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PATHOLOGY DATA AND PROBLEM CHARACTERISTICS

Histopathology is the diagnosis and study of diseases, involving microscopic Pathology slides vary in scanner type, stain, organ, and disease severity
examination of cells and tissue * Prediction tasks span slide, tissue, and subcellular levels in pathology
Pathology data exhibits multi-resolution characteristics Diverse applications include classification and segmentation tasks

REPRESENTATIVE ADAPTATION APPROACH:
SEGMENTATION

PLUTO: PATHOLOGY FOUNDATION MODEL DESIGN
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Figure 1. Overview of PLUTO. A) Outline of the PLUTO multi-resolution adaptation pipeline. Tiles are extracted from PLUTO NSCLC 16 Frozen — 90.2(1.9) 94.0(1.6) 86.1(2.8)  91.2(2.5)
. . . : : _ Meta-DINOv2 ViT-S NSCLC 14 Frozen 88.6(2.0) 92.0(1.9) 72.1(4.1) 81.9(3.8)
WSIs at multiple resolutions and correspond to scales that capture different biological contexts. We organize ShuffleNet NSCLC ] Frozen 83.6(2.4) 90.1(2.0) 722(42)  83.5(3.5)
pathology tasks according to these biological contexts as slide level, tissue level, and cellular & subcellular level ShuffleNet NSCLC - Fine-tuned  88.1(2.2) 93.9(1.5) 42.5(8.0) 90.8(2.1)

tasks, respectively. PLUTO generates embeddings that are task-agnostic and can be used in a variety of
downstream tasks, where adaptation to WSI-level prediction, tile classification, and instance segmentation are

Table 2. Summary of PLUTO performance

shown. B) Detailed PLUTO architecture. WSI tiles at multiple resolutions are masked with varying patch sizes and across public datasets. The tile classification —_— e e
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Figure 4. Throughput (tiles/sec) of models
for tile-level and slide-level classification
tasks. Tasks were performed with various
backbones using patch size 16 with a tile
size 224 x 224, Linear probes and Additive
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 PLUTO is a lightweight, performant, generalizable foundation model for pathology

 PLUTO is designed to take advantage of the multi-scale nature of WSIs and provide
informative representations across biological scales

« PLUTO is trained on a diverse dataset of over 195M image tiles from 50+ distinct

sites
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Figure 2. Dataset characterization for the pre-training dataset. The distribution of the dataset by organ, disease,
stain, scanner, and objective magnification is shown, as well as the distribution of cell point and tissue region
annotations which augment the pre-training dataset. The number of biologically-meaningful substances (e.g.
lymphocyte, blood vessel, Gleason pattern 3 prostate cancer, tumor bed). The large number of source sites (50+)
guarantees large diversity during PLUTO self-supervised pre-training.



