving the 2nd highest evaluations across the board on NA, OA, and TA suggesting
that RELOAD. Naive fine-tuning however, outperforms on this task, achieving the best results by
a small margin on NA, OA and TA. It is likely that due to the uniformity of the label attack (all
mislabelling being from a single class to another single semantically similar class), FT was able to be
sufficient in correcting it. Potential future work may explore more complex patterns of mislabelling.
Additionally, RELOAD is more than twice as computationally efficient as fine-tuning. Both Fine-
tuning, and RELOAD produce models which bear significantly similar results to that of the retrained
model, on all metrics, implying the correction was sufficiently accomplished.

Method NA (↑) OA (↑) TA (↑) Cost (↓)

Original 91.06±1.92 99.99±0.00 87.27±1.78 N/A

Retrain 99.99±0.00 91.06±1.92 95.26±0.00 1.00±0.00

GAR 91.06±1.92 98.17±1.88 87.29±1.75 0.07±0.00

GRDA 17.70±2.92 10.47±5.23 16.61±3.67 0.05±0.00

FT 99.99±0.00 91.06±1.92 95.48±0.15 0.35±0.02

SSD 74.47±12.31 75.23±13.70 71.48±12.48 0.01±0.00

SCRUB 20.52±5.78 21.40±9.67 20.45±6.07 0.05±0.00

CF-k 99.43±0.28 91.01±2.05 94.84±0.34 0.24±0.00

EU-k 99.44±0.27 91.02±2.03 94.83±0.35 0.24±0.00

RELOAD 99.72±0.17 90.82±2.00 95.20±0.18 0.15±0.01

Table 33: Label Flip Attack on SVHN (ResNet-18)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The
top row presents the values ofM(θ∗) on these metrics. These results show that FT outperforms RELOAD and
other baselines on all metrics but is very computationally expensive. RELOAD performs competitively on all
metrics, and is narrowly outperformed by FT while providing a significantly lower computational cost.

Method NA (↑) OA (↑) TA (↑) Cost (↓)

Original 89.03±0.13 98.92±0.14 83.88±0.59 N/A

Retrain 99.69±0.02 89.76±0.03 92.39±0.00 1.00±0.00

GAR 89.65±0.10 99.42±0.14 83.38±0.75 0.04±0.00

GRDA 79.72±2.41 79.73±2.43 74.05±2.52 0.03±0.00

FT 98.37±0.28 89.03±0.45 90.18±0.52 0.22±0.00

SSD 85.27±8.86 92.64±12.82 80.76±8.12 0.01±0.00

SCRUB 13.11±2.75 13.14±5.72 13.02±2.82 0.04±0.00

CF-k 95.94±1.21 88.53±1.17 90.43±0.78 0.30±0.03

EU-k 95.97±1.19 88.68±1.12 90.45±0.76 0.30±0.03

RELOAD 99.89±0.05 89.92±0.04 86.77±0.73 0.13±0.01

Table 34: Label Flip Attack on CIFAR-10(ResNet-18)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The top
row presents the values ofM(θ∗) on these metrics. These results show that RELOAD outperforms all baselines
on NA, and performs competitively on OA and TA on which it is outperformed by GAR and FT respectively.
RELOAD incurs a higher computational cost than most baselines, but is faster than FT, CF-k, and EU-k.
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Method NA (↑) OA (↑) TA (↑) Cost (↓)

Original 89.71±0.08 99.69±0.08 83.35±0.68 N/A

Retrain 98.97±0.03 89.15±0.09 92.48±0.00 1.00±0.00

GAR 88.80±0.19 98.02±0.55 83.63±0.60 0.14±0.01

GRDA 58.73±19.24 58.97±19.15 53.92±17.50 0.10±0.00

FT 97.92±0.34 88.45±0.31 90.91±0.50 0.69±0.05

SSD 79.87±16.52 87.85±20.46 75.08±15.00 0.01±0.00

SCRUB 10.00±0.00 9.00±3.16 10.06±0.00 0.05±0.00

CF-k 91.55±1.34 89.71±6.09 85.23±1.27 0.47±0.06

EU-k 91.44±1.21 89.39±6.15 85.20±1.21 0.47±0.06

RELOAD 98.84±1.30 89.56±0.40 75.80±20.79 0.26±0.20

Table 35: Label Flip Attack on CIFAR-10(VGG16-BN)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The top
row presents the values ofM(θ∗) on these metrics. These results show that RELOAD outperforms all baselines
on NA, and performs competitively on OA and TA on which it is outperformed by GAR and FT respectively.
RELOAD incurs a higher computational cost than most baselines, but is faster than FT, CF-k, and EU-k.

Method NA (↑) OA (↑) TA (↑) Cost (↓)

Original 91.06±1.92 99.99±0.00 87.31±1.75 N/A

Retrain 99.99±0.00 91.06±1.92 95.45±0.00 1.00±0.00

GAR 91.05±1.91 96.81±2.24 87.24±1.78 0.08±0.01

GRDA 25.10±26.02 21.14±25.56 23.43±24.03 0.05±0.00

FT 99.99±0.00 91.06±1.92 95.39±0.15 0.41±0.04

SSD 70.78±21.90 72.70±24.06 68.50±20.77 0.01±0.00

SCRUB 6.76±0.00 6.76±0.00 6.71±0.00 0.05±0.00

CF-k 92.56±1.37 95.52±6.50 88.77±1.39 0.36±0.01

EU-k 92.48±1.37 95.12±6.31 88.58±1.33 0.36±0.01

RELOAD 99.42±0.34 90.02±1.47 94.75±0.89 0.27±0.13

Table 36: Label Flip Attack on SVHN (VGG16-BN)
↑: the goal is to have as high of a value as possible, ↓: the goal is to have as low of a value as possible. The top
row presents the values ofM(θ∗) on these metrics. These results show that RELOAD is outperformed by other
baselines on all metrics by a narrow margin and performs competitively across all metrics. RELOAD incurs a
higher computational cost than most baselines, but is faster than FT, CF-k, and EU-k.
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