
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILS OF THE EXPERIMENTAL SETUP

Data Sets. We use six data sets: The SVHN data set (Netzer et al., 2011) contains images of street
view housing numbers, which are transformed to gray-scale during pre-processing. The MNIST
data set (LeCun & Cortes, 2010) consists of gray-scale images of handwritten digits. While the
CIFAR10 data set (Krizhevsky et al., 2009) contains 3 × 32 × 32 (low-resolution) images, STL10
(Adam Coates, 2011) contains 3 × 96 (high-resolution) images of objects. Both data sets have 9
overlapping classes (airplane, bird, car, cat, deer, dog, horse, ship, truck) and one different class
(frog in CIFAR10, monkey in STL10). The FashionMNIST/FMNIST data set (Xiao et al., 2017)
contains gray-scale images of clothes and the KMNIST (Clanuwat et al., 2018) data set consists of
gray-scale images of Japanese characters. Each training set is split into in training data (90%) and
validation data (10%).

Transfer Learning Tasks Based on the six data sets discussed above we create four transfer learn-
ing tasks of different relatedness and difficulty. Usually a transfer learning task is simpler if the
source domain is more complex or general compared to the target domain than the other way round.
We consider the following transfer tasks (source domain → target domain): SVHN → MNIST
(highly related), CIFAR10→ STL10 (related and difficult because of the transfer from a simple/low-
resolution to a complex/high-resolution domain), MNIST → KMNIST (related) and FMNIST →
KMNIST (distant).

Models. All models are based on the WideResNet-32-10 architecture (Zagoruyko & Komodakis,
2017) and can be decomposed in a feature extractor and a classifier. The feature extractor consists
of 32 convolutional layers and a widening factor of 10. The classifiers consist of one or four fully
connected layers with GroupSort activation functions (Anil et al., 2019). Models are implemented
in Pytorch and optimized using Adam optimizer and a learning rate of 0.0001. Training is done on
GPUs (1 TB SSD) with early stopping by evaluating the validation set loss using a frequency of 2
and a patience of 10 epochs. Weight normalization is implemented such that each row W

(i)
j ∈ Rn

of the weight matrix W (i) is split into directions V (i)
j ∈ Rn and magnitude g(i)

j ∈ R, i.e. W (i)
j =

g
(i)
j V

(i)
j /||V (i)

j ||. During training, the parameters are updated and the magnitudes are projected

back onto the allowed set restricted by the norm thresholds ki, i.e. g
(i)
j = min(g

(i)
j , ki). Since

L2(x) ⊆ L∞(x), this enforces the desired Lipschitz constant w.r.t. L∞-norm on the weight matrix.
We use the L2 norm of each row, because an update does not clip the largest value to the Lipschitz
constant k (and might result in a matrix with W

(i)
j,k = k for many entries), but preserves the direction

of an updated w.r.t. the row during training.

Attacks. We use two different attack types: Noise attacks and Project Gradient Descent (PGD)
attacks with attack radii of 0.1. The perturbation is bounded by the L2-norm and applied to the input
after data normalization. For adversarial training we use 10-step PGD attacks, while robustness
analysis uses 50-step PGD attacks.

Randomized Smoothing. Randomized smoothing techniques draw samples xi ∼ N (x, σ) from
the close neighborhood of input x, propagate them through the neural network and aggregate the
outputs to obtain a smooth prediction. We use σ = 0.1, draw 500 samples for each input and bind
the probability of returning an incorrect answer/prediction by α = 10−4. Since median smoothing
for multi-dimensional problems must be adapted to the number of dimensions, we scale such that
the overall α remains 10−4 as described in Kumar & Goldstein (2021). Smoothing experiments are
performed on a balanced, randomly chosen subset of the test set, which consists of 1000 instances.

Adversarial Feature and Input search. Since computing adversarial features z′′ for a one-layer
classifier is a linear optimization problem, we solve it be using Gurobi. For the input search we use
project gradient descent (with learning rate 0.05, regularization of 0.1 and at most 1000 steps) and
minimize theL1-distance between adversarial features z′ and features z′′ = f(x′′) corresponding to
input x′. The adversarial feature search and the input search are performed on a balanced, randomly
chosen subset of the test set, which consists of 1000 instances.

12

