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ABSTRACT

Time series forecasting is a critical topic in machine learning. Although existing
deep learning methods have demonstrated outstanding performance and currently
dominate this field, the latest state-of-the-art (SOTA) models are increasingly en-
countering the same limitations: the blockneck of performance. We believe this
convergence is due to these models being based on the same mathematical founda-
tions. To address this issue, we draw inspiration from the universal approximation
theorem (UAT) and show that most commonly used deep learning models for time
series forecasting are specific implementations of UAT. Based on UAT theory and
the characteristics of time series data, we propose a new forecasting model called
the Multi-Receptive Field Network (MRFNet). This architecture integrates linear,
sparse matrix, convolutional, and Fourier transform modules, resulting in an inter-
pretable model with multiple receptive fields that can capture both global and local
information. The MRFNet model has been tested extensively on several popular
time series forecasting datasets and has achieved superior results.

1 INTRODUCTION

Time series forecasting is a critical problem with widespread applications in areas such as weather
forecasting, traffic prediction, stock market analysis, and power consumption forecasting. To tackle
this issue, various analytical and statistical methods have been developed. Early research relied
on statistical measures like mean and variance to construct models, such as ARMA (McLeod and
Li, 1983) and ARIMA (Ho and Xie, 1998; Zhang, 2003). These models have shown impressive
accuracy and robustness but have limitations in generalization ability and multivariate time series
forecasting.

With the advent of deep learning, a series of deep learning-based time series forecasting models
emerged, outperforming traditional machine learning methods. The development of deep learning
methods for time series forecasting has largely mirrored the evolution of deep learning models them-
selves, starting with fully connected neural networks (Kourentzes et al., 2014; Rahman et al., 2015;
Torres et al., 2018), followed by recurrent neural networks (RNNs) (Bouktif et al., 2018; Lai et al.,
2018; Bahdanau et al., 2014; Hewamalage et al., 2021), and subsequently, convolutional neural net-
works, Linear model (Zeng et al., 2023), and Transformer networks (Zhou et al., 2021; Wu et al.,
2021; Zhou et al., 2022; Nie et al., 2022).

In summary, the three main types of models dominating the time series forecasting field today are
linear models, convolutional models, and Transformer models. However, as deep learning continues
to evolve, these models have begun to approach a performance bottleneck on widely used public
time series forecasting datasets. We believe that the convergence of their performance is due to
their shared mathematical foundations. To delve deeper into this issue, we require a fundamental
mathematical interpretation of these models. The cornerstone of current deep learning theory is the
UAT (Cybenko, 1989). Therefore, our goal is to study time series forecasting networks within the
framework of UAT. However, UAT traditionally applies only to perceptron networks, while other
forms of networks are more complex and seem to diverge from the theorem. Thus, to investigate
complex linear, convolutional, and Transformer models within the UAT framework, we need to
express them in a mathematical form consistent with UAT. In UAT2LLMs (Wang and Li, 2024a)
and UAT2CVs (Wang and Li, 2024b), the "Matrix-Vector Method” was proposed and used to unify
2D and 3D convolutional, and Transformer-based models within the UAT theoretical framework.
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Building on these studies, we aim to unify deep learning time series forecasting models within the
UAT framework.

Through our derivations, we demonstrate that most deep learning models in the time series fore-
casting domain, whether used independently or as combinations of the three fundamental modules
- Linear, Convolution, and Transformer - are essentially specific implementations of UAT. This
explains why they ultimately converge towards similar performance blockneck, as they represent
different manifestations of the same mathematical model.

Based on UAT theory and the characteristics of time series forecasting problems, we propose
the MRFNet model, which integrates linear, 1D convolutional, sparse matrix transformation, and
Fourier transform modules. We compare this model with SOTA methods on commonly used time
series forecasting datasets and our model achieves SOTA performances on many datasets. Addi-
tionally, we performed data preprocessing tailored to the characteristics of time series forecasting
data, further enhancing performance. In conclusion, this paper aims to bridge the theoretical gap and
practices in time series forecasting. Our goal is to provide researchers and practitioners with tools to
understand and advance the theory and practice of time series forecasting. Our main contributions
include:

* We have demonstrated that most of the current deep-learning-based time series prediction
models are specific implementations of the UAT, and explained why the current SOTA
models converge to similar performance bottlenecks.

* We proposed the MRFNet model based on the characteristics of time series prediction,
which balances both global and local temporal learning. Our model achieved SOTA per-
formances across multiple datasets, and we also proved that this model is a specific imple-
mentation of UAT for time series prediction.

* We rearranged the data based on the inherent characteristics of time series data, which
further improved the predictive performance of the model.

The structure of this paper is organized as follows: Section 2 provides an overview of existing time
series forecasting models. In Section 3, we introduce the UAT and the Matrix-Vector Method and
discuss their roles in unifying various foundational deep learning modules. In Section 4, we first
demonstrate how 1D convolution can be expressed in matrix-vector form using this method, and
then present the UAT formulation for general models in time series prediction. Section 5 introduces
the MRFNet model (Section 5.1) and describes the time series datasets used (Section 5.2). Section
5.3 presents the prediction results of MRFNet and compares them with SOTA models. In Section
5.4, we apply feature selection tailored to the characteristics of time series data to further enhance
the model’s performance. Finally, in Section 5.5, we provide evidence that current time series
forecasting models, being specific implementations of UAT, inevitably converge towards similar
performance bottlenecks.

2 RELATED WORK

RNN: Recurrent Neural Networks (RNNs) were very popular for time series forecasting a few years
ago, emphasizing the importance of sequence dependencies. RNNs incorporate various gating units
to learn connections between different sequence positions (Bouktif et al., 2018; Lai et al., 2018; Bah-
danau et al., 2014; Hewamalage et al., 2021). RNNs are fundamentally based on the Markov chain
process in mathematics. However, key bottlenecks remain, such as vanishing gradients, substantial
training workloads, and rapid error accumulation over longer time spans (Ribeiro et al., 2020).

CNN: The use of Convolutional Neural Networks (CNNs) for audio-related problems was initially
proposed by Oord et al. (2016). Later, Bai et al. (2018) introduced the concept of Temporal Convolu-
tional Networks (TCNs) as an alternative for time series forecasting (Bai et al., 2018; Vorbach et al.,
2021; Aksan and Hilliges, 2019; Luo and Mesgarani, 2019; Hewage et al., 2020). This approach
is influenced by the autoregressive Wavenet model (Oord et al., 2016) and incorporates causal con-
volutions to prevent the use of future information. TCNs employ dilated convolutions to capture
long-term dependencies in time series data. Several similar models have been developed, including
works by Lara-Benitez et al. (2020); Wan et al. (2019); Liu et al. (2021). The Cross-Period Sparse
Forecasting technique is applied in SparseTSF, which can simplify the forecasting task by decou-
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pling the periodicity and trend in time series data. Dai et al. (2024) propose a novel Periodicity
Decoupling Framework (PDF) to capture 2D temporal variations of decoupled series for long-term
series forecasting.

Transformer: Transformers have dominated deep learning and shown significant potential in solv-
ing time series forecasting problems (Li et al., 2019; Wu et al., 2020; Lim et al., 2021; Wen et al.,
2022). The multi-head attention architecture can extract information while positional embeddings
help retain sequence position information (Kitaev et al., 2020; Zhang and Zhu, 2018; Wu et al., 2021;
Shen and Wang, 2022; Madhusudhanan et al., 2021). However, Transformers are computationally
complex, and the setting of hyperparameters greatly influences the performance of Transformer-
based models. To address these issues, models like Informer, Autoformer, and Fedformer were
developed (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022). Liu et al. (2022) tackles time
series problems from the perspective of stationarity, while ETSformer (Woo et al., 2022) uses expo-
nential smoothing and frequency attention to replace the self-attention mechanism in Transformers,
enhancing accuracy and efficiency. Wang et al. (2023) proposed a Channel Aligned Robust Blend
Transformer to address the shortcomings of channel correlation. Additionally, Zhou et al. (2023)
explored using pretrained large language models fine-tuned for time series prediction.

Linear: Zeng et al. (2023) argued that Transformers are not the optimal solution for time series
forecasting. Instead, they demonstrated that linear methods could achieve SOTA results for both
long-range and short-term time series forecasting, outperforming existing models.

