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ABSTRACT

Time series forecasting is a critical topic in machine learning. Although existing
deep learning methods have demonstrated outstanding performance and currently
dominate this field, the latest state-of-the-art (SOTA) models are increasingly en-
countering the same limitations: the blockneck of performance. We believe this
convergence is due to these models being based on the same mathematical founda-
tions. To address this issue, we draw inspiration from the universal approximation
theorem (UAT) and show that most commonly used deep learning models for time
series forecasting are specific implementations of UAT. Based on UAT theory and
the characteristics of time series data, we propose a new forecasting model called
the Multi-Receptive Field Network (MRFNet). This architecture integrates linear,
sparse matrix, convolutional, and Fourier transform modules, resulting in an inter-
pretable model with multiple receptive fields that can capture both global and local
information. The MRFNet model has been tested extensively on several popular
time series forecasting datasets and has achieved superior results.

1 INTRODUCTION

Time series forecasting is a critical problem with widespread applications in areas such as weather
forecasting, traffic prediction, stock market analysis, and power consumption forecasting. To tackle
this issue, various analytical and statistical methods have been developed. Early research relied
on statistical measures like mean and variance to construct models, such as ARMA (McLeod and
Li, 1983) and ARIMA (Ho and Xie, 1998; Zhang, 2003). These models have shown impressive
accuracy and robustness but have limitations in generalization ability and multivariate time series
forecasting.

With the advent of deep learning, a series of deep learning-based time series forecasting models
emerged, outperforming traditional machine learning methods. The development of deep learning
methods for time series forecasting has largely mirrored the evolution of deep learning models them-
selves, starting with fully connected neural networks (Kourentzes et al., 2014; Rahman et al., 2015;
Torres et al., 2018), followed by recurrent neural networks (RNNs) (Bouktif et al., 2018; Lai et al.,
2018; Bahdanau et al., 2014; Hewamalage et al., 2021), and subsequently, convolutional neural net-
works, Linear model (Zeng et al., 2023), and Transformer networks (Zhou et al., 2021; Wu et al.,
2021; Zhou et al., 2022; Nie et al., 2022).

In summary, the three main types of models dominating the time series forecasting field today are
linear models, convolutional models, and Transformer models. However, as deep learning continues
to evolve, these models have begun to approach a performance bottleneck on widely used public
time series forecasting datasets. We believe that the convergence of their performance is due to
their shared mathematical foundations. To delve deeper into this issue, we require a fundamental
mathematical interpretation of these models. The cornerstone of current deep learning theory is the
UAT (Cybenko, 1989). Therefore, our goal is to study time series forecasting networks within the
framework of UAT. However, UAT traditionally applies only to perceptron networks, while other
forms of networks are more complex and seem to diverge from the theorem. Thus, to investigate
complex linear, convolutional, and Transformer models within the UAT framework, we need to
express them in a mathematical form consistent with UAT. In UAT2LLMs (Wang and Li, 2024a)
and UAT2CVs (Wang and Li, 2024b), the ”Matrix-Vector Method” was proposed and used to unify
2D and 3D convolutional, and Transformer-based models within the UAT theoretical framework.
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Building on these studies, we aim to unify deep learning time series forecasting models within the
UAT framework.

Through our derivations, we demonstrate that most deep learning models in the time series fore-
casting domain, whether used independently or as combinations of the three fundamental modules
- Linear, Convolution, and Transformer - are essentially specific implementations of UAT. This
explains why they ultimately converge towards similar performance blockneck, as they represent
different manifestations of the same mathematical model.

Based on UAT theory and the characteristics of time series forecasting problems, we propose
the MRFNet model, which integrates linear, 1D convolutional, sparse matrix transformation, and
Fourier transform modules. We compare this model with SOTA methods on commonly used time
series forecasting datasets and our model achieves SOTA performances on many datasets. Addi-
tionally, we performed data preprocessing tailored to the characteristics of time series forecasting
data, further enhancing performance. In conclusion, this paper aims to bridge the theoretical gap and
practices in time series forecasting. Our goal is to provide researchers and practitioners with tools to
understand and advance the theory and practice of time series forecasting. Our main contributions
include:

• We have demonstrated that most of the current deep-learning-based time series prediction
models are specific implementations of the UAT, and explained why the current SOTA
models converge to similar performance bottlenecks.

• We proposed the MRFNet model based on the characteristics of time series prediction,
which balances both global and local temporal learning. Our model achieved SOTA per-
formances across multiple datasets, and we also proved that this model is a specific imple-
mentation of UAT for time series prediction.

• We rearranged the data based on the inherent characteristics of time series data, which
further improved the predictive performance of the model.

The structure of this paper is organized as follows: Section 2 provides an overview of existing time
series forecasting models. In Section 3, we introduce the UAT and the Matrix-Vector Method and
discuss their roles in unifying various foundational deep learning modules. In Section 4, we first
demonstrate how 1D convolution can be expressed in matrix-vector form using this method, and
then present the UAT formulation for general models in time series prediction. Section 5 introduces
the MRFNet model (Section 5.1) and describes the time series datasets used (Section 5.2). Section
5.3 presents the prediction results of MRFNet and compares them with SOTA models. In Section
5.4, we apply feature selection tailored to the characteristics of time series data to further enhance
the model’s performance. Finally, in Section 5.5, we provide evidence that current time series
forecasting models, being specific implementations of UAT, inevitably converge towards similar
performance bottlenecks.

2 RELATED WORK

RNN: Recurrent Neural Networks (RNNs) were very popular for time series forecasting a few years
ago, emphasizing the importance of sequence dependencies. RNNs incorporate various gating units
to learn connections between different sequence positions (Bouktif et al., 2018; Lai et al., 2018; Bah-
danau et al., 2014; Hewamalage et al., 2021). RNNs are fundamentally based on the Markov chain
process in mathematics. However, key bottlenecks remain, such as vanishing gradients, substantial
training workloads, and rapid error accumulation over longer time spans (Ribeiro et al., 2020).

CNN: The use of Convolutional Neural Networks (CNNs) for audio-related problems was initially
proposed by Oord et al. (2016). Later, Bai et al. (2018) introduced the concept of Temporal Convolu-
tional Networks (TCNs) as an alternative for time series forecasting (Bai et al., 2018; Vorbach et al.,
2021; Aksan and Hilliges, 2019; Luo and Mesgarani, 2019; Hewage et al., 2020). This approach
is influenced by the autoregressive Wavenet model (Oord et al., 2016) and incorporates causal con-
volutions to prevent the use of future information. TCNs employ dilated convolutions to capture
long-term dependencies in time series data. Several similar models have been developed, including
works by Lara-Benı́tez et al. (2020); Wan et al. (2019); Liu et al. (2021). The Cross-Period Sparse
Forecasting technique is applied in SparseTSF, which can simplify the forecasting task by decou-
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pling the periodicity and trend in time series data. Dai et al. (2024) propose a novel Periodicity
Decoupling Framework (PDF) to capture 2D temporal variations of decoupled series for long-term
series forecasting.

