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(a) Qualitative results

Text Two people bow to each other.

Bone PenetrationBackward

The two people hug each other tightly.

Bone Backward

No Contact

Contact

Figure 1: Performance shows of CODA. (a) Qualitative results compared with the baseline (i.e.,
InterMask (Javed et al., 2025)). Our method demonstrates strong commonsense plausibility (e.g.,
fixed bone lengths, correct body structures, realistic contact, and no penetration). (b) Quantitative
results. Our CODA achieves better performance. "→" means the closer to real motion the better.

ABSTRACT

Human interaction generation (HIG) aims to synthesize commonsense-plausible
interaction motion from textual descriptions. However, most existing genera-
tion methods as diffusion and autoregressive models typically overlook explicit
commonsense constraints, leading to implausible motion artifacts such as bone
stretching or penetration. To address these issues, this work proposes a novel learn-
ing paradigm CODA with two core components: Interactive Codebook Storager
(ICS) and Commonsense Constraint Loss (CCL). Specifically, ICS captures and
stores commonsense features of single-person motion and human-human inter-
action, ensuring high-quality motion generation. Based on this, CCL constrains
single-person joint trajectories, regulates the center-of-mass position, and applies
distance and collision constraints in multi-person interactions, effectively suppress-
ing motion artifacts and explicitly enforcing commonsense plausibility. Extensive
experimental results suggest that our CODA generates higher-quality HIG scenarios
than existing state-of-the-art methods.

1 INTRODUCTION

Human Interaction Generation (HIG) strives to synthesize motion sequences that are not only
commonsense plausible but also naturally fluent (Yang et al., 2024; Li et al., 2025b; Guo et al.,
2022). This capability makes it profoundly valuable for many applications such as games, robotics,
and VR/AR (Li et al., 2025a; Qu et al., 2024; 2025; Xing et al., 2024). This practical demand has
stimulated considerable studies on the generation of human motion sequences with textual descriptions
(Guo et al., 2024), especially for single-person scenarios (Chen et al., 2023; Zhang et al., 2025; Li
et al., 2024; Bian et al., 2025; Tevet et al., 2022). However, many practical application scenarios
require describing and demonstrating the process of multi-person interaction. To satisfy it, mainstream
approaches of HIG are divided into two categories: conditional diffusion models (Cai et al., 2024;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Liang et al., 2024; Ruiz-Ponce et al., 2024; Wang et al., 2024; Fan et al., 2025) and mask-based
autoregressive models (Javed et al., 2025). These models have demonstrated promising capabilities
in capturing the intricate multimodal distribution of motions, thereby significantly enhancing the
diversity and quality of motion generation.

Despite achieving advancements, most existing approaches (Javed et al., 2025; Liang et al., 2024) fail
to address a crucial aspect of human motion synthesis: commonsense plausibility, i.e., consistency
with both physical laws and common human interaction patterns. Concretely, these techniques excel
in capturing the correlations between textual semantics and motion features, but they predominantly
rely on implicit representations of commonsense constraints. As a result, executing the “two people
bow to each other” gives rise to individual counterintuitive motions (e.g., elongated legs and backward
leaning), as shown in Fig. 1(a). Moreover, executing the “the two people hug each other tightly”
leads to interactive counterintuitive motions (e.g., missing contact and penetration). Considering
humans’ remarkable sensitivity to even the most minute deviations, motions that lack commonsense
plausibility pose significant obstacles to their deployment in real-world applications (Li et al., 2025b).

For improving commonsense plausibility, PhysDiff (Yuan et al., 2023) and Morph (Li et al., 2025b)
employ reinforcement learning with physics simulators (e.g., IsaacGym) to enforce physical com-
monsense in single-person motion generation. Moreover, Stablemodiffusion (Huang et al., 2024)
and MoMask (Guo et al., 2024) incorporate geometric commonsense through foot-sliding and pose
losses to prevent unrealistic foot movements in single-person motion generation. Despite the progress
made, these methods encounter several key limitations: 1) the frequent simulator invocations increase
computational overhead; 2) a lack of plug-and-play commonsense plausible constraints specifically
designed for interactive motion generation tasks leads to motion artifacts such as bone stretching
and penetration. A natural question arises: Is it possible to design a plug-and-play commonsense
plausible model without relying on simulators?