3 THE UNIVERSAL APPROXIMATION THEORY

Our objective is to explore time series prediction problems within the framework of the UAT. To
begin, we provide a basic introduction to this theorem, originally proposed by Cybenko (1989),
which encompasses various conclusions and proofs. In this context, we specifically use the form of
the UAT presented in Cybenko (1989) as an illustrative example.

Theorem 2 in Cybenko (1989) asserts that if o is any continuous sigmoidal function, then finite sums
of the form:

N
G(x) = Z a0 (W;FX +6,) (D
j=1
are dense in C' (I,,). There are two case for Eq. (1) as follows:

o If f(x) e R™: G(x) e R™,x e R, a;, W; € R(»™) ‘and 0; € R™
s If f(x) eR: G(x) e R, xeR", W,; € R” ,and v;, 6; € R

x is the input. For any f € C (I,,) and € > 0, there exists a sum G(x) of the above form for which:
|G(x) — f(x)] <e forall xel,. (2)

This implies that, for a sufficiently large value of N, a single-layer neural network can approxi-
mate any continuous function over a closed interval. Furthermore, Hornik et al. (1989) extends
this result, demonstrating that multi-layer feedforward networks also adhere to the UAT, capable of
approximating arbitrary Borel measurable functions.

However, the approximate construction of this theorem is not directly applicable to convolutional
and Transformer networks, as their basic operations-such as convolution and multi-head attention
mechanisms-are difficult to express in the form of matrix-vector multiplication (The basic element
in UAT is matrix-vector multiplication: ;o (W;fx +6;), where W;-Fx can be seen as various
modules in networks). Nevertheless, most of the basic solutions for time series problems are based
on multi-layer convolutional and Transformer neural networks. These networks involve a series of
fundamental operations, such as 1D convolution, multi-head attention, and linear transformations
(where the term linear” differs from the linear transformation in Eq. (1); in Eq. (1), "linear” refers
to Wij which is a matrix multipling a vector, while here it refers to a matrix multipling another
matrix). Therefore, if we can rewrite the mathematical expressions of these fundamental operations
in the form of a matrix multiplying a vector and prove that they share the same mathematical struc-
ture as UAT, it would imply that all conclusions derived from UAT could be applied to multi-layer
network architectures composed of these components.
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In UAT2LLMs, the Matrix-Vector Method was already used to represent multi-head attention and
linear operations in Transformers as a matrix multiplying a vector: Wx. This paper extends the
Matrix-Vector Method proposed in UAT2LLMs to prove that 1D convolution can also be expressed
in the form of matrix-vector multiplication. The concept behind the matrix-vector method is illus-
trated in Figure 1. The basic transformation in a network (e.g., 1D convolution) can be understood
as T'(W), with inputs and outputs represented by x and y, respectively. The Matrix-Vector Method
transforms the input, output, and the parameters of the operation 7'(W') within the network into x/,
y’, and W', ensuring that W'x’ = y’. Note: For convenience, we use the symbol ’ to denote the
matrix-vector form of the corresponding variable. For example, x is represented as x’.

Matrix-Vector Method

X Tp X

W) ! T W W =y

Figure 1: A general description to the Matrix-Vector Method.

4  UNIVERSAL APPROXIMATION THEORY FOR TIME SERIES PREDICTION

Currently, deep learning models for time series forecasting can be summarized as multi-layer net-
works composed primarily of one or more of the following modules: linear, convolution, and Trans-
former. These modules are typically connected using residual connections between successive lay-
ers. To demonstrate that such multi-layer networks, composed of these basic modules, are concrete
implementations of the UAT, we first need to show that these modules can be represented in matrix-
vector form. Once this representation is established, we then need to prove that the mathematical
form of these networks with residual connections aligns with the UAT equation, Eq. (1).

In UAT2LLMs, it has already been shown that networks composed of multiple Transformer layers
have a mathematical form consistent with UAT, and that linear operations can be expressed in matrix-
vector form. Therefore, our primary focus here is to prove that 1D convolutional networks can also
be represented in matrix-vector form (see Section 4.1). (Note that we will use a special calculation
called diamond multiplication: ¢, and W ox = WTx. More details could be found in UAT2LLMs)
Following that, we demonstrate that the mathematical form of multi-layer networks with residual
connections, expressed in matrix-vector terms, is consistent with UAT (see Section 4.2).

4.1 THE MATRIX-VECTOR FORMAT OF 1D CONVOLUTION

In this section, we will transform 1D convolution into the matrix-vector format. Figure 2.Single-
channel Output.a vividly illustrates the basic process of single-channel output in 1D convolution:
W ® x = y. Here, the dimension 7" symbolizes the time size, K is the kernel size, while N
represents the feature size. Figure 2.Single-channel Output.b provides a concise example of single-
channel output in 1D convolution. Figure 2.Single-channel Output.c further demonstrates how to
use the matrix-vector method to transform the convolution of single-channel output into the form of
diamond multiplication:- W’ ¢ x’ = y’, where x',W’ and y’ are generated from x,W and y.

Figure 2.Multi-channel Output.a elaborates on the fundamental process of 1D convolution with mul-
tiple convolution kernels and multiple-channel output:W; ® x = y;... Wo ® x = yo, where the
number of output channels O signifies predictions for the next O time steps. Figure 2.Multi-channel
Output.b offers a simplified example of Figure 2.Multi-channel Output.a, and Figure 2.Multi-
channel Output.c employs the matrix-vector method to convert the convolution of multiple-channel
output into the form of diamond multiplication:-W'ox = y’, where W' is generated from W;...W
and y’ is generated from y;...y . With the relationship between diamond multiplication and matrix
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Figure 2: Illustration on how 1D convolution can be represented in matrix-vector form. The left
side corresponds to a 1D convolution with a single output channel, while the right side represents
a 1D convolution with multiple output channels. The convolution kernel, input data, and output
data are indicated by orange, blue, and pink boxes, respectively. (a) Conceptual diagram of a 1D
convolution, using different colored boxes to represent data and parameters. (b) A simple example
of a 1D convolution. (¢) The matrix-vector representation for the 1D convolution in (b).

multiplication, we can derive the following formula:
Xip1 = W, ®@x; — (x'T) = Wiox) = (W) x] )

Here, x; € R(V:M) represents the input of the i-th layer, while x;,, € R(O-M=k+1) is the output
from the same layer. The matrix W; € R(O-N:K) are convolution kernel with the kernel size is
K and the number of kernel is O. x|, ,, x;, W/ are transformed from x;,; € RO =K+,
x; € RWM.D W, e RIWM,0(M=k+1) phaged on matrix-vector method.

So we have proved the 1D convolution in time series can be represented in matrix-vector format. In
the context of time series prediction, we observe that a single operation of 1D convolution learns the
correlations among K features at all time points using the convolution kernel. It generates output
for a single feature at a specific time step. Sliding the convolution kernel can produce output for
multiple features at the same time step, and increasing the number of convolution kernels enables
obtaining outputs for multiple features across multiple time steps.

4.2 THE UAT FORMAT OF DEEP LEARNING NETWORKS IN TIME SERIES PREDICTION

Currently, the main deep learning networks used in time series forecasting are based on linear,
convolutional and Transformer modules, which are typically connected in a residual form. So our
purpose is to prove that the mathematical format of residual-based networks is consistent with UAT.
It has already been proven in UAT2LLMs that the mathematical form of multi-layer Transformer
networks is consistent with that of UAT, which can be written as:
i+l
/ ! / / /
Xi+1 = (Wiy11Xo + big11) + Z W) 50 (W)oxq + b)) “4)
j=1
where x; is the output of i + 1-th layer, xo is the input of the network, b’ , = (W’ ,b’_; 5 +

bl o)+ W) UAT] |, where UAT]® | = ch;ll Wi 30(W} 9Xg + by 5). The term b, , is approx-
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Figure 3: A general description of the residual-based module in a network.

imated by the j layer of UAT with x as input. This enhances the model’s ability to dynamically
adjust functions based on input.

Here, we aim to prove that the mathematical form of residual-based multi-layer 1D convolutional
and Linear networks is also consistent with UAT. Given the diversity of network architectures, we
assume, without loss of generality, that the network structure is as depicted in Figure 3.

