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1 SUPPLEMENTARY MOTIVATION DETAILS
In this section, we review and outline the development of observa-
tion models and the assumption of scale invariance, which are the
most relevant work to the proposed method, and are also closely
related to our research motivation.

1.1 Observation Models
Observation models are the theoretical basis when implementing
information transformation from high to low dimensions. In the
field of pansharpening, observation models include spatial observa-
tion model (Ds fuction in Fig.2 of the paper) and spectral model (Fd
fuction in Fig.2 of the paper). The former is a resolution degradation
process from HR to LR images, while the latter is a modality degra-
dation procedure from MS to PAN images. Detailed discussions of
them are provided below.

In current methods, there are two mainstream assumptions for
the spectral observation model to establish the link between MS
and PAN images (as Eqs.4 and 5). In other words, these methods
consider that the PAN image (or its gradient) can be modeled as
a linear combination among all bands (or their gradients) of the
MS image. Unfortunately, there is a significant difference in the
response characteristics of MS and PAN sensors, as shown in Fig.4.
As a result, above linear intensity assumption-based methods are
difficult to accurately describe the transformation relationship be-
tween MS and PAN images in the intensity domain. Rather than
choosing to continue to seek more accurate solutions for Eq.4, sub-
sequent methods prefer to establish the transformation relationship
in the gradient domain, as shown in Eq.5.

Since the gradients are relatively sparse, the modality differ-
ences between MS and PAN images can be greatly suppressed in
the gradient domain, which makes the accurate solution of the
transformation relationship in Eq.5 more possible. However, the
wavelength range corresponding to PAN images is often wider than
any channel of MS images, which means it is problematic to require
each channel of the fused image to keep the gradient consistent
with the PAN image.

Let us revisit the definition of the spectral observation model,
which fundamentally captures the relationship between PAN and
MS sensor spectral responses. This connection relates purely to
sensor attributes, exhibiting invariance irrespective of scale or rep-
resentation. However, a simple linear mapping fails to adequately
characterize it. Under this conception, the gradient transforma-
tion assumed in Eq. 5 appears divergent from original intent. More
precisely, the proper course is to pursue more precise intensity
domain mapping from MS to PAN, encapsulating their richer di-
mensional correspondence. Modeling the end-to-end operator su-
pervenes isolated assumptions by holistically optimizing network
functions aligned with imaging process nuance. My self-supervised
framework circumvents theoretical inconsistencies by faithfully
resolving attributes inherently encoded across scales within native
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Figure 1: Significant performance difference of pansharpen-
ing due to scale variance. (a) ERGAS indicates the relative
dimensionless global error in synthesis, and a smaller value
means better performance. (b) PSNR denotes Peak Signal-
to-Noise Ratio, and a bigger value also means better perfor-
mance

observations. Both quantitative and qualitative results reinforce
that this strategy better represents sensor-specific phenomena and
facilitates reconstruction of finer landscape details. Continued ex-
ploration refining such data-driven techniques holds promise to
further strengthen interpretability and fidelity between model in-
terpretations and actual instrument behaviors. The overarching
goal remains enabling robust exploitation of remote sensing data’s
full high-dimensional potential.

1.2 Degenerate Invariance
In the field of computer vision, invariance is a common property
prior, which usually refers to some objective laws that do not change
within some limits. Wald protocol [1] provides a scheme to evaluate
the pansharpening network, that is, using the test results of the
generated data at the reduced resolution scale to judge the network
performance. Subsequent methods have mostly experimented with
this recommendation, thus introducing new scales. In this case, it
is natural to discuss the scale invariance of the various steps in the
task, in other words, we want to get a pansharpening network with
good generalization over the scale range. For this reason, many
people have conducted research and proposed countermeasures,
but they still face some difficulties. So we propose to change the
idea to solve this problem, the extra scale itself is introduced by
us, if the training of the network can be limited to the original
resolution, the requirement of scale invariance can be overcome
naturally.

First, we verify through experiments that the scale changewill ac-
tually affect the performance of pansharpening network, as shown
in Fig.1. Specifically, we follow the degradation framework to per-
form three consecutive spatial downsampling for original MS2 and
PAN1, producing MS and PAN images at different scales. Then, we
adopt a representative framework to obtain three pansharpening
models at Scales 2, 3, 4 under a supervised learning paradigm. The
results show that the performance of the network decreases sig-
nificantly with the change of scale. We still agree with the wald



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

…

Ds (·)

Fd(·)
…

Spectral degradation process 

Spatial degradation process 

HRMS

MS

PAN

𝐻𝑀 ∈ ℝ𝐶×𝐻×𝑊

𝑃 ∈ ℝ1×𝐻×𝑊

𝑀 ∈ ℝ𝐶×ℎ×𝑤

Figure 2: A detailed demonstration of the degradation process.
We try to design a degradation process such as graphically
coupled, that is, the spatial observation model and the spec-
tral observation model are processed in different dimensions
of the image, and such a design satisfies the desired exchange
law of the degradation process.

protocol that the evaluation of network performance can be tested
on different scales. However, based on the above analysis, we be-
lieve that the experiment under full resolution is more in line with
the task requirements.