Transformer: Transformers have dominated deep learning and shown significant potential in solv-
ing time series forecasting problems (Li et al., 2019; Wu et al., 2020; Lim et al., 2021; Wen et al.,
2022). The multi-head attention architecture can extract information while positional embeddings
help retain sequence position information (Kitaev et al., 2020; Zhang and Zhu, 2018; Wu et al., 2021;
Shen and Wang, 2022; Madhusudhanan et al., 2021). However, Transformers are computationally
complex, and the setting of hyperparameters greatly influences the performance of Transformer-
based models. To address these issues, models like Informer, Autoformer, and Fedformer were
developed (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022). Liu et al. (2022) tackles time
series problems from the perspective of stationarity, while ETSformer (Woo et al., 2022) uses expo-
nential smoothing and frequency attention to replace the self-attention mechanism in Transformers,
enhancing accuracy and efficiency. Wang et al. (2023) proposed a Channel Aligned Robust Blend
Transformer to address the shortcomings of channel correlation. Additionally, Zhou et al. (2023)
explored using pretrained large language models fine-tuned for time series prediction.

Linear: Zeng et al. (2023) argued that Transformers are not the optimal solution for time series
forecasting. Instead, they demonstrated that linear methods could achieve SOTA results for both
long-range and short-term time series forecasting, outperforming existing models.

3 THE UNIVERSAL APPROXIMATION THEORY

Our objective is to explore time series prediction problems within the framework of the UAT. To
begin, we provide a basic introduction to this theorem, originally proposed by Cybenko (1989),
which encompasses various conclusions and proofs. In this context, we specifically use the form of
the UAT presented in Cybenko (1989) as an illustrative example.

Theorem 2 in Cybenko (1989) asserts that if σ is any continuous sigmoidal function, then finite sums
of the form:

Gpxq “

N
ÿ

j“1

αjσ
`

WT
j x ` θj

˘

(1)

are dense in C pInq. There are two case for Eq. (1) as follows:

• If fpxq P Rm: Gpxq P Rm , x P Rn, αi, Wi P Rpn,mq, and θi P Rm

• If fpxq P R: Gpxq P R , x P Rn, Wi P Rn , and αi, θi P R

x is the input. For any f P C pInq and ε ą 0, there exists a sum Gpxq of the above form for which:
|Gpxq ´ fpxq| ă ε for all x P In. (2)

This implies that, for a sufficiently large value of N , a single-layer neural network can approxi-
mate any continuous function over a closed interval. Furthermore, Hornik et al. (1989) extends
this result, demonstrating that multi-layer feedforward networks also adhere to the UAT, capable of
approximating arbitrary Borel measurable functions.

However, the approximate construction of this theorem is not directly applicable to convolutional
and Transformer networks, as their basic operations-such as convolution and multi-head attention
mechanisms-are difficult to express in the form of matrix-vector multiplication (The basic element
in UAT is matrix-vector multiplication: αjσ

`

WT
j x ` θj

˘

, where WT
j x can be seen as various

modules in networks). Nevertheless, most of the basic solutions for time series problems are based
on multi-layer convolutional and Transformer neural networks. These networks involve a series of
fundamental operations, such as 1D convolution, multi-head attention, and linear transformations
(where the term ”linear” differs from the linear transformation in Eq. (1); in Eq. (1), ”linear” refers
to WT

j x which is a matrix multipling a vector, while here it refers to a matrix multipling another
matrix). Therefore, if we can rewrite the mathematical expressions of these fundamental operations
in the form of a matrix multiplying a vector and prove that they share the same mathematical struc-
ture as UAT, it would imply that all conclusions derived from UAT could be applied to multi-layer
network architectures composed of these components.
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In UAT2LLMs, the Matrix-Vector Method was already used to represent multi-head attention and
linear operations in Transformers as a matrix multiplying a vector: Wx. This paper extends the
Matrix-Vector Method proposed in UAT2LLMs to prove that 1D convolution can also be expressed
in the form of matrix-vector multiplication. The concept behind the matrix-vector method is illus-
trated in Figure 1. The basic transformation in a network (e.g., 1D convolution) can be understood
as T pWq, with inputs and outputs represented by x and y, respectively. The Matrix-Vector Method
transforms the input, output, and the parameters of the operation T pWq within the network into x1,
y1, and W1, ensuring that W1x1 “ y1. Note: For convenience, we use the symbol 1 to denote the
matrix-vector form of the corresponding variable. For example, x is represented as x1.

Matrix-Vector Method

Figure 1: A general description to the Matrix-Vector Method.

4 UNIVERSAL APPROXIMATION THEORY FOR TIME SERIES PREDICTION

Currently, deep learning models for time series forecasting can be summarized as multi-layer net-
works composed primarily of one or more of the following modules: linear, convolution, and Trans-
former. These modules are typically connected using residual connections between successive lay-
ers. To demonstrate that such multi-layer networks, composed of these basic modules, are concrete
implementations of the UAT, we first need to show that these modules can be represented in matrix-
vector form. Once this representation is established, we then need to prove that the mathematical
form of these networks with residual connections aligns with the UAT equation, Eq. (1).

In UAT2LLMs, it has already been shown that networks composed of multiple Transformer layers
have a mathematical form consistent with UAT, and that linear operations can be expressed in matrix-
vector form. Therefore, our primary focus here is to prove that 1D convolutional networks can also
be represented in matrix-vector form (see Section 4.1). (Note that we will use a special calculation
called diamond multiplication: ˛, and W ˛x “ WTx. More details could be found in UAT2LLMs)
Following that, we demonstrate that the mathematical form of multi-layer networks with residual
connections, expressed in matrix-vector terms, is consistent with UAT (see Section 4.2).

4.1 THE MATRIX-VECTOR FORMAT OF 1D CONVOLUTION

In this section, we will transform 1D convolution into the matrix-vector format. Figure 2.Single-
channel Output.a vividly illustrates the basic process of single-channel output in 1D convolution:
W f x “ y. Here, the dimension T symbolizes the time size, K is the kernel size, while N
represents the feature size. Figure 2.Single-channel Output.b provides a concise example of single-
channel output in 1D convolution. Figure 2.Single-channel Output.c further demonstrates how to
use the matrix-vector method to transform the convolution of single-channel output into the form of
diamond multiplication:W1 ˛ x1 “ y1, where x1,W1 and y1 are generated from x,W and y.