In this structure, 1" represents either a linear or a convolution, while W; and b; denote the corre-
sponding parameters. The mathematical representation of the network shown in Figure 3 can then
be expressed as follows:

Xit1 = X; + T {o[Ti(x:)]} )

Since we have demonstrated that 1D convolution can be expressed in the form of matrix-vector
multiplication, and UAT2LLMs has shown that linear operations can also be expressed as matrix-
vector multiplication, Eq. (5) can therefore be rewritten as:

! / ! ! / / /
X1 =X+ Wi 00(Wiq 1% + b 1) +biyg o

(6)

= (x} + b;+1,2) + W£+1,2‘7(W§+1,1X; + b2+171)
Eq. (6) is mathematically identical to the residual-based convolutional neural networks in
UAT2CVs. UAT2CVs has already demonstrated that the mathematical form of a multi-layer net-
work, as expressed in Eq. (6), is mathematically consistent with UAT, which is given by:

Xjp1 = (Xo +biyy0) + Eiﬂillw},za(WQ,lXé +bj,) @)

i—1
where by | = (W b)) o +b) )+ W/ ,JUAT] | and UAT]* | = 3]\ W) ,0(W} x4 +by, ).

Eq. (7) conforming to the UAT form given in Eq. (1). In this equation, b; ; is a dynamic parameter
approximated by j layers UAT (j > 1).

According to the above derivation, we know most deep-learning neural networks are the implemen-
tations of UAT.

5 MRFNET AND EXPERIMENTS

In this section, we first introduce the MRFNet architecture and discuss its key features (Section 5.1).
Next, we describe the datasets used in our study (Section 5.2) and compare the performances of our
model with several current SOTA models to demonstrate its effectiveness (Section 5.4). Following
this, we leverage the characteristics of time series data to further enhance the model’s performances
(Section 5.4). Finally, in Section 5.5, we use experiments to validate that these UAT-based models
ultimately converge to the same performance bottleneck.

5.1 MRFNET

Based on the characteristics of time series data, we designed the MRFNet model for time series
forecasting. The architecture of MRFNet is illustrated in Figure 4: first, a linear module is used to
embed time information. In time series forecasting, the changes in the sequence are often influenced
by natural factors, such as seasonality and periodicity. Therefore, it is necessary to embed time
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MRFNet
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Output: y )

Figure 4: Overview of the MRFNet model’s architecture. The details of the MRF block are shown
on the right side.

information. The model then leverages multiple MRF modules for learning, and finally, a Linear
block is applied to produce the output.

The MRF module consists of four main components: the Linear Block, Sparse Matrix Block, Conv
Block, and Fourier Block. The Linear Block, which can be represented as W;; 1 1x + b;y11,
performs linear transformations on the input data, capturing the overall temporal trends within the
data. Given that features often share common attributes, we introduce a Linear Block to learn these
shared characteristics, aiming to capture the intrinsic commonalities within the data. The Sparse
Matrix Block focuses on learning local temporal features, which can be represented as (Wg ©
Wii1,2)X + b;112. Where Wy is a custom sparse matrix composed of Os and 1s, ensuring the
sparsity of W1 o.

The Conv Block employs 1D convolution, commonly used in time series forecasting, allowing the
model to learn multi-feature correlations based on the size of the convolution kernel, represented as:
Wii1,3®x%; +b;11,3. The connection between convolution and the Fourier Block can be expressed
as X ® h = F7![Fx © Fh]. In the frequency domain, we have the capacity to learn h, which is
equivalent to x ® h = F~IWFx. Thus, we introduce an enhanced convolutional variant in the
neural network, F~'WFx. This enables us to extract features in the frequency domain and achieve
a broader receptive field, as demonstrated in the Appendix D. Additionally, the Fourier Transform
is known for its ability to generate sparse representations, where only a few coefficients contain
significant information, which can be used to emphasize key features.

Since we have proven that both linear transformations and convolutions can be expressed in a matrix-
vector format, all four basic modules within the MRF Block can also be represented in this format.
The Sparse Matrix Block can be considered a special type of linear transformation, while the Fourier
Block can also be treated as a special case of linear transformation because F~! and F are fixed.
Therefore, we can define Wy = F~IWFx, which allows the Fourier Block to be viewed as a
special Linear transformation. Consequently, the general form of MRFNet can be expressed as:

/ !/ / / ! / /

®)

+ U(W§+1,3X§ + b2+173) + U(W2+1,4X§ + b;+1,4)
Based on Eq. (8), it is easy to prove that MRFNet is also an implementation of UAT and effectively
increases the depth of the UAT. We provide the proof in Appendix B. The various transformations
within the MRF module can all be represented as corresponding matrix-vector multiplications, dif-
fering only in the size of the learned receptive field. By efficiently handling different temporal
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Table 1: A general description of all datasets.

Datasets ETTh1&ETTh2  ETTml &ETTm2  Traffic  Electricity ~ Weather ILI

Variates 7 7 862 321 21 7
Timesteps 17,420 69,680 17,544 26,304 52,696 966
Granularity Thour Smin Thour lhour 10min 1week

Table 2: Multivariate predictions of ETTh1, ETTh2, ETTm1, ETTm?2, Traffic, Electricity, Weather
and ILI, by twelve models. The best results are highlighted in bold red. The second-best results are
indicated with highlighted in bold black. Here, we provide a comparison of only some models. A
more comprehensive comparison is presented in Table 5 in the Appendix.

