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Training Pansharpening Networks at Full Resolution Using
Degenerate Invariance

Anonymous Authors

ABSTRACT
Pan-sharpening is an important technique for remote sensing imag-
ing systems to obtain high resolution multispectral images. Ex-
isting deep learning-based methods mostly rely on using pseudo-
groundtruth multi-spectral images for supervised learning. The
whole training process only remains at the scale of reduced res-
olution, which means that the impact of the degradation process
is ignored and high-quality images cannot be guaranteed at full
resolution. To address the challenge, we propose a new unsuper-
vised framework that does not rely on pseudo-groundtruth but uses
the invariance of the degradation process to build a consistent loss
function on the original scale for network training. Specifically,
first, we introduce the operator learning method to build an exact
mapping function from multi-spectral to panchromatic images and
decouple spectral features and texture features. Then, through joint
training, operators and convolutional networks can learn the spa-
tial degradation process and spectral degradation process at full
resolution, respectively. By introducing them to build consistency
constraints, we can train the pansharpening network at the original
full resolution. Our approach could be applied to existing pansharp-
ening methods, improving their usability on original data, which is
matched to practical application requirements. The experimental
results on different kinds of satellite datasets demonstrate that the
new network outperforms state-of-the-art methods both visually
and quantitatively.

CCS CONCEPTS
• Computing methodologies→ Image processing.

KEYWORDS
Unsupervised Training Framework; Pan-sharpening Method; Oper-
ator Learning

1 INTRODUCTION
Remote sensing technology has rapidly advanced alongside grow-
ing satellite data volumes, enabling progress in fields like agriculture
and environmental monitoring [47, 49]. Current satellite imaging
systems commonly feature multispectral sensors, allowing obser-
vation across multiple wavelengths. However, achieving sufficient
signal-to-noise within the mechanical constraints of multispectral
sensor design necessitates a certain instantaneous field of view,
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Figure 1: Comparison of our pansharpening training frame-
work with existing one. (a) Existing PAN-Net supervised
training methods choose to generate data containing ground-
truth at reduced resolution, then they apply the network
trained at reduced resolution directly to the original scale.
However, there are some artificial priors in the process of
crossing the scale that may affect the results, and these as-
sumptions are highlighted in red. (b) Our framework main-
tains consistency between training and test scales by using
degenerate invariance to guide the network to train at origi-
nal full resolution.

often at the expense of incompatible spatial and spectral resolu-
tions. It is in this technical context that pansharpening emerged
to overcome such limitations. Pansharpening aims to fuse high-
resolution panchromatic (HRPAN) and low-resolutionmultispectral
(LRMS) images to produce a high-resolution multispectral (HRMS)
composite.

Over decades, extensive research has focused on model-based
and deep learning(DL)-based approaches [2, 4, 11, 42, 44] to achieve
pansharpening task. Traditionalmodel-basedmethods require hand-
crafted priors to regularize latent solutions, but limited representa-
tional ability yields subpar performance on complex scenes. Further-
more, they frequently pose optimization challenges during practical
implementation. Deep learning methods demonstrate superiority in
representation and generalization compared to handcrafted models.
However, existing pansharpening DL method still suffers from a
lack of "ground truth" supervision to guide network training, rep-
resenting a long-standing issue. Overall, while significant progress
has been made, further advances in deep pansharpening could help
unlock remote sensing’s potential through techniques enabling en-
hanced high-resolution multispectral image reconstruction without
reliance on supervised labeling [3, 13, 50].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Traditional deep learning pansharpening approaches synthesize
lower-resolution PAN and MS counterparts through techniques
like bicubic downsampling of the original HRMS images, as shown
in Fig1(a). These downsampled images are then used as pseudo
"ground truths" to train networks in a supervised manner. How-
ever, the relationship between LRMS and HRMS data is often more
complex than simple blurring and resizing [37]. Directly downsam-
pling native imagery via interpolation to create targets is thus not
fully representative of real degradation processes. Furthermore, this
widely used supervised learning paradigm suffers from a drawback
that the whole training process only remains at the scale of reduced
resolution, which can not regulate original full resolution perfor-
mance [12]. The red arrow in Fig.1(a) shows two key assumptions
that the existing pansharpening training framework relies on: Spa-
tial degradation can be modeled by bicubic downsampling alone,
and networks optimized at reduced scales can be generalized to the
native domain.We argue that these simplifying assumptions around
scale changes would make it challenging for networks trained only
at low resolutions to generate the high-fidelity HRMS images re-
quired at the original full resolution for practical applications.