Figure 2.Multi-channel Output.a elaborates on the fundamental process of 1D convolution with mul-
tiple convolution kernels and multiple-channel output:W1 f x “ y1...WO f x “ yO, where the
number of output channels O signifies predictions for the next O time steps. Figure 2.Multi-channel
Output.b offers a simplified example of Figure 2.Multi-channel Output.a, and Figure 2.Multi-
channel Output.c employs the matrix-vector method to convert the convolution of multiple-channel
output into the form of diamond multiplication:W1˛x “ y1, where W1 is generated from W1...WO

and y1 is generated from y1...yO. With the relationship between diamond multiplication and matrix

4
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Single-channel Output  Multi-channel Output

Figure 2: Illustration on how 1D convolution can be represented in matrix-vector form. The left
side corresponds to a 1D convolution with a single output channel, while the right side represents
a 1D convolution with multiple output channels. The convolution kernel, input data, and output
data are indicated by orange, blue, and pink boxes, respectively. (a) Conceptual diagram of a 1D
convolution, using different colored boxes to represent data and parameters. (b) A simple example
of a 1D convolution. (c) The matrix-vector representation for the 1D convolution in (b).

multiplication, we can derive the following formula:
xi`1 “ Wi f xi Ñ pxi`1q1 “ W1

i ˛ x1
i “ pW1

iq
Tx1

i (3)

Here, xi P RpN,Mq represents the input of the i-th layer, while xi`1 P RpO,M´k`1qq is the output
from the same layer. The matrix Wi P RpO,N,Kq are convolution kernel with the kernel size is
K and the number of kernel is O. x1

i`1, x1
i, W

1
i are transformed from xi`1 P RpOpM´k`1q,1q,

xi P RpNM,1q, Wi P RpNM,OpM´k`1q based on matrix-vector method.

So we have proved the 1D convolution in time series can be represented in matrix-vector format. In
the context of time series prediction, we observe that a single operation of 1D convolution learns the
correlations among K features at all time points using the convolution kernel. It generates output
for a single feature at a specific time step. Sliding the convolution kernel can produce output for
multiple features at the same time step, and increasing the number of convolution kernels enables
obtaining outputs for multiple features across multiple time steps.

4.2 THE UAT FORMAT OF DEEP LEARNING NETWORKS IN TIME SERIES PREDICTION

Currently, the main deep learning networks used in time series forecasting are based on linear,
convolutional and Transformer modules, which are typically connected in a residual form. So our
purpose is to prove that the mathematical format of residual-based networks is consistent with UAT.
It has already been proven in UAT2LLMs that the mathematical form of multi-layer Transformer
networks is consistent with that of UAT, which can be written as:

xi`1 “ pW1
i`1,1x0 ` bi`1,1q `

i`1
ÿ

j“1

W1
j,3σpW1

j,2x
1
0 ` b1

j,2q (4)

where xi`1 is the output of i ` 1-th layer, x0 is the input of the network, b1
j,2 “ pW1

j,2b
1
j´1,3 `

b1
j,2q `W1

j,2UATR
j´1, where UATR

j´1 “
řj´1

k“1 W
1
k,3σpW1

k,2x
1
0 `b1

k,2q. The term b1
j,2 is approx-

5
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+

Figure 3: A general description of the residual-based module in a network.

imated by the j layer of UAT with x0 as input. This enhances the model’s ability to dynamically
adjust functions based on input.

Here, we aim to prove that the mathematical form of residual-based multi-layer 1D convolutional
and Linear networks is also consistent with UAT. Given the diversity of network architectures, we
assume, without loss of generality, that the network structure is as depicted in Figure 3.

In this structure, T represents either a linear or a convolution, while Wi and bi denote the corre-
sponding parameters. The mathematical representation of the network shown in Figure 3 can then
be expressed as follows:

xi`1 “ xi ` Ti`1tσrTipxiqsu (5)

Since we have demonstrated that 1D convolution can be expressed in the form of matrix-vector
multiplication, and UAT2LLMs has shown that linear operations can also be expressed as matrix-
vector multiplication, Eq. (5) can therefore be rewritten as:

x1
i`1 “ x1

i ` W1
i`1,2σpW1

i`1,1x
1
i ` b1

i`1,1q ` b1
i`1,2

“ px1
i ` b1

i`1,2q ` W1
i`1,2σpW1

i`1,1x
1
i ` b1

i`1,1q
(6)

Eq. (6) is mathematically identical to the residual-based convolutional neural networks in
UAT2CVs. UAT2CVs has already demonstrated that the mathematical form of a multi-layer net-
work, as expressed in Eq. (6), is mathematically consistent with UAT, which is given by:

x1
i`1 “ px1

0 ` b1
i`1,2q ` Σi`1

j“1W
1
j,2σpW1

j,1x
1
0 ` b1

j,1q (7)

where b1
j,1 “ pW1

j,1b
1
j´1,2`b1

j,1q`W1
j,1UATR

j´1 and UATR
j´1 “ Σj´1

k“1W
1
k,2σpW1

k,1x
1
0`b1

k,1q.
Eq. (7) conforming to the UAT form given in Eq. (1). In this equation, bj,1 is a dynamic parameter
approximated by j layers UAT (j ą 1).

According to the above derivation, we know most deep-learning neural networks are the implemen-
tations of UAT.

5 MRFNET AND EXPERIMENTS

In this section, we first introduce the MRFNet architecture and discuss its key features (Section 5.1).
Next, we describe the datasets used in our study (Section 5.2) and compare the performances of our
model with several current SOTA models to demonstrate its effectiveness (Section 5.4). Following
this, we leverage the characteristics of time series data to further enhance the model’s performances
(Section 5.4). Finally, in Section 5.5, we use experiments to validate that these UAT-based models
ultimately converge to the same performance bottleneck.

5.1 MRFNET

Based on the characteristics of time series data, we designed the MRFNet model for time series
forecasting. The architecture of MRFNet is illustrated in Figure 4: first, a linear module is used to
embed time information. In time series forecasting, the changes in the sequence are often influenced
by natural factors, such as seasonality and periodicity. Therefore, it is necessary to embed time

6
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Time Linear Block

Input: +

MRF Block 1

+

MRF Block 2

Linear Block

Output: 

MRFNet

Linear Block
( , )

Sparse Matrix Block
 ( , )

Conv Block
( , )

Fourier Block
( , )

+

Figure 4: Overview of the MRFNet model’s architecture. The details of the MRF block are shown
on the right side.

information. The model then leverages multiple MRF modules for learning, and finally, a Linear
block is applied to produce the output.

The MRF module consists of four main components: the Linear Block, Sparse Matrix Block, Conv
Block, and Fourier Block. The Linear Block, which can be represented as Wi`1,1x ` bi`1,1,
performs linear transformations on the input data, capturing the overall temporal trends within the
data. Given that features often share common attributes, we introduce a Linear Block to learn these
shared characteristics, aiming to capture the intrinsic commonalities within the data. The Sparse
Matrix Block focuses on learning local temporal features, which can be represented as pWS d

Wi`1,2qx ` bi`1,2. Where WS is a custom sparse matrix composed of 0s and 1s, ensuring the
sparsity of Wi`1,2.