Methods MRFNet GPT2(6) DLinear PatchTST TimesNet FEDformer Autoformer
Metric | MSE | MAE | MSE [ MAE | MSE [ MAE | MSE [ MAE | MSE [ MAE | MSE | MAE | MSE | MAE
5| 96 [ 0.149 0.191 | 0.162 0212 | 0.176 0.237 | 0.149 0.198 | 0.172 0.220 | 0.217 0.296 | 0.266 0.336
% 192 | 0.193 0.235 | 0.204 0.248 | 0.220 0.282 | 0.194 0.241 | 0.219 0.261 | 0.276 0.336 | 0.307 0.367
§ 336 | 0.245 0.278 | 0.254 0.286 | 0.265 0.319 | 0.245 0.282 | 0.280 0.306 | 0.339 0.380 | 0.359 0.395
720 | 0.315 0.329 | 0.326 0.337 | 0.333 0.362 | 0.314 0.334 | 0.365 0.359 | 0403 0.428 | 0.419 0.428
Avg | 0.225 0.258 | 0.237 0.270 | 0.248 0.300 | 0.225 0.264 | 0.259 0.287 | 0.309 0.360 | 0.338 0.382
] 96 |0.364 0.393 | 0376 0.397 | 0.375 0.399 | 0.370 0.399 | 0.384 0.402 | 0.376 0.419 | 0.449 0.459
£ 192 | 0402 0415 | 0416 0418 | 0.405 0.416 | 0413 0.421 | 0436 0.429 | 0.420 0.448 | 0.500 0.482
E 336 | 0.442 0.444 | 0442 0433 | 0439 0443 | 0422 0436 | 0491 0.469 | 0.459 0.465 | 0.521 0.496
720 | 0.434 0454 | 0477 0456 | 0472 0.490 | 0.447 0.466 | 0.521 0.500 | 0.506 0.507 | 0.514 0.512
Avg | 0410 0.426 | 0427 0.426 | 0422 0437 | 0413 0.430 | 0.458 0.450 | 0.440 0.460 | 0.496 0.487
« | 96 | 0273 0.330 [ 0285 0.342 | 0289 0.353 | 0.274 0.336 | 0.340 0.374 | 0.358 0.397 | 0.346 0.388
£ 192 | 0341 0376 | 0.354 0.389 | 0.383 0.418 | 0.339 0.379 | 0.402 0.414 | 0429 0.439 | 0456 0.452
E 336 | 0.366 0.396 | 0.373 0.407 | 0.448 0.465 | 0.329 0.380 | 0.452 0.452 | 0.496 0.487 | 0.482 0.486
720 | 0.385 0.423 | 0.406 0.441 | 0.605 0.551 | 0.379 0422 | 0462 0.468 | 0.463 0.474 | 0.515 0.511
Avg | 0.341 0.381 | 0.354 0.394 | 0.431 0.446 | 0.330 0.379 | 0.414 0.427 | 0437 0.449 | 0450 0.459
— | 96 | 0297 0342 | 0.292 0.346 | 0.299 0.343 | 0.290 0.342 | 0.338 0.375 | 0.379 0.419 | 0.505 0.475
E 192 | 0.334  0.366 | 0.332 0.372 | 0.335 0.365 | 0.332 0.369 | 0.374 0.387 | 0426 0.441 | 0.553 0.496
E 336 | 0.366 0.385 | 0.366 0.394 | 0.369 0.386 | 0.366 0.392 | 0.410 0.411 | 0.445 0.459 | 0.621 0.537
720 | 0.407 0.411 | 0417 0421 | 0425 0421 | 0416 0.420 | 0.478 0.450 | 0.543 0.490 | 0.671 0.561
Avg | 0.351 0.376 | 0.352 0.383 | 0.357 0.378 | 0.351 0.380 | 0.400 0.406 | 0.448 0.452 | 0.588 0.517
«~ | 96 | 0.163 0246 | 0.173 0.262 | 0.167 0.269 | 0.165 0.255 | 0.187 0.267 | 0.203 0.287 | 0.255 0.339
E 192 | 0.219 0.287 | 0.229 0.301 | 0.224 0.303 | 0.220 0.292 | 0.249 0.309 | 0.269 0.328 | 0.281 0.340
E 336 | 0275 0.323 | 0.286 0.341 | 0.281 0.342 | 0.274 0329 | 0.321 0.351 | 0.325 0.366 | 0.339 0.372
720 | 0.354 0.377 | 0.378 0.401 | 0.397 0.421 | 0.362 0.385 | 0.408 0.403 | 0421 0.415 | 0.433 0.432
Avg | 0.252  0.333 | 0.266 0.326 | 0.267 0.333 | 0.255 0.315 | 0.291 0.333 | 0.305 0.349 | 0.327 0.371
24 | 1757 0.857 | 2.063 0.881 | 2.215 1.081 | 1.319 0.754 | 2.317 0.934 | 3.228 1.260 | 3.483 1.287
= 36 | 2.085 0915 | 1.868 0.892 | 1.963 0.963 | 1.430 0.834 | 1.972 0.920 | 2.679 1.080 | 3.103 1.148
=1 48 | 1972 0.899 | 1.790 0.884 | 2.130 1.024 | 1.553 0.815 | 2.238 0.940 | 2.622 1.078 | 2.669 1.085
60 | 1.998 0923 | 1.979 0957 | 2.368 1.096 | 1.470 0.788 | 2.027 0.928 | 2.857 1.157 | 2.770 1.125
Avg | 1953 0.898 | 1.925 0.903 | 2.169 1.041 | 1.443 0.797 | 2.139 0931 | 2.847 1.144 | 3.006 1.161
96 | 0.127 0.218 | 0.139 0.238 | 0.140 0.237 | 0.129 0.222 | 0.168 0.272 | 0.193 0.308 | 0.201 0.317
d 192 | 0.144 0234 | 0.153 0.251 | 0.153 0.249 | 0.157 0.240 | 0.184 0.289 | 0.201 0.315 | 0.222 0.334
@ | 336 | 0.159 0.251 | 0.169 0.266 | 0.169 0.267 | 0.163 0.259 | 0.198 0.300 | 0.214 0.329 | 0.231 0.338
720 | 0.192 0.280 | 0.206 0.297 | 0.203 0.301 | 0.197 0.290 | 0.220 0.320 | 0.246 0.355 | 0.254 0.361
Avg | 0.155 0.245 | 0.167 0.263 | 0.166 0.263 | 0.161 0.252 | 0.192 0.295 | 0.214 0.327 | 0.227 0.338
o | 96 0386 0241 | 0383 0.282 | 0410 0.282 | 0.360 0.249 | 0.593 0.321 | 0.587 0.366 | 0.613 0.388
S 1192 | 0.399 0.248 | 0.407 0.290 | 0423 0.287 | 0.379 0.256 | 0.617 0.336 | 0.604 0.373 | 0.616 0.382
E 336 | 0414 0274 | 0412 0.294 | 0436 0.296 | 0.392 0.264 | 0.629 0.336 | 0.621 0.383 | 0.622 0.337
720 | 0.457 0277 | 0450 0.312 | 0466 0.315 | 0432 0.286 | 0.640 0.350 | 0.626 0.382 | 0.660 0.408
Avg | 0414 0.260 | 0.414 0.294 | 0433 0.295 | 0.390 0.263 | 0.620 0.336 | 0.610 0.376 | 0.628 0.379

components and adjusting the receptive field, the model can capture subtle variations in the data.
The overall time complexity of the model is O(L - T2 .C-K ), where L, T, C, and K represent
the number of network layers, the temporal dimension, the feature dimension, and the convolution
kernel size, respectively.

5.2 DATASETS

The experiments were conducted on real-world datasets (Zhou et al., 2021), including (1) Electricity
Transformer Temperature (ETT), (2) Electricity, and (3) Traffic, (4) Weather, (5) ILI. The details of
all datasets can be found in (Wu et al., 2021). The data source is available at github'. It should be
noted that ETT consists of four different datasets: ETTh1l, ETTh2, ETTml, and ETTm2, each of
which has seven variables. We evaluate our model using Mean Absolute Errors (MAE) and Mean

'https://github.com/thuml/Autoformer
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Squared Errors (MSE), as used in (Zhou et al., 2021). Smaller values of MAE/MSE indicate better
model performance. We use the average values for all predictions. The details of all datasets are
shown in Table 1. In Appendix A, we give the data setting for training, evaluation and testing.

5.3 RESULTS OF MRFNET

In Table 2, we compare our model with the current SOTA models for time series prediction. Our
model demonstrates superior performances on these datasets, achieving SOTA results in most cases
(except for the ILI dataset, which is primarily affected by the characteristics of the data itself; we
will provide a solution for this issue in Section 5.4). However, when analyzing the results across
all models, it becomes evident that the current SOTA models - MRFNet, GPT2(6) (Zhou et al.,
2023), DLinear (Zeng et al., 2023), and PatchTST (Nie et al., 2022) - converge towards a similar
performance bottleneck. This is because they are all composed of multi-layer Transformers and
Linear components, which we have proven to be specific implementations of the dynamic UAT,
leading them to the same blockneck with limited data. Additional results for univariate prediction
can be found in Appendix F.

Although the MRFNet proposed in this paper is specifically designed to leverage the characteris-
tics of temporal data, it remains categorized within the UAT function framework. Consequently,
MRFNet provides only limited improvements over previous prediction results. However, experi-
mental outcomes demonstrate that the model achieves SOTA performance, thereby validating its
effectiveness. We believe that another critical factor contributing to the existing performance bottle-
neck lies in the inherent limitations of the data itself. To address this, in Section 5.4, we conducted
more in-depth data processing and training optimizations tailored to the unique properties of tempo-
ral data.

5.4 DATA EFFECTS

In this section, we will solve the bottleneck problem from the perspective of data. A crucial charac-
teristic of time series data is its periodicity. However, this periodicity may change over time due to
external factors (e.g., advancements in science leading to a gradual increase in electricity demand).
This gives data a specific property: data points closer to the prediction point have a greater impact on
the results (e.g., when forecasting electricity demand for 2024, the data from 2023 is more relevant,
while earlier years are less so).