We choose to establish spectral and spatial observation models
to simulate the degradation process of remote sensing images, and
use the established models to help evaluate the generated images,
so as to get rid of the dependence on groundtruth. For efficient and
accurate fitting, we analyze the relationship between degradation
processes on the basis of theoretical derivation and mathematical
analysis (details in Section 3.2). What we found is that the same
degradation processes remain consistent at a fixed scale, and this
degradation invariance can be used to optimize training strategies.
In addition, compared with the existing methods that rely on fixed
linear spectral models(refer to Eqs.4 and 5) and rough spatial trans-
formations, we hope to build more accurate models. Inspired by the
work of Lu et al. [21], we believe it is possible to introduce physical
information into neural networks to simulate spectral transforma-
tions. We then introduce operator learning, which bridges gaps
in our understanding of real physical models, while accurately
modeling spectral degradation processes using powerful fitting ca-
pabilities for nonlinear functions. In addition, since the object of
learning is changed from function to operator, it has the potential
to explore the essential properties of spectral transformation.

Based on the idea of exploring the relationship of the degrada-
tion process, we developed an unsupervised pansharpening frame-
work. This framework explores pansharpening by modeling the
degradation processes involved. First, In order to model the spec-
tral degradation process, we construct an operator learning model
called FadeNet(FDNet), which characterizes the pixel-level spec-
tral relationship between multispectral and panchromatic images
independently of resolution, and establish an improved spectral
observation model. In addition, we construct Downsample Net-
work(DSNet) based on convolutional layer instead of traditional
bicubic interpolation to learn resolution-dependent spatial degra-
dation. Through joint training of FDNet and DSNet directly at the
original full resolution, the low-resolution PAN output generated
from PAN by DSNet should match that obtained by passing MS
through FDNet. After training these networks, their outputs pro-
vide consistency constraints during full-resolution pansharpening
network optimization, avoiding issues from cross-scale changes.

Desired

MS  h×w×C

PAN  rH×rW×1

HRMS  H×W×C

LRPAN  h×w×1

𝐃𝐬𝟏

Fd𝟏 𝐃𝐬𝟐

Fd𝟐

spatial degradation

spectral degradation

Figure 2: Spatial and spectral degradation framework at the
original full resolution. PAN image and LRMS image can
be regarded as the degradation results of HRMS image on
spectral and spatial scales, respectively, and their contin-
ued degradation should result in a consistent low-resolution
PAN(LRPAN) image.

Notably, this framework places no constraints on the specific pan-
sharpening model, providing flexibility. As shown in Fig.1, our
method can obtain significantly higher quality raw scale HRMS
images. To conclude, our contributions include the following three
aspects:

• We build a faithful degradation process model and use its
invariance to construct consistency constraints. In terms of
fitting spectral observation models, to our knowledge, this
is the first attempt to introduce operator learning methods
to explore the nature of spectral transformations with its
ability to accurately model.

• Wehave built a new unsupervised pansharpening framework
that helps existing methods get rid of the limitations of GT
by relying solely on MS and PAN images for training, thus
obtaining high-quality HRMS images at the original scale.

• Numerous experiments on different satellite datasets show
that our method is able to generate higher-quality HRMS
images at the original scale without adding any network
parameters.

2 RELATEDWORK
2.1 Classic pan-sharpening methods
Traditional pansharpening methods can broadly be categorized
into component substitution (CS) based approach [6, 16, 23, 24],
multiresolution analysis (MRA) based techniques [22, 27, 34], and
other algorithmss [9, 10, 14, 15, 38]. CS techniques are founded on
the assumption that the spatial and spectral information of mul-
tispectral imagery can be decoupled. With CS, a high-resolution
multispectral image is synthesized by combining the spatial detail
from a panchromatic image with the spectral content of a low-
resolution multispectral counterpart. Over decades, researchers
have proposed various decomposition schemes under this paradigm,
such as intensity-hue-saturation transformation fusion, Brovey fu-
sion using multiplicative injection, and Gram-Schmidt orthogonal-
ization. However, artifacting may arise if the spectral and spatial
information is not separated appropriately. MRA methods apply



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Training Pansharpening Networks at Full Resolution Using Degenerate Invariance ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

multi-scale transforms to panchromatic images to extract spatial
details, which are then injected into upsampled low-resolution mul-
tispectral imagery. Representative algorithms include high-pass
filter fusion and induction fusion. The performance of MRA fusion
depends heavily on the choice of multi-scale decomposition. Over-
all, both CS and MRA fusion have advanced pansharpening but also
have certain limitations addressed by more recent DL techniques.