The Conv Block employs 1D convolution, commonly used in time series forecasting, allowing the
model to learn multi-feature correlations based on the size of the convolution kernel, represented as:
Wi`1,3 fxi `bi`1,3. The connection between convolution and the Fourier Block can be expressed
as x f h “ F´1rFx d Fhs. In the frequency domain, we have the capacity to learn h, which is
equivalent to x f h “ F´1WFx. Thus, we introduce an enhanced convolutional variant in the
neural network, F´1WFx. This enables us to extract features in the frequency domain and achieve
a broader receptive field, as demonstrated in the Appendix D. Additionally, the Fourier Transform
is known for its ability to generate sparse representations, where only a few coefficients contain
significant information, which can be used to emphasize key features.

Since we have proven that both linear transformations and convolutions can be expressed in a matrix-
vector format, all four basic modules within the MRF Block can also be represented in this format.
The Sparse Matrix Block can be considered a special type of linear transformation, while the Fourier
Block can also be treated as a special case of linear transformation because F´1 and F are fixed.
Therefore, we can define WF “ F´1WFx, which allows the Fourier Block to be viewed as a
special Linear transformation. Consequently, the general form of MRFNet can be expressed as:

x1
i`1 “ W1

i`1,1x
1
i ` b1

i`1,1 ` σpW1
i`1,2x

1
i ` b1

i`1,2q

` σpW1
i`1,3x

1
i ` b1

i`1,3q ` σpW1
i`1,4x

1
i ` b1

i`1,4q
(8)

Based on Eq. (8), it is easy to prove that MRFNet is also an implementation of UAT and effectively
increases the depth of the UAT. We provide the proof in Appendix B. The various transformations
within the MRF module can all be represented as corresponding matrix-vector multiplications, dif-
fering only in the size of the learned receptive field. By efficiently handling different temporal

7
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Table 1: A general description of all datasets.

Datasets ETTh1&ETTh2 ETTm1 &ETTm2 Traffic Electricity Weather ILI
Variates 7 7 862 321 21 7

Timesteps 17,420 69,680 17,544 26,304 52,696 966
Granularity 1hour 5min 1hour 1hour 10min 1week

Table 2: Multivariate predictions of ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Electricity, Weather
and ILI, by twelve models. The best results are highlighted in bold red. The second-best results are
indicated with highlighted in bold black. Here, we provide a comparison of only some models. A
more comprehensive comparison is presented in Table 5 in the Appendix.

Methods MRFNet GPT2(6) DLinear PatchTST TimesNet FEDformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.149 0.191 0.162 0.212 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336

192 0.193 0.235 0.204 0.248 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367
336 0.245 0.278 0.254 0.286 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395
720 0.315 0.329 0.326 0.337 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428
Avg 0.225 0.258 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382

E
T

T
h1

96 0.364 0.393 0.376 0.397 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459
192 0.402 0.415 0.416 0.418 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482
336 0.442 0.444 0.442 0.433 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496
720 0.434 0.454 0.477 0.456 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512
Avg 0.410 0.426 0.427 0.426 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487

E
T

T
h2

96 0.273 0.330 0.285 0.342 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388
192 0.341 0.376 0.354 0.389 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.456 0.452
336 0.366 0.396 0.373 0.407 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.482 0.486
720 0.385 0.423 0.406 0.441 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.515 0.511
Avg 0.341 0.381 0.354 0.394 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459

E
T

T
m

1 96 0.297 0.342 0.292 0.346 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.505 0.475
192 0.334 0.366 0.332 0.372 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.553 0.496
336 0.366 0.385 0.366 0.394 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.621 0.537
720 0.407 0.411 0.417 0.421 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.671 0.561
Avg 0.351 0.376 0.352 0.383 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517

E
T

T
m

2 96 0.163 0.246 0.173 0.262 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.255 0.339
192 0.219 0.287 0.229 0.301 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.281 0.340
336 0.275 0.323 0.286 0.341 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.339 0.372
720 0.354 0.377 0.378 0.401 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.433 0.432
Avg 0.252 0.333 0.266 0.326 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371

IL
I

24 1.757 0.857 2.063 0.881 2.215 1.081 1.319 0.754 2.317 0.934 3.228 1.260 3.483 1.287
36 2.085 0.915 1.868 0.892 1.963 0.963 1.430 0.834 1.972 0.920 2.679 1.080 3.103 1.148
48 1.972 0.899 1.790 0.884 2.130 1.024 1.553 0.815 2.238 0.940 2.622 1.078 2.669 1.085
60 1.998 0.923 1.979 0.957 2.368 1.096 1.470 0.788 2.027 0.928 2.857 1.157 2.770 1.125

Avg 1.953 0.898 1.925 0.903 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 3.006 1.161

E
C

L

96 0.127 0.218 0.139 0.238 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.201 0.317
192 0.144 0.234 0.153 0.251 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.222 0.334
336 0.159 0.251 0.169 0.266 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.231 0.338
720 0.192 0.280 0.206 0.297 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.254 0.361
Avg 0.155 0.245 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338

Tr
af

fic

96 0.386 0.241 0.388 0.282 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.613 0.388
192 0.399 0.248 0.407 0.290 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.616 0.382
336 0.414 0.274 0.412 0.294 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.622 0.337
720 0.457 0.277 0.450 0.312 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.660 0.408
Avg 0.414 0.260 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379

components and adjusting the receptive field, the model can capture subtle variations in the data.
The overall time complexity of the model is OpL ¨ T 2 ¨ C ¨ Kq, where L, T , C, and K represent
the number of network layers, the temporal dimension, the feature dimension, and the convolution
kernel size, respectively.

5.2 DATASETS

The experiments were conducted on real-world datasets (Zhou et al., 2021), including (1) Electricity
Transformer Temperature (ETT), (2) Electricity, and (3) Traffic, (4) Weather, (5) ILI. The details of
all datasets can be found in (Wu et al., 2021). The data source is available at github1. It should be
noted that ETT consists of four different datasets: ETTh1, ETTh2, ETTm1, and ETTm2, each of
which has seven variables. We evaluate our model using Mean Absolute Errors (MAE) and Mean

1https://github.com/thuml/Autoformer

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Squared Errors (MSE), as used in (Zhou et al., 2021). Smaller values of MAE/MSE indicate better
model performance. We use the average values for all predictions. The details of all datasets are
shown in Table 1. In Appendix A, we give the data setting for training, evaluation and testing.