Leveraging this property, we designated the be-

ginning part of the ETT data as the validation Taple 3: We re-divided the training and validation
set, kept the test set unchanged, and used the re-  getg for the ETThl, ETTh2, ETTm1, and ETTm2
maining data for training. The result§, as shown  (agasets, then retrained the models. The test re-
in Table 3 for MRFNet*. AS_ seen 1n Tabl.e 3, sults were obtained on the same test sets.

the results improved substantially after adjust-

ing the allocation of the training and validation Models | MRFNet MRENet* | PatchTST/64
sefts Metric | MSE | MAE | MSE | MAE__MSE | MAE
: 96 | 0.364 0.393 | 0.302 0.368 | 0.370 0.400

Another issue is the relatively poor perfor- 192 10402 0.415 1 0.343 - 0.397 ) 0413 0.429
y p p 336 | 0442 0444 | 0.366 0.415 | 0.422 0.440

mance of MRFNet on the ILI dataset. We be- 720 | 0434 0454 | 0387 0.446 | 0.447 0.468

: ‘oo mrmar 96 | 0.273 0330 | 0.246 0319 | 0.274 0.337
lieve .thIS is primarily due to.the nature of the 195 | 0341 0376 | 0.308 0359 | 0341 038
data itself. Not all features in the ILI dataset 336 | 0366 0.396 | 0.325 0.381 | 0.329 0.384
are correlated (see Appendix C) and forcing all 79260 gggg 8-‘3“2‘; g;ii g-ggg g-ggg g-;‘ié
data to be trained together may lead to worse 192 | 0334 0366 | 0.280 0342 | 0333 0370
results. Based on the characteristics of the ILI 336 | 0.360 0.385 | 0.299 0.359 | 0369 0.392
data, we divided it into two groups and trained 720 | 0407 0411 1 0353 0396 | 0416 0420
them separately. The results are shown in Ta-

96 | 0.163 0.246 | 0.14d4 0.233 | 0.166 0.256
192 | 0.219 0.287 | 0.197 0.273 | 0.223  0.296
ble 4. For more details, please refer to the Ap-

pendix C.

ETTh1

ETTh2

ETTml1

ETTm2

336 | 0275 0.323 | 0.245  0.309 | 0.274 0.329
720 | 0.354 0.377 | 0.306 0.357 | 0.362 0.385

5.5 ABLATION EXPERIMENT

We decompose the MRFNet model into three variants: LS (Linear-Sparse Matrix), LC (Linear-
Convolution), and LF (Linear-Fourier Transform), and compare them against the full MRFNet
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Table 4: We split the 7 features of the ILI dataset into two groups for separate training and prediction.
The seven features are labeled as Class 1 to Class 7. Group 1: Class 1, 2, 3, 4, 5; Group 2: Class
6,7. Ori: Results from training with all features together. Split: Results from training after splitting

the features into two groups.

Methods

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Metric

MSE | MAE

MSE | MAE

MSE | MAE

MSE | MAE

MSE | MAE

MSE | MAE

MSE | MAE

Ori | Avg

0.581  0.860

0.630  1.046

1139  2.821

1.020  2.807

1.269  4.236

0.744  0.800

0.904 1.097

Split | Avg

0.366 0.233

0.339  0.220

0.294 0.160

0.304 0.199

0.367 0.254

0.188 0.103

0.184 0.094

model. Table 5 presents the results of our ablation study. The results indicate that while certain
models perform less well on specific datasets, such as the LC model on the Weather dataset, their
overall performance remains very close. Notably, the MRFNet model consistently ranks either best
or second-best across all datasets.

Table 5: Ablation Experiment on of ETTh1, ETTm2, and Weather. The best results are highlighted
in bold red. The second-best results are indicated with an underlined orange line. The best results
are highlighted in bold red. The second-best results are indicated with an underlined orange line

LF
MSE |
0.148
0.193
0.244
0.312
0.296
0336
0.357
0409
0.161
0.221
0277
0362

Models MRFNet

Metric | MSE | MAE
96 | 0.149 0.191
192 | 0.193  0.235
336 | 0.245 0.278
720 | 0.315 0.329
96 | 0.297 0.342
192 | 0.334  0.366
336 | 0.360 0.385
720 | 0.407 0.411
96 | 0.163  0.246
192 | 0.219 0.287
336 | 0.275 0.323
720 | 0.354 0.377

IS
[ MAE
0.208
0.249
0.286
0.335
0.341
0.365
0.388
0415
0.245
0.284
0.321
0375

LC
[ MAE
0.208
0.248
0.286
0.336
0343
0.365
0.386
0421
0.246
0.284
0330
0375

MSE
0.170
0.211
0.257
0.321
0.297
0.337
0.370
0.421
0.160
0.215
0.267
0.354

MSE
0.169
0.212
0.257
0.322
0.275
0.335
0.369
0.425
0.161
0.215
0.268
0.352

MAE
0.189
0.235
0.277
0.326
0.341
0.368
0.383
0.413
0.245
0.286
0.324
0.380

ETTml

ETTml

ETTm2

These results support our conclusions: first, we have demonstrated that these models inherently share
the same mathematical properties, which explains the similarity in their results. Second, MRFNet is
equivalent to an increased network depth compared to the other models and benefits from its more
comprehensive feature learning. As a result, MRFNet maintains SOTA performance or near-SOTA
performance across all datasets, further validating its robustness and superiority.

Additionally, in Appendix E, we compare the weights of MRFNet, LS, LC, and LF at the same
layer. The weights for the same dataset exhibit similar textures, suggesting that, in general, they
are learning similar information patterns. Given that we have proven these models share the same
mathematical framework, the primary differences lie in the size of their receptive fields, with each
model’s module playing a similar role. However, due to the different receptive field sizes, the specific
patterns they learn may vary slightly, though the overall trend remains consistent.

6 CONCLUSION

In this paper, we demonstrate that most models in the field of time series forecasting are specific
implementations of the UAT, which explains why current SOTA models in time series forecasting
tend to converge towards the same performance bottleneck. Based on the principles of UAT and
the characteristics of time series data, we have designed a new model, MRFNet, for time series
prediction. MRFNet integrates linear modules, sparse matrix modules, convolutional modules, and
Fourier transform modules, effectively capturing both global and local receptive field information.
Through extensive testing on various common datasets, the MRFNet model has demonstrated its
superiority, achieving SOTA-level performance. Additionally, by leveraging the intrinsic properties
of time series data, we further refined the data, significantly enhancing the performance on certain
datasets. Finally, we conducted experiments to confirm that time series forecasting models based on
UAT theory eventually converge to a similar performance bottleneck. In the future, we will further
try to tackle the challenges of bottleneck from the perspective of UAT and data.

10
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A  DATA ARRANGEMENT

In this section, we present the data arrangement for the train set, validation set, and test set. We give
the default arrangement in Table 1. In Table 2, we describe data rearrangement about ETTh1&2 and
ETTm1&2 in Section 5.5. Note: n represents the total number of time steps and T is 30*24.

Table 1: The default arrangement of data split.

Dataset Train Set Val Set Test Set
Weather D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]
ETThl1&2 | D[:T*12] D[T*12:T*16] D[T*16:T*20]
ETTml1&2 | D[:T*12*4] | D[T*12*4:T*16*4] | D[T*16*4:T*20*4]
ILI D[:n*0.6] D[n*0.6:n*0.8] D[n*0.8:]
ECL D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]
Traffic D[:n*0.7] D[n*0.7:n*0.8] D[n*0.8:]

Table 2: The data rearrangement of ETTh1&2 and ETTm1&2.

Dataset Train Set Val Set Test Set
ETThl&2 D[T*2:T*16] D[:T*2] D[T*16:T*20]
ETTm1&2 | D[T*1*4:T*16*4] | D[:T*1*4] | D[T*16*4:T*20%4]

B THE UAT FORMAT OF MRFNET

Here, we follow the proof process from UAT2LLMs and UAT2CVs to demonstrate that MRFNet is
also a specific implementation of the UAT. We know the general format of MRFNet is:

/ ! / / ! ! /
Xi1 = Wip11X; +big 1 +0(Wipox; + bl o)

! / / ! / / ( 1 )

+ 0 (Wi 3% + i) + (Wi 4X; +bigq )
According to UAT2LLMs and UAT2CVs, the general term of MRFNet is similar to the gen-
eral term in UAT2LLMs(C.2) and UAT2CVs (A.2) by only two additional terms. According to
these two UAT2LLMs and UAT2CVs, if the mathematical format of x| is the same to UAT, then
the mathematical format of Wi, ;x; is also the same with UAT and o(W} ; ,x; + bi5),
o(Wi 13%; + bl 3) and (Wi, ,x] + bj ;) can be seen as three terms in UAT. So it is
straightforward to deduce that if the mathematical form of x in MRFNet is consistent with the UAT
form, then the mathematical form of X; +1 Will also be consistent with the UAT form. It is also easy
to derive that the mathematical forms of x} and x/, in MRFNet are consistent with the UAT. Thus,
by mathematical induction, the mathematical form of MRFNet aligns with the UAT.