2.2 Deep learning based methods
In the last decade, deep learning (DL) methods have been stud-
ied for pansharpening, and this type of method directly learns
the mapping from LRMS and PAN to HRMS. Typical DL-based
pansharpening methods mainly contain two types of network ar-
chitecture, i.e., residual structure and two-branch structure. The
residual structure adds upsampled LRMS images to the output of
the network to obtain the HRMS in the form of regression residuals,
such as PanNet [44], FusionNet [11], SRPPNN [2], etc [20, 35, 41, 51].
Recently, the two-branch structure is becoming more and more pop-
ular. This type of method usually conducts feature extraction for
PAN and LRMS image, respectively, and fuses their features to re-
construct HRMS images, such as GPPNN [42], Proximal PanNet [4],
etc [1, 5, 40, 43, 53, 54]. Although many unsupervised methods
have been proposed [30, 48], most of them still choose to train the
network under the downsampling scale. The inaccurate generated
images caused by this reason have nothing to do with the design
of the network itself, which has become an urgent problem to be
solved.

2.3 Operator learning methods
In the field of biophysical and biomedical modeling, this synergis-
tic integration between ML tools and multiscale and multiphysics
models has been recently advocated. It is widely known that neural
networks (NNs) are universal approximators of continuous func-
tions [7, 8, 32]. And a NN with a single hidden layer can accurately
approximate any nonlinear continuous operator. The universal ap-
proximation theorem of operators is suggestive of the structure
and potential of deep neural networks (DNNs) in learning con-
tinuous operators or complex systems from streams of scattered
data. Thus, the concept of operator learning emerged, which is not
only to perform function approximation but to choose to model
an entire class of problems in order to obtain a class of general
solutions. Compared to other physically combined neural network
methods [33], it requires less mathematical theory and more infor-
mation from the data. Multiple operator networks such as Deep-
ONet [28] and FNO [25] have shown strong performance in several
fields [19, 29, 31, 55] and remote sensing is also one of them.

3 METHOD
We denoted a pair of PAN and MS images corresponding to the
same scene as P ∈ R𝐻×𝑊 ×1 and M ∈ Rℎ×𝑤×𝐶 , and up-sampled
MS images to obtain images with the same spatial resolution as P,
denoted as MS ∈ R𝐻×𝑊 ×𝐶 .

3.1 Overview
An overview of the proposed approach is given in Fig.3, comprising
twomain training phases. In the first stage, we leverage degradation

process commutativity to establish a training paradigm at the native
scale. Here, the jointly optimized FDNet and DSNet models authen-
tically emulate spectral and spatial transformations, respectively. In
the second stage, guided consistency losses are constructed using
outputs from the trained degradation models to drive PanNet opti-
mization directly on original data. PanNet can adopt any existing
pansharpening architecture.

3.2 Degradation Networks
As shown in Fig.2, Let the low-spatial-resolution MS image M ∈
Rℎ×𝑤×𝐶 and the low-spectral-resolution Pan image P ∈ R𝐻×𝑊 ×1

be the spatially degraded version and spectrally degraded version
of ground-truth HRMS image HM ∈ R𝐻×𝑊 ×𝐶 . Here,𝑊 , 𝐻 , and
𝐶 are the width, height and spectral bands of HM while 𝑤 and ℎ
are the width and height of M, respectively. Then, the degradation
models MS and PAN can be modeled as follows:

M = 𝐷𝑠1 (HM) , (1)
P = 𝐹𝑑1 (HM) , (2)

where 𝐷𝑠1 (·) denote the spatial degradation pipeline, and 𝐹𝑑1 (·)
is a band-level spectral response in PAN P. With theM and P, the
pansharpening task targets at reconstructing the latent C of PAN
image. However, instead of treating M and P as generating objects
of the degradation process, we continue to degrade them in the
other direction. As shown in Fig.2, we can conclude another set of
equations:

𝐹𝑑2 (M) = LP = 𝐷𝑠2 (P) , (3)

where LP ∈ Rℎ×𝑤×1 means P is down-sampled with the same
spatial resolution ofM. 𝐹𝑑2 (·) and 𝐷𝑠2 (·) can be defined same as
𝐹𝑑1 (·) and 𝐷𝑠1 (·).