5.3 RESULTS OF MRFNET

In Table 2, we compare our model with the current SOTA models for time series prediction. Our
model demonstrates superior performances on these datasets, achieving SOTA results in most cases
(except for the ILI dataset, which is primarily affected by the characteristics of the data itself; we
will provide a solution for this issue in Section 5.4). However, when analyzing the results across
all models, it becomes evident that the current SOTA models - MRFNet, GPT2(6) (Zhou et al.,
2023), DLinear (Zeng et al., 2023), and PatchTST (Nie et al., 2022) - converge towards a similar
performance bottleneck. This is because they are all composed of multi-layer Transformers and
Linear components, which we have proven to be specific implementations of the dynamic UAT,
leading them to the same blockneck with limited data. Additional results for univariate prediction
can be found in Appendix F.

Although the MRFNet proposed in this paper is specifically designed to leverage the characteris-
tics of temporal data, it remains categorized within the UAT function framework. Consequently,
MRFNet provides only limited improvements over previous prediction results. However, experi-
mental outcomes demonstrate that the model achieves SOTA performance, thereby validating its
effectiveness. We believe that another critical factor contributing to the existing performance bottle-
neck lies in the inherent limitations of the data itself. To address this, in Section 5.4, we conducted
more in-depth data processing and training optimizations tailored to the unique properties of tempo-
ral data.

5.4 DATA EFFECTS

In this section, we will solve the bottleneck problem from the perspective of data. A crucial charac-
teristic of time series data is its periodicity. However, this periodicity may change over time due to
external factors (e.g., advancements in science leading to a gradual increase in electricity demand).
This gives data a specific property: data points closer to the prediction point have a greater impact on
the results (e.g., when forecasting electricity demand for 2024, the data from 2023 is more relevant,
while earlier years are less so).

Table 3: We re-divided the training and validation
sets for the ETTh1, ETTh2, ETTm1, and ETTm2
datasets, then retrained the models. The test re-
sults were obtained on the same test sets.

Models MRFNet MRFNet* PatchTST/64
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.364 0.393 0.302 0.368 0.370 0.400
192 0.402 0.415 0.343 0.397 0.413 0.429
336 0.442 0.444 0.366 0.415 0.422 0.440
720 0.434 0.454 0.387 0.446 0.447 0.468

E
T

T
h2

96 0.273 0.330 0.246 0.319 0.274 0.337
192 0.341 0.376 0.308 0.359 0.341 0.382
336 0.366 0.396 0.325 0.381 0.329 0.384
720 0.385 0.423 0.353 0.408 0.379 0.422

E
T

T
m

1 96 0.297 0.342 0.243 0.316 0.293 0.346
192 0.334 0.366 0.280 0.342 0.333 0.370
336 0.360 0.385 0.299 0.359 0.369 0.392
720 0.407 0.411 0.353 0.396 0.416 0.420

E
T

T
m

2 96 0.163 0.246 0.144 0.233 0.166 0.256
192 0.219 0.287 0.197 0.273 0.223 0.296
336 0.275 0.323 0.245 0.309 0.274 0.329
720 0.354 0.377 0.306 0.357 0.362 0.385

Leveraging this property, we designated the be-
ginning part of the ETT data as the validation
set, kept the test set unchanged, and used the re-
maining data for training. The results, as shown
in Table 3 for MRFNet*. As seen in Table 3,
the results improved substantially after adjust-
ing the allocation of the training and validation
sets.

Another issue is the relatively poor perfor-
mance of MRFNet on the ILI dataset. We be-
lieve this is primarily due to the nature of the
data itself. Not all features in the ILI dataset
are correlated (see Appendix C) and forcing all
data to be trained together may lead to worse
results. Based on the characteristics of the ILI
data, we divided it into two groups and trained
them separately. The results are shown in Ta-
ble 4. For more details, please refer to the Ap-
pendix C.

5.5 ABLATION EXPERIMENT

We decompose the MRFNet model into three variants: LS (Linear-Sparse Matrix), LC (Linear-
Convolution), and LF (Linear-Fourier Transform), and compare them against the full MRFNet

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: We split the 7 features of the ILI dataset into two groups for separate training and prediction.
The seven features are labeled as Class 1 to Class 7. Group 1: Class 1, 2, 3, 4, 5; Group 2: Class
6,7. Ori: Results from training with all features together. Split: Results from training after splitting
the features into two groups.

Methods Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ori Avg 0.581 0.860 0.630 1.046 1.139 2.821 1.020 2.807 1.269 4.236 0.744 0.800 0.904 1.097
Split Avg 0.366 0.233 0.339 0.220 0.294 0.160 0.304 0.199 0.367 0.254 0.188 0.103 0.184 0.094

model. Table 5 presents the results of our ablation study. The results indicate that while certain
models perform less well on specific datasets, such as the LC model on the Weather dataset, their
overall performance remains very close. Notably, the MRFNet model consistently ranks either best
or second-best across all datasets.

Table 5: Ablation Experiment on of ETTh1, ETTm2, and Weather. The best results are highlighted
in bold red. The second-best results are indicated with an underlined orange line. The best results
are highlighted in bold red. The second-best results are indicated with an underlined orange line

Models MRFNet LS LC LF
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.149 0.191 0.170 0.208 0.169 0.208 0.148 0.189
192 0.193 0.235 0.211 0.249 0.212 0.248 0.193 0.235
336 0.245 0.278 0.257 0.286 0.257 0.286 0.244 0.277
720 0.315 0.329 0.321 0.335 0.322 0.336 0.312 0.326

E
T

T
m

1 96 0.297 0.342 0.297 0.341 0.275 0.343 0.296 0.341
192 0.334 0.366 0.337 0.365 0.335 0.365 0.336 0.368
336 0.360 0.385 0.370 0.388 0.369 0.386 0.357 0.383
720 0.407 0.411 0.421 0.415 0.425 0.421 0.409 0.413

E
T

T
m

2 96 0.163 0.246 0.160 0.245 0.161 0.246 0.161 0.245
192 0.219 0.287 0.215 0.284 0.215 0.284 0.221 0.286
336 0.275 0.323 0.267 0.321 0.268 0.330 0.277 0.324
720 0.354 0.377 0.354 0.375 0.352 0.375 0.362 0.380

These results support our conclusions: first, we have demonstrated that these models inherently share
the same mathematical properties, which explains the similarity in their results. Second, MRFNet is
equivalent to an increased network depth compared to the other models and benefits from its more
comprehensive feature learning. As a result, MRFNet maintains SOTA performance or near-SOTA
performance across all datasets, further validating its robustness and superiority.

Additionally, in Appendix E, we compare the weights of MRFNet, LS, LC, and LF at the same
layer. The weights for the same dataset exhibit similar textures, suggesting that, in general, they
are learning similar information patterns. Given that we have proven these models share the same
mathematical framework, the primary differences lie in the size of their receptive fields, with each
model’s module playing a similar role. However, due to the different receptive field sizes, the specific
patterns they learn may vary slightly, though the overall trend remains consistent.