To answer the above question, we present a novel framework CODA with commonsense-guided
vector quantized variational autoencoder, addressing commonsense implausible motion artifacts
in interactive motion generation. CODA mainly includes two core components: the Interactive
Codebook Storager (ICS) and the Commonsense Constraint Loss (CCL). Specifically, ICS captures
and stores commonsense features from both single-person and two-person interactions at the feature
level to avoid the frequent simulator invocations on post-processing. During the motion generation
stage, commonsense plausible motions can be efficiently generated by simply performing a fast
lookup in the codebook. Furthermore, we designed the plug-and-play CCL to guide ICS in learning
commonsense-consistent features. CCL is composed of both single-person (e.g., center of mass loss
and key joint trajectory loss) and human-human losses (e.g., Gaussian joint distance map loss and
penetration penalty loss). Specifically, the center of mass loss mitigates backward-leaning issues
by regulating body posture through the computation of the center of mass and its angle relative to
the ground. The key joint trajectory loss addresses unnatural bone stretching by ensuring accurate
trajectories of critical joints (e.g., hands, feet, and pelvis). Meanwhile, the Gaussian joint distance map
loss and the penetration penalty loss tackle non-contact and interpenetration problems, respectively,
using a soft-threshold distance strategy and a collision detection method. Building on this, we train
a Conditional Masked Transformer (CMT) to align text descriptions with motion sequences using
a masked prediction strategy. During inference, we adopt an autoregressive strategy to iteratively
predict the masked tokens and generate commonsense-plausible motions. Extensive experiments
demonstrated the effectiveness of our CODA and outperforms the state-of-the-art methods, including
realism, consistency, diversity, physical plausibility, and geometric plausibility (see Fig. 1(b)).

Our main contributions are threefold:

• New Interaction Motion Generation Framework. We propose an autoregressive inter-
active motion generation framework (CODA) to capture individual and human-human
commonsense features from the feature storage and commonsense loss constraints.

• Interactive Feature Storage. We propose an interactive codebook storage that captures
single-person motion and two-person interaction commonsense features, effectively address-
ing the issue of limited interaction capability in a single-codebook method.

• Commonsense Constraint Loss. We propose a commonsense constraint loss with hier-
archical constraints for single-person and human-human scenarios, effectively addressing
issues such as bone stretching, backward leaning, non-contact, and penetration.
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Figure 2: Overview of CODA. CODA is a two-stage autoregressive framework for HIG generation.
In Stage I, commonsense-guided vector quantized variational autoencoder encodes individual and
interactive motion using Interactive Codebook Storager (ICS) under Commonsense Constraint Loss
(CCL) supervision (§3.1). CCL enforces commonsense plausibility via four components: LKTraj
prevents bone stretching, LCOM restricts backward leaning, LGDM addresses non-contact via soft-
thresholding, LPPL penalizes body penetration (§3.1). In Stage II, a Conditional Masked Transformer
(CMT) aligns textual semantics with motion sequences via the Inter-M Transformer (§3.2).

2 RELATED WORK

Human-Human Interaction Generation. Human-Human Interaction generation aims to produce
natural and realistic motion sequences from textual descriptions. Most research on human interaction
generation has focused on two-person interactions, with two primary objectives: i) reaction generation
(Cai et al., 2024; Xu et al., 2024; Ruiz-Ponce et al., 2024), which involves generating the reactor’s
motion in response to the actor’s motion. For instance, in2IN (Ruiz-Ponce et al., 2024) improves
the diversity of interactive motion generation by integrating role-specific action descriptions with
individual priors. ii) interaction generation (Javed et al., 2025; Shafir et al., 2023; Fan et al., 2025),
which involves simultaneously generating the motions of both individuals to ensure a coherent
and dynamic interaction. For example, InterMask (Javed et al., 2025) leverage human identity
symmetry to generate high-quality interaction motions through autoregressive models. However, these
methods struggle to generate commonsense-plausible motions, as they overlook explicit commonsense
constraints during training. In contrast, our proposed CODA effectively incorporates commonsense
constraints, enhancing the commonsense plausibility of the generated motions.