Examining these equations more closely, an intuitive question
arises: can the downsampling operations be made mutually consis-
tent? In other words, whether the spectral degradation process and
the spatial degradation process have invariance at a fixed scale. To
investigate this conjecture, let us analyze the existing formulations
of these two degradation processes. Traditionally in pansharpening
approaches, a fixed method like simple bicubic resizing is directly
applied tomodel spatial transformations. This approach understand-
ably does not vary with the number of spectral bands, but it may not
accurately depict how spatial resolution deteriorates in practice for
different sensor types and band configurations. Separately, preva-
lent assumptions adopted by current spectral observation models
aimed at relating multispectral and panchromatic images include:

P = 𝐹𝑑1 (HM) =
𝐵∑︁

𝑏=1
𝜔𝑏 ·M𝑏 + 𝜖1, (4)

ΔP = 𝐹𝑑1 (ΔHM) =
𝐵∑︁

𝑏=1
𝛼𝑏 · ΔM𝑏 + 𝜖2, (5)

where b is the index of the spectral band, and B is the total number
of spectral bands in MS images. 𝜔 (·) and 𝛼 (·) indicate coefficients
of linear combination, and 𝜖 (·) is the deviation terms. In other
words, these methods consider that the PAN image (or its gradient)
can be modeled as a linear combination among all bands (or their
gradients) of the MS image. This process is obviously independent
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Figure 3: Overview of our method. (a) The joint training process of FDNet and DSNet. At the original scale, all four degradation
processes shown in Fig.2 were simultaneously constructed and network models were designed for learning. Specifically, spatial
degradation models are learned using DSNet and spectral observation models are modeled using FDNet. The same type of
degradation models share parameters during training. (b) The framework for training the pansharpening network. Using
the extracted degradation model, the HRMS image generated by pansharpening network can be degraded into MS image and
PAN image, and the loss function can be compared with the input image to realize the training on the original scale. (c) The
specific structure of FDNet and DSNet. DSNet is constructed by convolutional layers, and FDNet is based on pixel-level operator
learning.

of the size of the MS image, so the following conclusions can be
drawn:

𝐹𝑑1 (·) = 𝐹𝑑2 (·) , (6)
𝐷𝑠1 (·) = 𝐷𝑠2 (·) , (7)

That’s what we’re trying to prove: the spectral degradation process
and the spatial degradation process have invariance at a fixed scale.
In fact, the two-level degenerate relationship between the HRMS
and LRPAN images in Fig.2 can be written as below:

𝐹𝑑 (𝐷𝑠 (HM)) = 𝐷𝑠 (𝐹𝑑 (HM)) , (8)

The above formula indicates that the spectral degradation process
and the spatial degradation process conform to the exchange law,
and the exchange order does not affect the generated result. To sum
up, we design a network to model the spectral observation process.
While existing linear models in Eqs.4 and 5 are reasonable start-
ing points, they may not fully capture nonlinear transformations
between multispectral and panchromatic data at fine scales. To
better model the degradation process, we introduce operator learn-
ing methods proposed by DeepONet [28] and design the spectral
downsampling network FDNet. DeepONet has shown strong per-
formance fitting nonlinear functions, which we leverage to model
the spectral transformation 𝐹𝑑 process. To decouple spectral from
spatial information and ensure FDNet’s scale invariance, we disas-
semble the image into pixel inputs. In the DeepONet framework,
the network is realized using FNN for training. As shown in Fig.3(c),
FNN in FDNet takes pixels as inputs during DeepONet optimization.