For the clarity, we give the mathematical format of x) and x5, let the input to MRF Block 1 be
Xg. Then, the matrix-vector form of x; can be expressed as shown in Eq. (2). Here, x} can be
considered as being approximated by a UAT with N equal to 4.

x| = W/1,1X6 + b/1,1 + U(WILQXE) + b/1,2)

(2)
+0( /1,3X6 + b/1,3) +0( /1,4X6 + b/1,4)

Similarly, based on Eq. (2), we can derive x5 as shown in Eq. (3). Define the following:
W/2,1 = Wl2,1W/1,1, b/2,1 = Wl2,1bll,1 + b/2,1a W§,2 = W/2,2W/1,1’ Wl2,3 = W/2,3W/1,1a Wl2,4 =
W5 Wi, by o = (W5,b) | + bh o) + Wo 0 (W ox + b o) + W) ,0(W1 3x5 + by 5) +
W5 50(W1 4x0+Db] 1), b 5 = (W5 3b] 1 +b5 5) + W5 30(W1 ox0+b) o) + W5 30(W7 x5+
bi ;) + W5 30(W3 4xp + bl 4), and b) , = (W5 bl + b ) + W5 ,0(W1 x5 + bl o) +
W5 ,0(W1 3x + bY 3) + W5 ,0(W7 4xi + b 4). Therefore, x5, can be expressed as shown in
Eq. (4), which can be seen as 7 layers’ UAT. Thus, an MRFNet with ¢ layers is equivalent to a UAT
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with 37 + 1 layers, effectively increasing the number of layers in the UAT. This is because, according
to UAT2LLMs and UAT2CVs, a network with ¢ layers generally corresponds to a UAT with ¢ + 1
layers.

Xy = W/2,1X/1 + b/2,1 + U(W/Q,zxa +bl,)
+ U(Wl2,3xl1 + b/2,3) + U(W/QAX/l + bl2,4)
= W/21[ /1,1X/0 + b/1,1 + U(W;,2X6 + b/1,2) +0( /1,3X6 + b/1,3)
+0( /1,4X6 + b/1,4)] + bl2,1
+ U{Wé,z[ /171X6 + b/171 + O(W/1,2X6 + b/1,2) +a( /173X/0 + b/1,3)
+0( /1,4X6 + b/174)] + b/172}
+ U{Wé,s[ /1,1X6 + b/1,1 + U(W/I,ZXG + b/1,2) +a( /1,3X6 + b/13)
+ o /1,4X6 + b/1,4)] + blzs}
+ U{le,4[wl1,1xé + b/1,1 + U(W;,zxz) + b/1,2) + J(W/1,3X6 + b/13)
+ U(W3,4Xf) + b/1,4)] + b,2,4}
= (W/2,1W/1,1X6 + W/2.,1b/1,1 + b/2,1) + W/2,10(W/1,2X6 + b/1,2) + Wl2,1‘7(w/1,3X6 + b/1,3)
+W/2,1J(W/1,4X6 +10/1,4)
+ 0{(W/2,2W/1,1X6 + W/2,2b/1,1 + b/1,2) + W/Q,QU(W/I,QX6 + b/1,2) + W’2$20(W’173x6 + bll,S)
+ WI2,20(W/1,4X6 + b/1,4)}
+ U{(W§,3W/1,1X6 + W/2,3b11,1 + b/2,3) + Wl2,3U(W/1,2X6 + b/1,2) + WI2,3U(W/1,3X6 + b/1,3)
+ W/2,30(W/1,4X6 + b/1,4)}
+ U{(W§,4W/1,1X6 + W/2,4b/1,1 + b/2,4) + Wl2,4U(W/1,2X6 + b/1,2) + Wl2,4U(W/1,3X6 + b/1,3)

+ W/2,40'(W/1,4X6 + b/1,4)}
3)

Xy = (W/2,1X6 + b/2,1) + W/2,10(W/1,2X6 + b/1,2)
+ W’z,la(Wi,3X6 + b/1,3) + W/Z,lo—(wll,élxé) + b/1,4)
+ U(le,zxz) + b/2,2) + 0(W'273x6 + b'2,3)
+ U(WI2,4X6 + b/2,4)

4)

C THE DATA PROBLEM OF ILI

Figure 1 illustrates the data trends for the 7 features in the ILI dataset, labeled as Class 1 to Class
7. Time series data generally exhibit two main characteristics: periodicity and trends within each
period. The seven features share a similar period; however, it is evident that Classes 6 and 7 show
an upward trend over time, while the overall trends of the other features remain stable.

If there is any correlation between the features, we believe it would be either related to the period
(which is the same across features and can thus be disregarded) or to the trend. Since Classes 6 and
7 both display a rising trend, while the trends of the other classes remain unchanged, we hypothesize
that Classes 6 and 7 should be separated from the other features. Therefore, we grouped the data
into two sets: one containing Classes 6 and 7, and the other with the remaining features. We then
trained and tested the model on these separate groups. The test results, shown in Table 3, clearly
indicate a significant improvement in model performance after grouping the data for training.

D THE PROPERTIES OF FOURIER TRANSFORM

Compared to convolution, learning features in the Fourier domain offers the advantage of a larger
receptive field. This phenomenon is illustrated in Figures 2 and 3. Figure 2 shows a typical convolu-
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Figure 1: The trends of the features in the ILI dataset.

Table 3: Based on the characteristics of the ILI data, we divided it into two groups: Group 1: Class
1,2, 3,4, 5; Group 2: Class 6, 7. We then calculated the MSE and MAE for each group separately.
Ori: Results from training with all features together. Split: Results from training after splitting the
features into two groups.

Methods Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Metric MSE | MAE | MSE [ MAE | MSE | MAE | MSE [ MAE | MSE | MAE [ MSE [ MAE | MSE | MAE
24 10.532 0.764 | 0.602 0.987 | 1.085 2.527 | 0.968 2.501 | 1.196 3.635 | 0.736  0.821 | 0.876 1.062
36 | 0.630 0.981 | 0.656 1.149 | 1.149 2.908 | 1.052 3.075 | 1.364 4.744 | 0.689  0.695 | 0.868 1.042
Ori 48 | 0.596 0.891 | 0.644 1.063 | 1.129 2.801 | 1.035 2.867 | 1.266 4.356 | 0.727  0.763 | 0.892 1.063
60 | 0.566 0.807 | 0.621 0.986 | 1.193 3.051 | 1.025 2.785 | 1.250 4.210 | 0.824  0.922 | 0.980 1.222
Avg | 0.581 0.860 | 0.630 1.046 | 1.139 2.821 | 1.020 2.807 | 1.269 4.236 | 0.744  0.800 | 0.904 1.097
24 0.402 0.284 [ 0.372 0.260 | 0.308 0.178 | 0.360 0.292 | 0.412 0.334 | 0.154  0.204 | 0.047 0.079
36 0.350 0.217 | 0.326 0.206 | 0.289 0.160 | 0.275 0.146 | 0.343 0.210 | 0.182  0.060 | 0.221 0.091
Split | 48 0.370 0.229 | 0.339 0.211 | 0.299 0.157 | 0.309 0.199 | 0.368 0.251 | 0.207  0.072 | 0.240 0.103
60 0.342 0.205 | 0.320 0.206 | 0.281 0.147 | 0.275 0.159 | 0.345 0.222 | 0.211 0.076 | 0.231 0.103
Avg | 0.366 0.233 | 0.339 0.220 | 0.294 0.160 | 0.304 0.199 | 0.367 0.254 | 0.1885 0.103 | 0.184 0.094

tion process with a kernel size of 3, resulting in a receptive field of 3. In contrast, the black boxes of
Figure 3 depict a standard Fourier transform process, while the right side (highlighted in the red box)
demonstrates learning in the Fourier space based on the Fourier transform results from the left. It is
evident that every point within the red box on the right is capable of gathering global information
from the original domain, thus offering an expanded receptive field compared to convolution.
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Figure 2: The convolution operation on the sequence. n is the serial number. x is a sequence. h is
the convolutional kernel and the kernel size is three. X is the output after convulution.

__________________________________________________

Figure 3: The left part is the Fourier transform. n is the serial number and n = . represents n =
0,1,2,.... x; and x; 4 1 are latent sequences. F is the FT matrix and F~! is inverse matrix of the FT.
The right part is the way of learning the change of sequence in the Fourier domain. W is the weight
matrix. X; is the FT output. X is the latent features learned in the Fourier domain.