Commonsense plausibility. The goal of commonsense plausibility is to ensure that generated
motions conform not only to physical laws but also to natural human interaction patterns. Ensuring
commonsense plausibility in motion generation remains a challenging task. To enhance the plausibil-
ity, recent studies can be divided into two major groups: i) Physical commonsense plausibility (Li
et al., 2025b; Yuan et al., 2023; Han et al., 2024), which improves the realism of generated motions
via a physics-based reinforcement learning approach; and ii) Geometric commonsense plausibility
(Huang et al., 2024; Guo et al., 2024), which integrates a geometric prior via foot-sliding and pose
constraint losses to strengthen motion plausibility. Despite their success, frequent use of the simulator
increases computational overhead and lacks plug-and-play commonsense plausibility constraints
specifically designed for interactive motion generation. This leads to implausible motion generation,
such as bone stretching and penetration. In contrast, our CCL enhances the plausibility of interactive
motions through hierarchical constraints without relying on a simulator, and it is plug-and-play.

3 METHODS

Our goal is to generate the interaction motion of two people given a textual description, denoted
as {mp}p∈{a,b}. Here, mp ∈ RN×J×d represents the motion sequence of an individual (either a
or b), consisting of N poses, each with J joints and d-dimensional joint features. As illustrated in
Fig. 2, our CODA consists of two stages. In the first stage, Commonsense-guided Vector Quantized
Variational AutoEncoder (CVQ-VAE) extracts and stores individual and interaction commonsense
features through ICS under the guidance of CCL (§3.1). In the second stage, building on CVQ-VAE,
the CMT leverages a masking strategy and feature alignment to ensure text-motion consistency (§3.2).
The inference process of generation is detailed (§3.3).
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3.1 COMMONSENSE GUIDED VECTOR QUANTIZED-VARIATIONAL AUTOENCODER

In interactive motion generation (Javed et al., 2025; Liang et al., 2024), diffusion-based methods
generate motion through iterative denoising but often produce unnatural and commonsense implausi-
ble results. In contrast, the autoregressive method utilizes a single motion codebook to store motion
information, thereby improving the generation quality. However, as shown in Fig. 1(a), we observe
that relying solely on a single codebook limits the ability to capture implausible interactive motion,
leading to artifacts such as bone scaling, backward leaning, lack of contact, and body penetration.

CVQ-VAE. To address these challenges, we propose a CVQ-VAE, including two core components:
an Interactive Codebook Storager (ICS) and a Commonsense Constraint Loss (CCL). Specifically,
ICS effectively captures and stores both individual motion and interaction features, while CCL
introduces individual and interaction constraints to guide the learning of commonsense information,
improving the commonsense plausibility of motions.

ICS. Inspired by the shared codebook storage strategy for high-level semantics and low-level details
proposed in UniTok (Ma et al., 2025), we design ICS to extract and store single-person and interaction
features separately using pose (C) and interaction (P) codebooks. As illustrated in Fig. 2, given
an input motion sequence xp, we first project it into the latent space t̃p∈{a,b} ∈ Rn×j×d′

using a
shared ResNet-based encoder (φ). Each d′-dimensional latent feature is then quantized by replacing
it with its nearest neighbor in the single-person pose codebook C = {ck}|C|−1

k=0 , resulting in the
quantized sequence tp = Q(̃tp). Q denotes the vector quantization. Then, we utilize self-attention
and cross-attention to extract and capture interactive motion features:

z̃a = ψa(ta), z̃b = ψb(tb), ža = ϕa(z̃a, z̃b), žb = ϕb(z̃b, z̃a), (1)

where ψ denotes the self-attention, and ϕ represents the cross-attention. Subsequently, we replace žp
with the closest entry in the interaction codebook P = {ρk}|P|−1

k=0 , generating the quantized sequence
zp = Q(žp). Next, we integrate individual and interactive information through vector summation:

wa = za + ta, wb = zb + tb, (2)

finally, the pose decoder (φ̂) and commonsense decoder (φ̃) reconstruct the pose motion m̂p = φ̂(wp)
and commonsense motion ẑp = φ̃(zp), respectively. At this stage, the training objective of our
CVQ-VAE consists of two motion reconstruction losses and two commitment losses:

Lcvq = ∥mp − m̂p∥1 + α∥̃tp − sg(tp)∥22 + ∥zp − ẑp∥1 + β∥z̃p − sg(zp)∥22, (3)

where sg(·) denotes the stop-gradient operation, and α and β is a weighting factor. We use Exponen-
tial Moving Average (EMA) and codebook reset to update C and P .

CCL. To enhance the commonsense plausibility, we propose the CCL, which explicitly guides ICS in
extracting and storing commonsense-plausible features. CCL consists of two components: 1) Center
of mass loss and Key joint trajectory loss correct backward-leaning and unnatural bone stretching by
regulating body posture and critical joint trajectories, respectively; 2) Gaussian joint distance map
loss and Penetration penalty loss respectively address non-contact and penetration issues through a
soft-threshold distance and collision detection method.

Center of mass loss. From a biomechanical perspective, the human body can self-adjust during
movement, ensuring that the center of mass (COM) remains within a stable region to prevent losing
balance. If the COM shifts too far backward, the body must compensate through the feet or torso,
which can lead to unnatural body postures (Zhang et al., 2022). Therefore, we propose a COM loss
function based on distance and angle, which penalizes poses that violate biomechanical principles,
ensuring that the generated motions are more commonsense plausible. The formula is as follows:

LCOM = ∥C(m̂p)− C(mp)∥22 + ∥A(m̂p)− A(mp)∥22 , (4)

where C denotes the distance from COM to pelvis joint, and A denotes the cosine of the angle
between the line connecting the pelvis joint and the COM and the horizontal plane, reflecting the
angle variation. Moreover, since studies (Zell et al., 2017) of human joints primarily focus on the
relative motion and interactions between joints rather than absolute forces, the mass of each joint is
set as 1. At this point, COM = 1

J

∑J
j=1 JP . JP denotes the coordinates of the joint j in 3D space.

Key joint trajectory loss. During the generation of interactive motions from textual instructions,
physical contact between the hands and other individuals, as well as between the feet and the ground,
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introduces forces and reaction forces that influence skeletal positions (Zhang et al., 2022; Słowiński
et al., 2016). These effects lead to incorrect codebook index selection for contact joints, resulting in
unnatural bone stretching or compression. To alleviate this issue, we design a key joint trajectory
loss, which measures the distance between the predicted and ground-truth trajectories of key joints
on the XZ plane, thereby ensuring fixed bone lengths and commonsense plausibility of end-effectors
in the generated motions. The formula is as follows:

LKTraj =
1

T

∑
t

||m̂k(t)−mk(t)||1, (5)

where t is the frame index at time t. m̂k and mk denotes the motion features of m̂p and mp after
extracting the key joints k (i.e., hands, feet, and pelvis joints) as described in (Wan et al., 2024).

By incorporating LCOM and LKTraj, our model effectively mitigates issues such as backward leaning
and bone stretching, significantly enhancing the quality of single-person motion generation. However,
in interactive scenarios, noncontact cues such as speech and facial expressions are insufficient; com-
monsense interactions like hugging, handshaking, and pushing/pulling are also essential. As shown
in Fig. 1(a), when executing the "hug" instruction, InterMask exhibits commonsense-implausible
motions, e.g., non-contact and severe interpenetration.