𝐹𝑑2 (𝐷𝑠1 (HM)) = 𝐷𝑠2 (𝐹𝑑1 (HM)) . (1)

Review several degradation processes under the original scale, It’s
easy to draw a simple inference as Equ.1. If 𝐹𝑑1 = 𝐹𝑑2 holds, we
hope the following boundary conditions be satisfied:

• The spatial observation models of MS and PAN images are
the same, i.e.,𝐷𝑠1 = 𝐷𝑠2.

• The spatial and spectral observation models obey the com-
mutative property, i.e.,𝐹𝑑2 (𝐷𝑠1 (·)) = 𝐷𝑠2 (𝐹𝑑1 (·)).

In fact, from the second commutation law it can be inferred that
the degenerate processes are equal, and if we can decouple the
two degenerate processes, the commutation law can be satisfied
naturally, as shown in Fig.2.

2 DATASET DETAILS
In this section, we go through the building process and details of
the dataset.

There are two datasets used in our experiments, includingWorld-
View II and GF-2. The spatial resolutions of panchromatic images
in these two satellites are 0.5m and 0.8m, respectively, while the
spatial resolutions of their corresponding LRMS images are 1.8
m and 3.2 m with four bands including red, green, blue and near-
infrared. For each used dataset, it is divided into three parts. Besides,
the expansion strategy of tailoring and decomposition is applied
for performing data augmentation on training and validation sets.
After removing images that produce large black areas due to reg-
istration effects, the detail information is shown in the Tables.1
and 2. Notably, the reported numbers of training and validation
data is computed after performing data augmentation. We crop the
panchromatic and LRMS images into 60,000 image patch pairs of
sizes 128 × 128 and 32 × 32, respectively, and then randomly split
them into 90% and 10% as our training data and validation data,
respectively.

Table 1: The basic information for each reduced resolution
dataset.

Datasets WordView2 GaoFen2
Train/Test 768/80 2720/208

PAN 128×128 128×128
LRMS 32×32×4 32×32×4
HRMS 128×128×4 128×128×4

Table 2: The basic information for each full resolution
dataset.

Datasets WordView2 GaoFen2
Train/Test 2779/198 2792/200

PAN 512×512 512×512
LRMS 128×128×4 128×128×4

Specifically, we downsample the originalMS image inWorldView-
2 by a factor of 2, so as to extend the resolution ratio from the origi-
nal 4 to 8. Thus, in the simulation dataset, the spatial resolutions of
the MS images are 3.68 m, and the spatial resolutions of the MS im-
ages are 0.46 m. For each used dataset, it is divided into three parts.
Besides, the expansion strategy of tailoring and decomposition is
applied for performing data augmentation on training and valida-
tion sets. After removing images that produce large black areas due
to registration effects, the detail information is shown in the Table
1. Notably, the reported numbers of training and validation data is
computed after performing data augmentation

3 SUPPLEMENTARY EXPERIMENTAL
RESULTS

In this section, we present more experimental results and compari-
son graphs to more clearly demonstrate the significant promotion
of our method in generating high-quality raw scale HRMS images
on the network. In Fig.3, we chose an image with obvious noise,
in the snowy scene, the presence of rain and fog to form the fore-
ground in front of the actual ground scene. At this time, when the
original model trained under reduced resolution is observed, the
restoration of the texture structure of the scene is greatly interfered
by the noise interference. In contrast, the networks trained using
our method show good quality at this point, and the recovery of
objects’ edges and details appears much clearer.

In addition, we also selected the recovery of texture information
and color information of more typical scenes on other data sets.
As shown in Fig.4, the position of the red box we identified con-
tains relatively more complex information of various types, and the
comparison is more obvious in this scene. As can be seen clearly,
in color, the two images on the right show significantly higher
contrast compared to the left, and the edges and gaps between the
buildings retain more sharp details.

Together with prior quantitative analyses, these visualizations
reinforce the value of our self-supervised optimization paradigm. By
more authentically representing image formation process attributes,
it enables models to better resolve critical high-dimensional content
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Figure 3: Visualize comparison of one sample image from the GaoFen2 dataset.
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Figure 4: Visualize comparison of one sample image from the WorldView2 dataset.
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inherently encoded across scales within remote sensing imagery
collections.

Continued study exploring this style of resolution-matched train-
ing holds promise to further deepen models’ interpretability and
real-world alignment. The overarching goal is facilitating robust

exploitation of satellites’ full resolution potentials for applications
in precision agriculture, infrastructure assessment and beyond.
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