6 CONCLUSION

In this paper, we demonstrate that most models in the field of time series forecasting are specific
implementations of the UAT, which explains why current SOTA models in time series forecasting
tend to converge towards the same performance bottleneck. Based on the principles of UAT and
the characteristics of time series data, we have designed a new model, MRFNet, for time series
prediction. MRFNet integrates linear modules, sparse matrix modules, convolutional modules, and
Fourier transform modules, effectively capturing both global and local receptive field information.
Through extensive testing on various common datasets, the MRFNet model has demonstrated its
superiority, achieving SOTA-level performance. Additionally, by leveraging the intrinsic properties
of time series data, we further refined the data, significantly enhancing the performance on certain
datasets. Finally, we conducted experiments to confirm that time series forecasting models based on
UAT theory eventually converge to a similar performance bottleneck. In the future, we will further
try to tackle the challenges of bottleneck from the perspective of UAT and data.
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A DATA ARRANGEMENT

In this section, we present the data arrangement for the train set, validation set, and test set. We give
the default arrangement in Table 1. In Table 2, we describe data rearrangement about ETTh1&2 and
ETTm1&2 in Section 5.5. Note: n represents the total number of time steps and T is 30*24.

Table 1: The default arrangement of data split.

Dataset Train Set Val Set Test Set
Weather D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]

ETTh1&2 D[:T*12] D[T*12:T*16] D[T*16:T*20]
ETTm1&2 D[:T*12*4] D[T*12*4:T*16*4] D[T*16*4:T*20*4]

ILI D[:n*0.6] D[n*0.6:n*0.8] D[n*0.8:]
ECL D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]

Traffic D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]

Table 2: The data rearrangement of ETTh1&2 and ETTm1&2.

Dataset Train Set Val Set Test Set
ETTh1&2 D[T*2:T*16] D[:T*2] D[T*16:T*20]
ETTm1&2 D[T*1*4:T*16*4] D[:T*1*4] D[T*16*4:T*20*4]

B THE UAT FORMAT OF MRFNET

Here, we follow the proof process from UAT2LLMs and UAT2CVs to demonstrate that MRFNet is
also a specific implementation of the UAT. We know the general format of MRFNet is:

x1
i`1 “ W1

i`1,1x
1
i ` b1

i`1,1 ` σpW1
i`1,2x

1
i ` b1

i`1,2q

` σpW1
i`1,3x

1
i ` b1

i`1,3q ` σpW1
i`1,4x

1
i ` b1

i`1,4q
(1)

According to UAT2LLMs and UAT2CVs, the general term of MRFNet is similar to the gen-
eral term in UAT2LLMs(C.2) and UAT2CVs (A.2) by only two additional terms. According to
these two UAT2LLMs and UAT2CVs, if the mathematical format of x1

i is the same to UAT, then
the mathematical format of W1

i`1,1x
1
i is also the same with UAT and σpW1

i`1,2x
1
i ` b1

i`1,2q,
σpW1

i`1,3x
1
i ` b1

i`1,3q and σpW1
i`1,4x

1
i ` b1

i`1,4q can be seen as three terms in UAT. So it is
straightforward to deduce that if the mathematical form of x1

i in MRFNet is consistent with the UAT
form, then the mathematical form of x1

i`1 will also be consistent with the UAT form. It is also easy
to derive that the mathematical forms of x1

1 and x1
2 in MRFNet are consistent with the UAT. Thus,

by mathematical induction, the mathematical form of MRFNet aligns with the UAT.

For the clarity, we give the mathematical format of x1
1 and x1

2, let the input to MRF Block 1 be
x0. Then, the matrix-vector form of x1 can be expressed as shown in Eq. (2). Here, x1

1 can be
considered as being approximated by a UAT with N equal to 4.

x1
1 “ W1

1,1x
1
0 ` b1

1,1 ` σpW1
1,2x

1
0 ` b1

1,2q

` σpW1
1,3x

1
0 ` b1

1,3q ` σpW1
1,4x

1
0 ` b1

1,4q
(2)

Similarly, based on Eq. (2), we can derive x1
2 as shown in Eq. (3). Define the following:

W1
2,1 “ W1

2,1W
1
1,1, b1

2,1 “ W1
2,1b

1
1,1 ` b1

2,1, W1
2,2 “ W1

2,2W
1
1,1, W1

2,3 “ W1
2,3W

1
1,1, W1

2,4 “

W1
2,4W

1
1,1, b1

2,2 “ pW1
2,2b

1
1,1 ` b1

2,2q ` W1
2,2σpW1

1,2x
1
0 ` b1

1,2q ` W1
2,2σpW1

1,3x
1
0 ` b1

1,3q `

W1
2,2σpW1

1,4x
1
0`b1

1,4q, b1
2,3 “ pW1

2,3b
1
1,1`b1

2,3q`W1
2,3σpW1

1,2x
1
0`b1

1,2q`W1
2,3σpW1

1,3x
1
0`

b1
1,3q ` W1

2,3σpW1
1,4x

1
0 ` b1

1,4q, and b1
2,4 “ pW1

2,4b
1
1,1 ` b1

2,4q ` W1
2,4σpW1

1,2x
1
0 ` b1

1,2q `

W1
2,4σpW1

1,3x
1
0 ` b1

1,3q ` W1
2,4σpW1

1,4x
1
0 ` b1

1,4q. Therefore, x1
2 can be expressed as shown in

Eq. (4), which can be seen as 7 layers’ UAT. Thus, an MRFNet with i layers is equivalent to a UAT

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

with 3i`1 layers, effectively increasing the number of layers in the UAT. This is because, according
to UAT2LLMs and UAT2CVs, a network with i layers generally corresponds to a UAT with i ` 1
layers.