Gaussian joint distance map loss. To address the non-contact issue, we propose a Gaussian joint
distance map (GDM) loss at the joint level, aimed at guiding the model to pay greater attention to
the local interactive relationships between individuals. Specifically, we first compute the Euclidean
distances between each pair of joints across individuals, denoted as the predicted distances (Dpred

ij )
and ground-truth distances (Dgt

ij). Then, we employ a Gaussian weighting mechanism to compute
soft-threshold weights for the distances between predictions and ground truth, enabling bidirectional
supervision of whether contact occurs between individuals. The formula is as follows:

LGDM =
1∑

i,j

wpred
ij + ϵ

∑
i,j

wpred
ij ||D

pred
ij − Dgt

ij ||1 +
1∑

i,j

wgt
ij + ϵ

∑
i,j

wgt
ijDpred

ij , (6)

where the first term guides local optimization with predicted weights, emphasizing the model focus
on restoring distances in the areas it deems important. The second term reinforces the commonsense
consistency of the perceived region with ground-truth weights, preventing the occurrence of uncon-
tacted issues. ϵ = 1e−7 is a small constant added to the denominators to avoid division by zero.
w∗
ij = exp

(
−(D∗

ij)
2/2τ2

)
denotes the Gaussian weighting mechanism. It assigns higher weights

to joint pairs that are closer in distance, while the weights of distant pairs quickly decay, thereby
focusing on the potential contact areas. Here, τ = 0.5 is a temperature coefficient. The loss converges
to 0 when predicted distances match the ground truth and all required contacts are perfectly achieved.

Penetration penalty loss. Since most existing interactive motion generation methods (Javed et al.,
2025; Liang et al., 2024) lack explicit commnonsense constraints, the generated motions often
produce penetration artifacts. To address this, we propose a body-level Penetration Penalty Loss
(PPL). First, we detect spatial overlaps between body parts (e.g., left/right legs, left/right arms, and
spine) using Axis-Aligned Bounding Boxes (AABB). If an overlap is detected, we then compute the
minimum bone-to-bone distance between each pair of body-part chains. When the predicted distance
dpred is below the ground truth minimum distance dgt, the loss penalizes the predicted values for being
too small, while also introducing a mean squared error term for the minimum distance to maintain a
reasonable distance distribution. The formula is as follows:

LPPL =
1

CH

CH∑
ch=1

1
ch
overlap ×

[
max

(
0, 0.9× dgt

ch − dpred
ch

)
+

(
dpred

ch − dgt
ch

)2
]
, (7)

where 1overlap indicates whether an AABB overlap occurs, and CH is the number of valid bone chain
pairs. The loss is averaged across all considered body part pairs to ensure detailed modeling and
effective constraint of potential inter-body penetration motion.

Overall Training Objective. We jointly optimize the CVQ-VAE training loss and CCL (cf., Algo-
rithmic 1 ) by weighting parameters, enhancing generation motions commonsense plausibility:

LCCL = λCOMLCOM + λKTrajLKTraj + λGDMLGDM + λPPLLPPL, (8)
Lreg = Lcvq + LCCL, (9)

where λCOM, λKTraj, λGDM, and λPPL are the weight balance parameters.
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3.2 CONDITIONAL MASKED TRANSFORMER

As shown in Fig. 2, we employ a Conditional Masked Transformer (CMT) with a masking strategy
to capture the motion tokens of two individuals. Specifically, the features extracted by the encoder
are discretized using a pose codebook to obtain token representations {ta, tb}. These token represen-
tations are then fused through stretching and concatenation. A randomly applied masking strategy,
controlled by a cosine scheduling function (Chang et al., 2022), is used to enhance the model’s ability
to learn contextual dependencies. Next, the masked features are combined with text features extracted
by CLIP (Radford et al., 2021) and fed into the Inter-M Transformer (Javed et al., 2025). Through a
spatio-temporal attention mechanism, the model effectively captures spatio-temporal dependencies
while aligning text and motion semantics. Finally, a cross-entropy loss is used to predict the masked
tokens, facilitating the alignment of cross-modal information.

3.3 INFERENCE

𝒕𝒂(𝟎)

𝒕𝒃(𝟎)

𝐈-1 steps

𝒕𝒂

𝒕𝒃

𝒕𝒂(𝟏)

𝒕𝒃(𝟏)

Sep Sep Sep

IM
T

C
LIP

Two people 
hugging each other.

Interac�on 
Codebook

Remask

Figure 3: Inference process. Starting from masked
Tokens, IMT injects interaction features to produce
tokens that are subsequently decoded into motions
using the decoder.