E VISUALIZATION OF WEIGHTS

Figures 4, 5, 6, and 7 illustrate the visual comparison of parameter weight information within the
second MRF block of the MRFNet model on ETTh1 dataset, along with the weight information at
corresponding positions for LS, LC, and LF. Overall, from the texture of these images, it can be
observed that they learn similar information.

Linear Block: The overall texture learned by the Linear Block is similar, yet the weight parameter
magnitudes differ among the models. Regarding the matrix multiplication, the x-axis corresponds
to input time information, while the y-axis corresponds to output time information. In the row
direction, there is an overall appearance of an interlocking grid pattern. This pattern signifies that
different positions of input have varying degrees of importance for the output, and this importance
changes continuously. Among these models, the LS model’s parameters exhibit this characteristic
most prominently. This is primarily due to the LS model learning a sparse matrix, implying a
block-wise learning of temporal information. Therefore, the linear Block complements this block-
wise feature, reinforcing the coordination of local and global information. The other models learn
information holistically, which is why this characteristic is less evident.

Sparse Matrix Block: The Sparse Matrix Block demonstrates a similar texture of weight features
as the linear Block, with the distinction that this pattern is block-wise. The MRFNet model learns
more discrete feature information, whereas the LS model learns continuous, block-wise information.
However, the underlying patterns they learn are similar.
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Figure 4: The images depict the weights of the Linear Block for the same layer corresponding to
MRFNet, LS, LC, and LF.
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Figure 5: The images depict the weights of the Sparse Matrix Block for the same layer corresponding
to MRFNet and LS.

Convolutional Block: Given a kernel size of 3, the display of convolutional kernel weights is
organized according to the kernel positions. It is evident that the textures they learn are highly alike.

FT Block: The FT Block’s weights consist of real and imaginary components, each displayed
separately. The similarity of the textures is conspicuous.

In summary, the weights corresponding to LS, LC, and LF in the MRFNet model are notably similar.
This observation indicates that they collectively learn akin information, which is coherent due to
being trained on the same dataset. Additionally, as the MRFNet model comprises multiple modules,
these modules function complementarily. Consequently, specific differences emerge among these
modules.

F PROFERMANCES OF UNIVARIATE PREDICTION

We compared preferences for univariate prediction in Table 4. Overall, our results are similar to the
PatchTST and outperform other models.

G THE PREDICTION RESULTS OF MRFNET

Figure 8 presents the prediction results of the HUFL feature in the ETTm1 dataset. As shown in the
figure, our model outperforms the PatchTST, DLinear, and Autoformer models.
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Figure 6: The images depict the weights of the Conv Block for the same layer corresponding to
MREFNet and LC. The input and output dimensions are 720 and the kernel size is three, so the
dimensions of the kennel are (720, 720, 3). In this figure, 1, 2, and 3 denote the number of the third

dimension direction of

(720,720, 3).
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Figure 7: The images depict the weights of the Fourier Block for the same layer corresponding to
MREFNet and LF. Real and Imag represent the real and imaginary parts of the weights in Fourier

domain.
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Table 4: Univariate predictions of ETTh1, ETTh2, ETTm1, and ETTm?2 by twelve models.

Models MRFNet PatchTST/64 DLinear FEDformer Autoformer Informer LogTrans
Metric | MSE [ MAE | MSE [ MAE | MSE | MAE | MSE | MAE | MSE [ MAE | MSE [ MAE | MSE [ MAE
_ | 96 |0.055 0.181 | 0.059 0.189 | 0.056 0.180 | 0.079 0.215 | 0.071 0.206 | 0.193 0.377 | 0.283 0.468
£ 192 | 0071  0.206 | 0.074 0.215 | 0.071 0.204 | 0.104 0.245 | 0.114 0.262 | 0.217 0.395 | 0.234  0.409
E 336 | 0.084 0.231 | 0.076 0.220 | 0.098 0.244 | 0.119 0.270 | 0.107 0.258 | 0.202 0.381 | 0.386 0.546
720 | 0.098 0.246 | 0.087 0.236 | 0.189 0.359 | 0.142 0.299 | 0.126 0.283 | 0.183 0.355 | 0475 0.629
~ | 96 0151 0301 | 0.131 0.284 | 0.131 0.279 | 0.128 0.271 | 0.153 0.306 | 0.213 0.373 | 0.217 0.379
£ 192 ] 0171 0.329 | 0.171  0.329 | 0.176  0.329 | 0.185 0.330 | 0.204 0.351 | 0.227 0.387 | 0.281 0.429
E 336 | 0.186 0.345 | 0.171 0.336 | 0.209 0.367 | 0.231 0.378 | 0.246 0.389 | 0.242 0.401 | 0.293 0.437
720 | 0.214 0.368 | 0.223 0.380 | 0.276 0.426 | 0.278 0.420 | 0.268 0.409 | 0.291 0.439 | 0.218 0.387
— | 96 [0.026 0.121 | 0.026 0.123 | 0.028 0.123 | 0.033 0.140 | 0.056 0.183 | 0.109 0.277 | 0.049 0.171
E 192 | 0.041 0.153 | 0.040 0.151 | 0.045 0.156 | 0.058 0.186 | 0.081 0.216 | 0.151 0.310 | 0.157 0.317
E 336 | 0.055 0.178 | 0.053 0.174 | 0.061 0.182 | 0.084 0.231 | 0.076 0.218 | 0.427 0.591 | 0.289 0.459
720 | 0.070 0.203 | 0.073 0.206 | 0.080 0.210 | 0.102 0.250 | 0.110 0.267 | 0.438 0.586 | 0.430 0.579
~ | 96 | 0.063 0.181 | 0.065 0.187 | 0.063 0.183 | 0.067 0.198 | 0.065 0.189 | 0.088 0.225 | 0.075 0.208
E 192 | 0.091 0.226 | 0.093 0.231 | 0.092 0.227 | 0.102 0.245 | 0.118 0.256 | 0.132 0.283 | 0.129 0.275
E 336 | 0.128 0272 | 0.121 0.266 | 0.119 0.261 | 0.130 0.279 | 0.154 0.305 | 0.180 0.336 | 0.154 0.302
720 | 0.165 0.315 | 0.172 0.322 | 0.175 0.320 | 0.178 0.325 | 0.182 0.335 | 0.300 0.435 | 0.160 0.321

Table 5: Multivariate predictions of ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Electricity, Weather
and ILI, by twelve models. The best results are highlighted in bold red. The second-best results are
indicated with highlighted in bold black.