x1
2 “ W1

2,1x
1
1 ` b1

2,1 ` σpW1
2,2x

1
1 ` b1

1,2q

` σpW1
2,3x

1
1 ` b1

2,3q ` σpW1
2,4x

1
1 ` b1

2,4q

“ W1
2,1rW1

1,1x
1
0 ` b1

1,1 ` σpW1
1,2x

1
0 ` b1

1,2q ` σpW1
1,3x

1
0 ` b1

1,3q

` σpW1
1,4x

1
0 ` b1

1,4qs ` b1
2,1

` σtW1
2,2rW1

1,1x
1
0 ` b1

1,1 ` σpW1
1,2x

1
0 ` b1

1,2q ` σpW1
1,3x

1
0 ` b1

1,3q

` σpW1
1,4x

1
0 ` b1

1,4qs ` b1
1,2u

` σtW1
2,3rW1

1,1x
1
0 ` b1

1,1 ` σpW1
1,2x

1
0 ` b1

1,2q ` σpW1
1,3x

1
0 ` b1

1,3q

` σpW1
1,4x

1
0 ` b1

1,4qs ` b1
2,3u

` σtW1
2,4rW1

1,1x
1
0 ` b1

1,1 ` σpW1
1,2x

1
0 ` b1

1,2q ` σpW1
1,3x

1
0 ` b1

1,3q

` σpW1
1,4x

1
0 ` b1

1,4qs ` b1
2,4u

“ pW1
2,1W

1
1,1x

1
0 ` W1

2,1b
1
1,1 ` b1

2,1q ` W1
2,1σpW1

1,2x
1
0 ` b1

1,2q ` W1
2,1σpW1

1,3x
1
0 ` b1

1,3q

` W1
2,1σpW1

1,4x
1
0 ` b1

1,4q

` σtpW1
2,2W

1
1,1x

1
0 ` W1

2,2b
1
1,1 ` b1

1,2q ` W1
2,2σpW1

1,2x
1
0 ` b1

1,2q ` W1
2,2σpW1

1,3x
1
0 ` b1

1,3q

` W1
2,2σpW1

1,4x
1
0 ` b1

1,4qu

` σtpW1
2,3W

1
1,1x

1
0 ` W1

2,3b
1
1,1 ` b1

2,3q ` W1
2,3σpW1

1,2x
1
0 ` b1

1,2q ` W1
2,3σpW1

1,3x
1
0 ` b1

1,3q

` W1
2,3σpW1

1,4x
1
0 ` b1

1,4qu

` σtpW1
2,4W

1
1,1x

1
0 ` W1

2,4b
1
1,1 ` b1

2,4q ` W1
2,4σpW1

1,2x
1
0 ` b1

1,2q ` W1
2,4σpW1

1,3x
1
0 ` b1

1,3q

` W1
2,4σpW1

1,4x
1
0 ` b1

1,4qu

(3)

x1
2 “ pW1

2,1x
1
0 ` b1

2,1q ` W1
2,1σpW1

1,2x
1
0 ` b1

1,2q

` W1
2,1σpW1

1,3x
1
0 ` b1

1,3q ` W1
2,1σpW1

1,4x
1
0 ` b1

1,4q

` σpW1
2,2x

1
0 ` b1

2,2q ` σpW1
2,3x

1
0 ` b1

2,3q

` σpW1
2,4x

1
0 ` b1

2,4q

(4)

C THE DATA PROBLEM OF ILI

Figure 1 illustrates the data trends for the 7 features in the ILI dataset, labeled as Class 1 to Class
7. Time series data generally exhibit two main characteristics: periodicity and trends within each
period. The seven features share a similar period; however, it is evident that Classes 6 and 7 show
an upward trend over time, while the overall trends of the other features remain stable.

If there is any correlation between the features, we believe it would be either related to the period
(which is the same across features and can thus be disregarded) or to the trend. Since Classes 6 and
7 both display a rising trend, while the trends of the other classes remain unchanged, we hypothesize
that Classes 6 and 7 should be separated from the other features. Therefore, we grouped the data
into two sets: one containing Classes 6 and 7, and the other with the remaining features. We then
trained and tested the model on these separate groups. The test results, shown in Table 3, clearly
indicate a significant improvement in model performance after grouping the data for training.

D THE PROPERTIES OF FOURIER TRANSFORM

Compared to convolution, learning features in the Fourier domain offers the advantage of a larger
receptive field. This phenomenon is illustrated in Figures 2 and 3. Figure 2 shows a typical convolu-
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Class 1 Class 2

Class 3 Class 4

Class 5 Class 6

Class 7

Figure 1: The trends of the features in the ILI dataset.

Table 3: Based on the characteristics of the ILI data, we divided it into two groups: Group 1: Class
1, 2, 3, 4, 5; Group 2: Class 6, 7. We then calculated the MSE and MAE for each group separately.
Ori: Results from training with all features together. Split: Results from training after splitting the
features into two groups.

Methods Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ori

24 0.532 0.764 0.602 0.987 1.085 2.527 0.968 2.501 1.196 3.635 0.736 0.821 0.876 1.062
36 0.630 0.981 0.656 1.149 1.149 2.908 1.052 3.075 1.364 4.744 0.689 0.695 0.868 1.042
48 0.596 0.891 0.644 1.063 1.129 2.801 1.035 2.867 1.266 4.356 0.727 0.763 0.892 1.063
60 0.566 0.807 0.621 0.986 1.193 3.051 1.025 2.785 1.250 4.210 0.824 0.922 0.980 1.222

Avg 0.581 0.860 0.630 1.046 1.139 2.821 1.020 2.807 1.269 4.236 0.744 0.800 0.904 1.097

Split

24 0.402 0.284 0.372 0.260 0.308 0.178 0.360 0.292 0.412 0.334 0.154 0.204 0.047 0.079
36 0.350 0.217 0.326 0.206 0.289 0.160 0.275 0.146 0.343 0.210 0.182 0.060 0.221 0.091
48 0.370 0.229 0.339 0.211 0.299 0.157 0.309 0.199 0.368 0.251 0.207 0.072 0.240 0.103
60 0.342 0.205 0.320 0.206 0.281 0.147 0.275 0.159 0.345 0.222 0.211 0.076 0.231 0.103
Avg 0.366 0.233 0.339 0.220 0.294 0.160 0.304 0.199 0.367 0.254 0.1885 0.103 0.184 0.094

tion process with a kernel size of 3, resulting in a receptive field of 3. In contrast, the black boxes of
Figure 3 depict a standard Fourier transform process, while the right side (highlighted in the red box)
demonstrates learning in the Fourier space based on the Fourier transform results from the left. It is
evident that every point within the red box on the right is capable of gathering global information
from the original domain, thus offering an expanded receptive field compared to convolution.
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Figure 2: The convolution operation on the sequence. n is the serial number. x is a sequence. h is
the convolutional kernel and the kernel size is three. X is the output after convulution.

Figure 3: The left part is the Fourier transform. n is the serial number and n “ . represents n “

0, 1, 2, .... xl and xl`1 are latent sequences. F is the FT matrix and F´1 is inverse matrix of the FT.
The right part is the way of learning the change of sequence in the Fourier domain. W is the weight
matrix. Xl is the FT output. X1

l is the latent features learned in the Fourier domain.

E VISUALIZATION OF WEIGHTS

Figures 4, 5, 6, and 7 illustrate the visual comparison of parameter weight information within the
second MRF block of the MRFNet model on ETTh1 dataset, along with the weight information at
corresponding positions for LS, LC, and LF. Overall, from the texture of these images, it can be
observed that they learn similar information.

Linear Block: The overall texture learned by the Linear Block is similar, yet the weight parameter
magnitudes differ among the models. Regarding the matrix multiplication, the x-axis corresponds
to input time information, while the y-axis corresponds to output time information. In the row
direction, there is an overall appearance of an interlocking grid pattern. This pattern signifies that
different positions of input have varying degrees of importance for the output, and this importance
changes continuously. Among these models, the LS model’s parameters exhibit this characteristic
most prominently. This is primarily due to the LS model learning a sparse matrix, implying a
block-wise learning of temporal information. Therefore, the linear Block complements this block-
wise feature, reinforcing the coordination of local and global information. The other models learn
information holistically, which is why this characteristic is less evident.