As shown in Fig. 3, our architecture starts with
a fully masked sequence t(0) and employs the
Inter-M Transformer (IMT) to iteratively gen-
erate motion tokens for both individuals over I
iterations. To enhance the commonsense plau-
sibility, interaction features are incorporated via
a residual connection that queries an interaction
codebook. At each iteration, the IMT predicts
token probabilities at the masked positions. To-
kens with the lowest confidence are then resam-
pled and remasked, guiding the model to focus
on uncertain regions in subsequent iterations.
This iterative refinement continues until the fi-
nal iteration I is reached. Finally, the tokens are
decoded into motion by the decoder.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND EVALUATION

Dataset. Following InterMask(Javed et al., 2025), we adopt the InterHuman dataset (Liang et al.,
2024) to evaluate CODA on the task of text-conditioned human interaction generation. InterHuman is
the first dataset that provides text annotations for two-person interactions, comprising 7,779 motion
sequences paired with 23,337 unique descriptions. The dataset is divided into training, validation,
and test sets with a ratio of 0.78:0.07:0.15. More details in Appendix A.

Evaluation Metrics. We quantitatively evaluate the commonsense plausibility of the generated
motions from five perspectives. These include realism (e.g., FID), semantic consistency (e.g., R-
Precision and MM-Dist), Diversity, physical plausibility (e.g., Physical Body Contact (PBC)), and
geometric plausibility (e.g., Interpenetration (IP), Mean Per-Joint Position Error (MPJPE)). More
details in Appendix B.

Implementation Details. For comparison, we adopt the same convolutional residual encoder-decoder
architecture as used in InterMask (Javed et al., 2025). The downsampling factor is set to 4, and
both the pose and interaction codebooks have a size of 1024. The loss balancing hyper-parameters
for the CCL are set as follows: λCOM = 1, λKTraj = 1, λGDM = 0.5, and λPPL = 0.01. In addition,
CLIP-ViT-L/14 (Radford et al., 2021) is used as the text encoder, and the IMT follows the same
configuration as in InterMask. During inference, the number of iterations is set to 20 for interaction
generation. More details in Appendix C and D. Our code is in the supplementary materials.

4.2 COMPARE WITH THE STATE-OF-THE-ART

Comparison of motion quality. Tab. 1 summarizes the comparison between our method CODA
and state-of-the-art approaches on the InterHuman dataset. CODA achieves the best performance in
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Table 1: Quantitative evaluation on the InterHuman test set. We run all the evaluations 20 times.
± indicates a 95% confidence interval. Bold indicates the best result, while underline refers to the
second best. “→”: closer to real motion is better. “†”: reproduced results from the official weight.

Methods R Precision↑ FID↓ MM Dist↓ Diversity→
Top 1 Top 2 Top 3

Real 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064

T2M (Guo et al., 2022) 0.238±.012 0.325±.010 0.464±.014 13.769±.072 4.731±.013 7.046±.022

MDM (Tevet et al., 2022) 0.153±.012 0.260±.009 0.339±.012 9.167±.056 6.125±.018 7.602±.045

ComMDM (Shafir et al., 2023) 0.223±.009 0.334±.008 0.466±.010 7.069±.054 5.212±.021 7.244±.038

FreeMotion (Fan et al., 2025) 0.326±.003 0.462±.006 0.544±.006 6.740±.130 3.848±.002 7.828±.130

InterGen† (Liang et al., 2024) 0.434±.007 0.592±.007 0.672±.006 6.446±.089 3.797±.001 7.872±.023

InterMask† (Javed et al., 2025) 0.456±.004 0.610±.004 0.689±.004 5.843±.088 3.792±.001 8.055±.035

Ours 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

InterMask InterPAR (Our)

The two people hug each other �ghtly.

Start End

One person sneaks up on the other from behind.

Two people are boxing. One is con�nuously punching while the other is defending and countera�acking .

Figure 4: Qualitative comparison between CODA and InterMask on the InterHuman dataset.