Methods MRFNet GPT2(6) DLinear PatchTST TimesNet FEDformer ‘ Autoformer Stationary ETSformer LightTS Informer Reformer
Metric S MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE [ MAE MSE | MAE | MSE | MAE | MSE | MAE | MSE [ MAE | MSE | MAE | MSE | MAE
5 0.191 [ 0.162 0212 | 0.176  0.237 [ 0.149 0.198 | 0.172 0220 | 0.217 0.296 | 0.266 0.336 | 0.173 0.223 | 0.197 0.281 | 0.182 0.242 | 0.300 0.384 | 0.689 0.596
£ 0.235 | 0.204 0.248 | 0.220 0.282 | 0.194 0.241 | 0.219 0.261 | 0.276  0.336 | 0.307 0.367 | 0.245 0.285 | 0.237 0.312 | 0.227 0.287 | 0.598 0.544 | 0.752 0.638
%’ 0.278 | 0.254 0.286 | 0.265 0.319 | 0.245 0.282 | 0.280 0.306 | 0.339  0.380 | 0.359 0.395 | 0.321 0.338 | 0.298 0.353 | 0.282 0.334 | 0.578 0.523 | 0.639 0.596
0.329 | 0326 0.337 | 0333 0.362 | 0.314 0.334 | 0.365 0.359 | 0.403 0428 | 0.419 0428 | 0414 0410 | 0352 0.288 | 0.352 0.386 1.130  0.792
0.258 | 0.237 0.270 | 0.248 0.300 | 0.225 0.264 | 0.259 0.287 | 0.309 0.360 | 0.338 0.382 | 0.288 0.314 | 0.271 0.334 | 0.261 0.312 0.803  0.656
— 0.393 [ 0376 0.397 | 0375 0.399 [ 0370 0.399 [ 0.384 0.402 [ 0.376 0.419 [ 0.449 0.459 | 0.513 0.491 | 0.494 0479 | 0.424 0.432 0.837 0.728
= 0415 | 0416 0418 | 0405 0416 | 0413 0.421 | 0436 0429 | 0420 0448 | 0.500 0.482 | 0.534 0.504 | 0.538 0.504 | 0.475 0.462 0.923  0.766
E 0444 | 0442 0433 | 0439 0443 | 0422 0436 | 0491 0469 | 0459 0465 | 0.521 0.496 | 0.588 0.535 | 0.574 0.521 | 0.518 0.488 1.097  0.835
0.454 | 0477 0.456 | 0.472 0490 | 0.447 0.466 | 0.521 0.500 | 0.506 0.507 | 0.514 0.512 | 0.643 0.616 | 0.562 0.535 | 0.547 0.533 1.257  0.889
0.426 | 0427  0.426 | 0.422 0437 | 0.413 0430 | 0.458 0.450 | 0.440 0.460 | 0.496 0.487 | 0.570 0.537 | 0.542 0.510 | 0491 0.479 1.029  0.805
o 0.330 [ 0285 0.342 | 0.289 0.353 | 0.274 0.336 | 0.340 0.374 | 0.358 0.397 | 0.346 0.388 | 0.476 0.458 | 0.340 0.391 | 0.397 0.437 2.626 1317
= 0.376 | 0.354 0.389 | 0383 0418 | 0339 0.379 | 0.402 0414 | 0429 0.439 | 0456 0.452 | 0.512 0.493 | 0430 0.439 | 0.520 0.504 1112 2979
=] 0.396 | 0.373  0.407 | 0.448 0465 | 0.329 0.380 | 0.452 0.452 | 0.496 0.487 | 0.482 0.486 | 0.552 0.551 | 0.485 0.479 | 0.626 0.559 9.323  2.769
0.423 | 0406 0441 | 0.605 0.551 | 0.379 0.422 | 0462 0.468 | 0.463 0474 | 0.515 0.511 | 0.562 0.560 | 0.500 0.497 | 0.863 0.672 3874 1.697
0.381 | 0354 0.394 | 0.431 0.446 | 0.330  0.379 | 0.414 0.427 | 0.437 0.449 | 0450 0.459 | 0.526 0.516 | 0.439 0.452 | 0.602 0.543 6.736  2.191
_ 0.342 10292 0.346 | 0.299 0.343 [ 0.290 0.342 [ 0.338 0.375 [ 0.379 0.419 | 0.505 0.398 [ 0375 0.398 | 0.374 0.400 0.538  0.528
E 0366 | 0.332 0372 | 0.335 0.365 | 0.332 0369 | 0.374 0.387 | 0426 0.441 | 0.553 0.444 | 0.408 0410 | 0.400 0.407 0.658 0.592
= 0.385 | 0.366 0.394 | 0.369 0.386 | 0.366 0.392 | 0.410 0411 | 0.445 0459 | 0.621 0.464 | 0435 0428 | 0.438 0438 0.898 0.721
0411 | 0.417 0421 | 0425 0421 | 0.416 0.420 | 0.478 0.450 | 0.543 0.490 | 0.671 0.516 | 0.499 0.462 | 0.527 0.502 1102 0.841
0.376 | 0352 0.383 | 0.357 0.378 | 0.351 0.380 | 0.400 0.406 | 0.448 0.452 | 0.588 0.456 | 0429 0425 | 0435 0.437 0.799  0.671
o 0.246 [ 0.173 0262 | 0.167 0.269 | 0.165 0.255 | 0.187 0.267 | 0.203  0.287 | 0.255 0.274 [ 0.189  0.280 | 0.209 0.308 0.658 0.619
£ 0.287 | 0.229 0.301 | 0.224 0.303 | 0.220 0.292 | 0.249 0.309 | 0.269 0.328 | 0.281 0.339 | 0.253  0.319 | 0311 0.382 1.078  0.827
[: 0.323 | 0286 0.341 | 0.281 0.342 | 0.274 0.329 | 0.321 0351 | 0.325 0.366 | 0.339 0.361 | 0314 0.357 | 0.442  0.466 1.549 0972
= 0.377 | 0.378 0401 | 0397 0421 | 0.362 0.385 | 0.408 0.403 | 0.421 0415 | 0.433 0.413 | 0414 0413 | 0.675 0.587 2.631 1.242
0.333 | 0266 0.326 | 0.267 0.333 | 0.255 0.315 | 0.291 0.333 | 0.305 0.349 | 0.327 0.347 | 0.293  0.342 | 0.409 0.436 1.479 0915
0.857 [ 2.063 0.881 [ 2215 T1.081 [ 1.319 0.754 [ 2.317 0.934 [ 3.228 1.260 | 3.483 0.945 [ 2527 1.020 | 8313 2.144 4400 1.382
- 0915 | 1.868 0.892 | 1.963 0.963 | 1.430 0.834 | 1.972 0.920 | 2.679 1.080 | 3.103 0.848 | 2,615 1.007 | 6.631 1.902 4783 1.448
= 0.899 | 1.790 0.884 | 2.130 1.024 | 1.553 0.815 | 2.238  0.940 | 2.622 1.078 | 2.669 0.900 | 2359 0.972 | 7.299 1.982 4.832  1.465
0.923 | 1.979 0.957 | 2368 1.096 | 1.470 0.788 | 2.027 0.928 | 2.857 1.157 | 2.770 0.963 | 2.487 1.016 | 7.283 1.985 4.882 1483
0.898 | 1.925 0.903 | 2.169 1.041 | 1.443  0.797 | 2.139  0.931 | 2.847 1.144 | 3.006 0.914 | 2497 1.004 | 7.382  2.003 4.724 1445
0.218 [ 0.139 0238 | 0.140 0.237 [ 0.129 0.222 [ 0.168 0.272 | 0.193  0.308 | 0.201 0.273 [ 0.187 0304 | 0.207 0.307 0312 0402
o} 0.234 | 0.153  0.251 | 0.153 0.249 | 0.157 0.240 | 0.184 0.289 | 0.201 0315 | 0.222 0.286 | 0.199 0.315 | 0.213 0316 0.348  0.433
=2 0.251 | 0.169 0.266 | 0.169 0.267 | 0.163 0.259 | 0.198 0.300 | 0.214 0.329 | 0.231 0.304 | 0212 0.329 | 0.230 0.333 0.350  0.433
0.280 | 0.206 0.297 | 0.203 0.301 | 0.197 0.290 | 0.220 0.320 | 0.246 0.355 | 0.254 0.321 | 0.233  0.345 | 0.265 0.360 0.340 0420
0.245 | 0.167 0.263 | 0.166 0.263 | 0.161 0.252 | 0.192 0.295 | 0.214  0.327 | 0.227 0.296 | 0.208 0.323 | 0.229 0.329 0.338  0.422
o 0.241 [ 0388 0.282 [ 0.410 0.282 [ 0360 0.249 [ 0.593 0.321 | 0.587 0.366 | 0.613 0.338 [ 0.607 0.392 [ 0.615 0.391 0.732 0423
£ 0.248 | 0.407 0.290 | 0.423 0.287 | 0.379 0.256 | 0.617 0.336 | 0.604 0.373 | 0.616 0.340 | 0.621 0.399 | 0.601 0.382 0733 0.420
E 0.274 | 0412 0.294 | 0436  0.296 | 0.392 0.264 | 0.629 0.336 | 0.621 0.383 | 0.622 0.328 | 0.622  0.396 | 0.613 0.386 0.742  0.420
0.277 | 0.450 0.312 | 0.466 0.315 | 0.432 0.286 | 0.640 0.350 | 0.626 0.382 | 0.660 0.355 | 0.632  0.396 | 0.658 0.407 0.755 0.423
0.260 | 0.414 0.294 | 0.433  0.295 | 0.390 0.263 | 0.620 0.336 | 0.610 0.376 | 0.628 0.379 | 0.624 0.340 | 0.621 0.396 | 0.622 0.392 | 0.764 0.416 | 0.741 0.422
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Figure 8: The prediction results (Horizon = 720; HUFL) of MRFNet, PatchTST, DLinear, Auto-
former on the ETTm1 dataset.
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