The convolutional cores enable processing images directly for fur-
ther training. FDNet was used to test spectral degradation modeling,
and the experimental results were shown in Fig.4. The objective of
the sub-experiment is to use the spectral corresponding values of
each pixel in the MS image to fit the corresponding pixel intensity
values of the PAN image. It can be clearly seen that the predicted
PAN image pixel values are very similar to the actual values, which
shows the effectiveness of modeling using the operator learning
method.

For the spatial degradation process, the constructed DSNet con-
sists of several simple convolutional networks, which consist of
a convolution operation using Point Spread Function (PSF) and a
spatial downsample operation. The structure of DSNet is shown in
Fig.3(c).

3.3 Joint Training
To train the degradation networks more effectively, we propose
a joint learning strategy as shown in Fig.3(a). The MS image M
and PAN image P are input into FDNet and DSNet respectively
for downsampling of spectral information and spatial information.
According to Eq.3, both of them should output consistent images
LP. Therefore, the consistency relationship between the two output
images can be established, and a joint learning framework indepen-
dent of ground truth can be obtained:

L𝐿𝑃 = ∥𝐹𝑑 (M) − 𝐷𝑠 (P)∥1 . (9)
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Figure 4: (a) The intensity values of different spectral bands
at corresponding pixel points in MS image and PAN image
are correlated. (b) The results are obtained by means of each
spectral band and by our operator learning fitting. The pre-
dicted results of our method are highly similar to the real
values of the corresponding pixels in PAN images.

However, such constraints are too loose for the training of the
network, and the network can easily collapse without getting the
desired result. We need to design some other constraints in the loss
function to prevent the degradation of the generated image. Given
our desire to wean ourselves off ground truth, it’s easy to relate to
the existing unsupervised pansharpening network.

Introduce a trained unsupervised model 𝑃𝑟 , then we can get
the deduced HRMS image HM, using HM, we can establish the
following two new constraints:

L𝑃 = ∥𝐹𝑑 (𝑃𝑟 (M,P)) − P∥1 . (10)
L𝑀 = ∥𝐷𝑠 (𝑃𝑟 (M,P)) −M∥1 . (11)

Combined with Eqs.9,10 and 11, the loss function of joint training
is re-obtained as follows:

L 𝑗𝑜𝑖𝑛𝑡 = 𝛼L𝐿𝑃 + 𝛽1L𝑃 + 𝛽2L𝑀 , (12)

𝛼 ,𝛽1,𝛽2 are all adjustable hyperparameters.

3.4 PanNet Training
Now, with the FDNet and the DSNet, we can train almost any
pansharpening network at the original scale as shown in fig.3(b).
Specifically, for a PanNet that we want to train, its inputs are P and
M, and its outputs are denoted as M̂S, it can be modeled as follows:

M̂S = 𝑃𝑎𝑛𝑁𝑒𝑡 (M,P) . (13)

As the generated predictive high-resolution multispectral image,
we refer to Fig.2 to derive its corresponding two degraded versions.
M̂S is applied to the degraded models 𝐹𝑑 (·) and 𝐷𝑠 (·) trained on

this scale, respectively, to generate predicted MS and PAN images
P̂ and M̂, namely:

P̂ = 𝐹𝑑 (M̂S), (14)

M̂ = 𝐷𝑠 (M̂S), (15)

In the proposed framework, P̂ and M̂ represent outputs derived
from degrading the high-resolution M̂S generated by the trained
pansharpening network. Since the spectral and spatial features were
separated during previous training of FDNet and DSNet, P̂ and M̂
are able to losslessly represent all features of the multispectral
imagery. Accordingly, consistency constraints can be formulated
using the predictedP andM results versus the original input data, to
guide further training. Specifically, the loss function is constructed
as follows:

L𝑃 =


P̂ − P




1 . (16)

L𝑀 =


M̂ −M




1 . (17)

Combined with Eqs.9,10 and 11, the loss function of joint training
is re-obtained as follows:

L𝑝𝑎𝑛 = 𝛼L̂𝑃 + 𝛽L̂𝑀 , (18)

where 𝛼 , 𝛽 are adjustable hyperparameters.

4 EXPERIMENTS
In this section, we conduct extensive experiments over three satel-
lite image datasets of the WorldView II(WV2) and GaoFen-2(GF2)
to evaluate the model performance.