R-Precision, FID, MM-Dist, and Diversity. Specifically, compared with diffusion-based generation
methods (e.g., FreeMotion (Fan et al., 2025), InterGen (Liang et al., 2024)), CODA increases R
Top-3 by 2.1% and reduces FID by 1.088, demonstrating its superior ability to maintain text-motion
consistency while improving generation quality. Compared with the autoregressive model (e.g.,
InterMask(Javed et al., 2025)), our approach improves R Top-3 by 0.2% and lowers FID by 0.485.
These results indicate that the proposed commonsense information storage mechanism and plausible
constraints loss effectively suppress motion artifacts and enhance motion quality.

Table 2: Comparison of motion plausibility on the
InterHuman dataset.

Methods PBC→ IP↓ MPJPE ↓

Real 9.524±.065 20.0816±.022 0.000±.000

InterMask† 8.359±.188 20.196±.020 0.419±.002

Ours 10.334±.220 20.193±.021 0.415±.003

Comparison of motion plausibility. Tab.2 com-
pares CODA with state-of-art methods (e.g. In-
terMask) in terms of motion plausibility. Our
CODA achieves -0.003 IP, -0.004 MPJPE, and
the best PBC, indicating more plausible motion
generation. These results are attributed to the
hierarchical constraints imposed by CCL, which
effectively incorporate commonsense priors to mitigate issues such as bone stretching, body leaning,
missing contacts, and interpenetration, thereby enhancing the plausibility of the generated motions.

Qualitative Comparison. Fig. 4 provides a qualitative comparison of interaction motion generated
by our CODA and InterMask (Javed et al., 2025) on the InterHuman dataset. For the first prompt,
InterMask suffers from issues of unintentional separation and penetration, while CODA ensures
contact is maintained while avoiding penetration. For the second prompt, InterMask generates
a leaning backward issue for the first person, whereas CODA suppresses this unrealistic posture.
Finally, for the third prompt, InterMask encounters a skeletal stretching issue, while CODA generates
a more reasonable skeletal distribution. These examples demonstrate that CODA generates more
realistic, higher-quality, and plausible interactions than InterMask.

4.3 ABLATION STUDY

7
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One person runs quickly around the other, while the other
stands mo�onless, scanning side to side.

One person raises their arm skyward as the other jumps
toward them.

Pose codebook

Jump

Interaction codebook

(a) (b)

Walk

Hug

Shake hands

Figure 5: (a) t-SNE visualization of codebook features in the ICS; (b) Challenging cases visualization.

Start End

The first person shakes hands with the second to say hello. Two persons walk forward while hugging each other.

W/
&

W/

W/

CVQ-VAE

W/

W/

CVQ-VAE

CODA (Our)

VQ-VAE

Baseline

VQ-VAE

Figure 6: Visual comparison of ablation experiments on the InterHuman dataset.

Table 3: Ablation Analysis of VQ-VAE (i.e., Inter-
Mask) vs CVQ-VAE (i.e., w/ ICS).

Methods Top 1↑ FID↓ MM Dist↓ Diversity→

VQ-VAE 0.456±.004 5.843±.088 3.792±.001 8.055±.035

CVQ-VAE 0.448±.006 5.603±.064 3.791±.001 8.006±.032

Effectiveness of ICS. Tab.3 and Fig.5(a) pro-
vide ablation studies for ICS from both quan-
titative and qualitative perspectives. In Tab.3,
CVQ-VAE vs VQ-VAE obtains -0.24 FID. In
Fig.5(a), we use the t-SNE to visualize the dis-
tributions of the pose and interaction codebooks
while also locally visualizing their corresponding motions. We observe that two codebooks form
distinct distributions, with each codebook capturing its respective motion patterns. These results
prove that ICS has an excellent ability to store single- and multi-person motion information, which
provides a foundation for enhancing motion plausibility. More details in Appendix I.

Effectiveness of Single-Person loss constraints. Tab. 4 presents an ablation study of our proposed
single-person loss constraints LCOM and LKTraj. We can observe that incorporating LCOM significantly
reduces the FID score by 0.514 (A vs B), while introducing LKTraj increases multimodality by 0.044
(A vs C). In Fig. 6, the motion generated by InterMask exhibits issues such as leaning back and
skeletal stretching. In contrast, incorporating the single-person loss constraints into InterMask results
in correct skeletal motion during the "shake" action, without leaning backward problems. These
results show that the LCOM improves body balance, while the LKTraj constrains excessive bone
stretching. More experiments in Appendix H.