Sparse Matrix Block: The Sparse Matrix Block demonstrates a similar texture of weight features
as the linear Block, with the distinction that this pattern is block-wise. The MRFNet model learns
more discrete feature information, whereas the LS model learns continuous, block-wise information.
However, the underlying patterns they learn are similar.
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Figure 4: The images depict the weights of the Linear Block for the same layer corresponding to
MRFNet, LS, LC, and LF.

Figure 5: The images depict the weights of the Sparse Matrix Block for the same layer corresponding
to MRFNet and LS.

Convolutional Block: Given a kernel size of 3, the display of convolutional kernel weights is
organized according to the kernel positions. It is evident that the textures they learn are highly alike.

FT Block: The FT Block’s weights consist of real and imaginary components, each displayed
separately. The similarity of the textures is conspicuous.

In summary, the weights corresponding to LS, LC, and LF in the MRFNet model are notably similar.
This observation indicates that they collectively learn akin information, which is coherent due to
being trained on the same dataset. Additionally, as the MRFNet model comprises multiple modules,
these modules function complementarily. Consequently, specific differences emerge among these
modules.

F PROFERMANCES OF UNIVARIATE PREDICTION

We compared preferences for univariate prediction in Table 4. Overall, our results are similar to the
PatchTST and outperform other models.

G THE PREDICTION RESULTS OF MRFNET

Figure 8 presents the prediction results of the HUFL feature in the ETTm1 dataset. As shown in the
figure, our model outperforms the PatchTST, DLinear, and Autoformer models.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: The images depict the weights of the Conv Block for the same layer corresponding to
MRFNet and LC. The input and output dimensions are 720 and the kernel size is three, so the
dimensions of the kennel are p720, 720, 3q. In this figure, 1, 2, and 3 denote the number of the third
dimension direction of p720, 720, 3q.

Figure 7: The images depict the weights of the Fourier Block for the same layer corresponding to
MRFNet and LF. Real and Imag represent the real and imaginary parts of the weights in Fourier
domain.
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Table 4: Univariate predictions of ETTh1, ETTh2, ETTm1, and ETTm2 by twelve models.

Models MRFNet PatchTST/64 DLinear FEDformer Autoformer Informer LogTrans
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.055 0.181 0.059 0.189 0.056 0.180 0.079 0.215 0.071 0.206 0.193 0.377 0.283 0.468
192 0.071 0.206 0.074 0.215 0.071 0.204 0.104 0.245 0.114 0.262 0.217 0.395 0.234 0.409
336 0.084 0.231 0.076 0.220 0.098 0.244 0.119 0.270 0.107 0.258 0.202 0.381 0.386 0.546
720 0.098 0.246 0.087 0.236 0.189 0.359 0.142 0.299 0.126 0.283 0.183 0.355 0.475 0.629

E
T

T
h2

96 0.151 0.301 0.131 0.284 0.131 0.279 0.128 0.271 0.153 0.306 0.213 0.373 0.217 0.379
192 0.171 0.329 0.171 0.329 0.176 0.329 0.185 0.330 0.204 0.351 0.227 0.387 0.281 0.429
336 0.186 0.345 0.171 0.336 0.209 0.367 0.231 0.378 0.246 0.389 0.242 0.401 0.293 0.437
720 0.214 0.368 0.223 0.380 0.276 0.426 0.278 0.420 0.268 0.409 0.291 0.439 0.218 0.387

E
T

T
m

1 96 0.026 0.121 0.026 0.123 0.028 0.123 0.033 0.140 0.056 0.183 0.109 0.277 0.049 0.171
192 0.041 0.153 0.040 0.151 0.045 0.156 0.058 0.186 0.081 0.216 0.151 0.310 0.157 0.317
336 0.055 0.178 0.053 0.174 0.061 0.182 0.084 0.231 0.076 0.218 0.427 0.591 0.289 0.459
720 0.070 0.203 0.073 0.206 0.080 0.210 0.102 0.250 0.110 0.267 0.438 0.586 0.430 0.579

E
T

T
m

2 96 0.063 0.181 0.065 0.187 0.063 0.183 0.067 0.198 0.065 0.189 0.088 0.225 0.075 0.208
192 0.091 0.226 0.093 0.231 0.092 0.227 0.102 0.245 0.118 0.256 0.132 0.283 0.129 0.275
336 0.128 0.272 0.121 0.266 0.119 0.261 0.130 0.279 0.154 0.305 0.180 0.336 0.154 0.302
720 0.165 0.315 0.172 0.322 0.175 0.320 0.178 0.325 0.182 0.335 0.300 0.435 0.160 0.321

Table 5: Multivariate predictions of ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Electricity, Weather
and ILI, by twelve models. The best results are highlighted in bold red. The second-best results are
indicated with highlighted in bold black.

Methods MRFNet GPT2(6) DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.149 0.191 0.162 0.212 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336 0.173 0.223 0.197 0.281 0.182 0.242 0.300 0.384 0.689 0.596

192 0.193 0.235 0.204 0.248 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367 0.245 0.285 0.237 0.312 0.227 0.287 0.598 0.544 0.752 0.638
336 0.245 0.278 0.254 0.286 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395 0.321 0.338 0.298 0.353 0.282 0.334 0.578 0.523 0.639 0.596
720 0.315 0.329 0.326 0.337 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428 0.414 0.410 0.352 0.288 0.352 0.386 1.059 0.741 1.130 0.792
Avg 0.225 0.258 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312 0.634 0.548 0.803 0.656

E
T

T
h1

96 0.364 0.393 0.376 0.397 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459 0.513 0.491 0.494 0.479 0.424 0.432 0.865 0.713 0.837 0.728
192 0.402 0.415 0.416 0.418 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482 0.534 0.504 0.538 0.504 0.475 0.462 1.008 0.792 0.923 0.766
336 0.442 0.444 0.442 0.433 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496 0.588 0.535 0.574 0.521 0.518 0.488 1.107 0.809 1.097 0.835
720 0.434 0.454 0.477 0.456 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512 0.643 0.616 0.562 0.535 0.547 0.533 1.181 0.865 1.257 0.889
Avg 0.410 0.426 0.427 0.426 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479 1.040 0.795 1.029 0.805

E
T

T
h2

96 0.273 0.330 0.285 0.342 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.391 0.397 0.437 3.755 1.525 2.626 1.317
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Figure 8: The prediction results (Horizon = 720; HUFL) of MRFNet, PatchTST, DLinear, Auto-
former on the ETTm1 dataset.
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