4.1 Datasets and benchmark
For each database, PAN images are cropped into patches with the
size of 128×128 pixels while the corresponding MS patches are with
the size of 32×32 pixels. The above generated data was constructed
into our training set. To more fully verify the effect of our method,
we conduct experiments at both full resolution and downscaling. So
we followed the Wald protocol to generate the data set at the lower
sampling scale. Specifically, given the MS image M ∈ R𝐻×𝑊 ×𝐶

and the PAN image P ∈ R𝑟𝐻×𝑟𝑊 ×1 , both of them are downsam-
pled with ratio r, and then are denoted by m ∈ R

𝐻
𝑟
×𝑊

𝑟
×𝐶 and

p ∈ R𝐻×𝑊 ×1 respectively. During the experiments, m and p are
regarded as the inputs, whileM is the ground truth.

To evaluate the results of our proposed method, several com-
monly recognized state-of-the-art Pan-sharpening methods are
selected, which are classified into two folds: 1) five representative
deep-learning based methods, PNN, PANNET [44], MSDCNN [45],
SRPPNN, SFIINET [52] and GPPNN [42]; 2) five promising tra-
ditional methods, SFIM [27], Brovey [16], GS [24], IHS [17], and
GFPCA [26]. Specifically, when we use the proposed framework
to train the DL method, we train the degenerate network on the
corresponding data set, and then place the corresponding network
in the PAN-Net position in Fig.3(b) for training.

4.2 Implementation details and metrics
We implement our networks in PyTorch framework on the PC with
a single NVIDIA GeForce GTX 3090Ti GPU. In the training phase
of the second stage, they are optimized by Adam optimizer over
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Table 1: The non-reference metrics on the full-resolution dataset. The better results for each pair of methods are highlighted in
bold.

Method WorldView II GaoFen-2
𝐷𝜆 ↓ 𝐷𝑠 ↓ QNR↑ 𝐷𝜆 ↓ 𝐷𝑠 ↓ QNR↑

PNN 0.0865 0.1343 0.8047 0.0600 0.1276 0.8449
PNN+Ours 0.0764 0.1104 0.8552 0.0586 0.1082 0.8862
PANNET 0.0830 0.1499 0.8088 0.0637 0.1224 0.8143

PANNET+Ours 0.0779 0.1110 0.8473 0.0531 0.1004 0.8645
MSDCNN 0.0856 0.1375 0.8047 0.0605 0.1057 0.8415

MSDCNN+Ours 0.0804 0.1181 0.8740 0.0524 0.0934 0.8812
SRPPNN 0.0860 0.1218 0.8060 0.0620 0.0993 0.8049

SRPPNN+Ours 0.0798 0.1095 0.8613 0.0528 0.0875 0.8613
GPPNN 0.0880 0.1523 0.7975 0.0643 0.1633 0.7221

GPPNN+Ours 0.0812 0.1266 0.8240 0.0458 0.0875 0.7603
FusionNet 0.0943 0.1576 0.8082 0.0882 0.1644 0.7001

FusionNet+Ours 0.0808 0.1224 0.8185 0.0673 0.1024 0.8278

PAN

MS

FusionNet

FusionNet+Ours

PNN

PNN+Ours

MSDCNN

MSDCNN+Ours

GPPNN

GPPNN+Ours

SRPPNN

SRPPNN+Ours

Figure 5: Visualize comparison of one sample image from the WorldView II dataset.

500 epochs with a batch size of 16. The learning rate is initialized
with 1 × 10−5 and decayed by multiplying 0.5 when reaching 200
epochs.

Four popular metrics are used to evaluate the algorithms’ perfor-
mances, including peak signal-to-noise ratio (PSNR) [18], structural
similarity (SSIM) [39] and erreur relative global adimensionnelle
de synthese (ERGAS) [36] and spectral angle mapper (SAM) [46].
The first three metrics measure the spatial distortion, and the last
one measures the spectral distortion. An image is better if its PSNR
and SSIM are higher, and ERGAS and SAM are lower. For the full-
resolution testing, we adopt the community-popular spectral dis-
tortion index quality with no reference (QNR), spectral distortion
index (𝐷𝜆), and spatial distortion index (Ds) to evaluate the pan-
sharpening performance.

4.3 Comparative experiments
In this section, we demonstrate the efficiency of the proposed
method on WorldView II and GaoFen-2 and compare it with several
methods.

4.3.1 Qualitative comparison. We present the qualitative compar-
ison of different methods, which are tested on full-resolution im-
ages. Figs.5 and 6 visualize results on different datasets. The first
column shows original LRMS and panchromatic inputs. Subsequent
columns show pansharpening results from each method, with the
first row trained traditionally and the second using our framework.
In Fig.5, we choose to zoom in on a set of ordered, tightly packed
bars at the bottom of the image. We can see that these tightly
packed objects are completely indistinguishable in the MS image,
while there are clearer boundaries in the PAN image. In the texture
information recovery, the images generated by various methods
show obvious differences, the results generated by PNNmethod can
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Table 2: The performance of a network trained using our method under reduced-resolution testing. The best and second-best
results are highlighted in bold and underlined, respectively.

Method WordView II GaoFen-2
PSNR↑ SSIM↑ SAM↓ EGRAS↓ PSNR↑ SSIM↑ SAM↓ EGRAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 36.906 0.8882 0.0318 1.7398
Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.372
GS 35.9376 0.9176 0.0423 1.8774 37.226 0.9034 0.0309 1.6736
IHS 35.2926 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604
PNN 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528

PANNet 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577
MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389
SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0132 0.5586
GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361
SFIINET 41.6144 0.9689 0.0230 0.9460 47.8541 0.9877 0.0104 0.5191

MSDCNN+Ours 41.6782 0.9679 0.0230 0.9416 44.5509 0.9750 0.0155 0.7365
GPPNN+Ours 42.6781 0.9710 0.0216 0.8958 47.2752 0.9862 0.0110 0.5594
SFIINET+Ours 41.9304 0.9692 0.0229 0.9324 47.8802 0.9844 0.0102 0.5202
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MS

FusionNet

FusionNet+Ours

PNN

PNN+Ours

MSDCNN

MSDCNN+Ours

GPPNN

GPPNN+Ours

SRPPNN

SRPPNN+Ours

Figure 6: Visualize comparison of one sample image from the GaoFen-2 dataset.

hardly recognize the boundary information, and the other methods
also have fuzzy phenomena for the restoration of the boundary
position. In contrast, by training these methods with our proposed
framework, we can see that the generated images are clearly and
accurately represented to the object boundaries of our concern.
In order to better demonstrate the superiority of our method in
texture recovery at full resolution, in Fig.6, we select a scene with
snow on the roof of a building for the pansharpening task, in which
boundary identification is more difficult. In the test of the origi-
nal method, most of the methods did not successfully show the
boundary of the three segments of color clearly; In tests using our
framework training method, this distinction is more easily recog-
nized, especially in the PNN and SRPPNN tests. In summary, our

framework excels at spatial texture and color information recovery
for full-resolution pansharpening. Traditional assumptions limit
networks’ abilities, whereas our approach proves more conducive
to generating high-quality HRMS outputs matching native scales.
Through improved optimization domain alignment, networks can
better reconstruct fine-grained geospatial content critical to remote
sensing applications.

4.3.2 Quantitative comparison. We further provide quantitative
comparisons of these methods on the two datasets from WV2 and
GF2. On the one hand, for the no-reference metrics, i.e., 𝐷𝜆 , 𝐷𝑠

and QNR, considering that these metrics do not need reference
images and to keep the major advantage of unsupervised methods,
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we calculate these metrics on original full resolution images. On
the other hand, for the metrics that need the ground-truth data, i.e.,
ERGAS, PSNR, and SSIM, we downsample the source images into
images with a lower resolution and use the original HRMS images
as the ground-truth data for calculation. The statistical results of
the seven metrics are shown in Table.1 and Table.2.

Table 3: Performance of different networks on datasets gener-
ated using different downsampling methods. Methods with *
indicate training using ourmethod. The best and second-best
results are highlighted in bold and underlined, respectively.

DownSample
Method

Pansharpening
Method

GaoFen2
SAM↓ EGRAS↓ SSIM↑ PSNR↑

Bilinear

MSDCNN 0.0159 0.7589 0.9739 44.3015
GPPNN 0.0153 0.8148 0.9760 44.0947

MSDCNN* 0.0129 0.6379 0.9806 45.9926
GPPNN* 0.0116 0.5850 0.9848 46.7786

Nearest

MSDCNN 0.0194 0.9748 0.9666 42.2433
GPPNN 0.0183 0.9204 0.9597 42.0749

MSDCNN* 0.0132 0.6485 0.9852 46.0560
GPPNN* 0.0120 0.5731 0.9783 46.7150

In terms of results, in the full-resolution test, our trainingmethod
can stably obtain better results than the original method on sev-
eral test data, which is consistent with the visualization results
we gave before. Indeed, it can help generate higher quality full-
resolution HRMS images, and this improvement has a high degree
of generality to various existing methods. In the reduced resolution
test, according to the Table.3, our method can achieve a similar
level range in results as the baseline and even better, which shows
that our training scheme will not cause significant damage to the
original network results. Both sets of results show that using our
proposed framework to train the network can improve the effect of
generating images at full resolution without damaging the network
performance under downsampling test setting. In order to further
verify our conjecture, we test the network trained in this step on
the data set generated by changing the downsampling scheme. As
shown in Table.3, due to the influence of spatial downsampling
prior on traditional training methods, when the data set generation
mode changes, it will be greatly affected, while our method will
not be too affected by such interference, which is strong proof that
existing training method will learn the bicubic prior.

Table 4: The pansharpening network trained on the World-
View II dataset was tested on the GaoFen-2 dataset. Methods
with * indicate training using our method.

Method SAM↓ EGRAS↓ SSIM↑ PSNR↑

GPPNN 0.121 4.235 0.542 24.225
GPPNN* 0.040 2.259 0.928 38.556

The successful demonstration of operator learning for spectral
modeling is certainly encouraging. It prompts us to explore further
experiments capitalizing on this promising approach. Specifically,

we augmented training and testing by providing the spectral re-
sponse function as additional input. In our view, the neural operator
should thereby model the sensor’s optical properties when opti-
mized across datasets. This would facilitate training a pansharpen-
ing network generalizable to new collections. The results in Table.4
validate our hypothesis to an extent, with our framework outper-
forming traditional techniques significantly.

In conclusion, our method can effectively migrate deep networks
to the original full resolution space without significant performance
loss on reduced resolution. The network trained by our scheme
can generate images with significantly richer and clearer spatial
information at the original full resolution. No matter qualitative
comparison or quantitative comparison, our proposed method can
always generate satisfying performance.

4.4 Comparison of efficiency

Table 5: Efficiency analysis of different methods on the GF2
dataset. Methods with * indicate training using our method.

Method PANNET PANNET* SRPPNN SRPPNN* GPPNN GPPNN*

Parameters(M) 0.233 0.233 0.342 0.342 0.275 0.275
Running Time(s) 0.083 0.081 0.139 0.142 0.551 0.550

Our method requires jointly training FDNet and DSNet models
tailored to each unique satellite sensor’s physical properties and
spectral response. This sensor-specific training, alongside generat-
ing corresponding MS and PAN images from HRMS inputs using
the learned degradation models, increases training time relative
to traditional techniques. However, importantly, once optimized
our framework incurs no additional parameters or computational
cost during inference, as demonstrated by the comparative results
in Table.5. While traditional methods approximate sensor traits,
our approach more authentically represents real acquisition pro-
cesses - necessitating upfront optimization efforts but benefiting
deployment efficiency in operational use. While sensor specificity
elongates initial calibration, the ability to resolve target applica-
tions’ inherent resolutions justifies this investment.

5 CONCLUSION
In this paper, we use the invariance of spectral and spatial degra-
dation processes at the same scale to establish an unsupervised
pansharpening network training framework, introduce operator
learning and other methods to model the degradation process and
do joint training of the two methods, and then use them to train the
consistency loss of the network based on the original resolution.
Extensive experiments demonstrate our approach stably enhances
full-resolution HRMS generation while maintaining network effi-
cacy. Additionally, our framework seamlessly integrates with di-
verse pansharpening architectures without increasing parameters
or degrading inference speed. By enabling resolution-aligned op-
timization through principled degradation modeling, this work
takes a meaningful step toward resolving geospatial details inher-
ently encoded across scales within multispectral imagery. The self-
supervised paradigm holds promise to further advance full-fidelity
image reconstruction from Earth observation satellites critical to
applications in precision agriculture, infrastructure assessment and
more.
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