Effectiveness of Human-Human loss constraints. Tab. 5, Tab. 6, and Fig. 6 evaluate the effec-
tiveness of Human-Human loss constraints (e.g., LGDM and LPPL) in mitigating penetration and
non-contact issues. In Tab. 5, starting from a COM loss baseline, adding the LGDM reduces the FID
by 0.1 (LGDM vs LDM (Liang et al., 2024)), indicating effective alleviation of non-contact problems.
This improvement is attributed to the soft-thresholding strategy, which grants the model greater

8
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Table 4: Ablation study on single-person con-
straint losses of CODA (VQ-VAE) on the Inter-
Human test dataset. Baseline denotes InterMask.
Index LCOM LKTraj TOP 1 ↑ FID ↓ Diversity →

A Baseline 0.456±.004 5.843±.088 8.055±.035

B ✓ 0.450±.005 5.043±.086 7.996±.023

C ✓ ✓ 0.440±.005 5.846±.091 8.040±.032

Table 5: Ablation study on contact loss func-
tion of CODA (CVQ-VAE). LDM represents the
masked joint distance map loss.

Index LDM LGDM TOP 1 ↑ FID ↓ Diversity →

A ✓ 0.464±.006 5.487±.057 7.967±.030

B ✓ 0.443±.007 5.387±.071 0.767±.029

Table 6: Ablation study on Human-Human constraint losses of CODA on the InterHuman dataset.

Index LCOM LKTraj LGDM LPPL TOP 1 ↑ FID ↓ MM Dist ↓ Diversity →
CVQ-VAE

A ✓ ✓ ✓ 0.443±.005 5.979±.086 3.796±.001 8.033±.036

B ✓ ✓ ✓ ✓ 0.456±.006 5.358±.070 3.790±.001 8.000±.032

flexibility in capturing trends in contact motions. In Tab. 6, while KTraj loss slightly enhances
diversity, it leads to a decline in motion generation quality. In contrast, incorporating our proposed
LPPL substantially improves all evaluated metrics. demonstrating its ability to balance multiple loss
objectives. Furthermore, Fig. 6 illustrates that generation methods without loss constraints suffer
from non-contact and penetration artifacts. By contrast, motions generated with Human-Human
loss constraints successfully capture interactive actions such as “shake” and “hug”. These results
demonstrate that the commonsense constraints introduced by CODA effectively enhance the plausi-
bility of behavior generation, successfully mitigating issues such as skeletal stretching, body leaning,
non-contact, and penetration. For more details, please refer to the supplementary video.

Visualization of Challenging Cases. To verify the robustness of CODA, we performed experiments
involving intense movements such as running and jumping. In Fig. 5 (b), CODA is capable of
performing the first instruction “run” while simultaneously executing the second instruction “jump”
with mid-air actions. These success cases are attributed to: (1) the ICS and large code size enhance
the richness of motion information and ensure higher motion quality; (2) Jointly employing LCOM
and LKTraj improves body stability and constrains excessive skeletal stretching.

Table 7: Plug-and-play experiment of CCL.
Methods Top 1↑ FID↓ MM Dist↓ Diversity→

InterGen 0.434±.007 6.446±.089 3.797±.001 7.872±.023

w/ LCCL 0.491±.007 5.762±.079 3.772±.001 7.891±.025

InterMask 0.456±.004 5.843±.088 3.792±.001 8.055±.035

w/ LCCL 0.456±.006 5.358±.070 3.790±.001 8.000±.032

Plug-and-play validation of CCL. Tab. 7
presents ablation studies by adding LCCL to In-
terGen and InterMask to verify its plug-and-play
property. We observe that after adding LCCL

to InterGen, R Top1 increases by 5.7% and FID
decreases by 0.674. For InterMask, adding this
loss keeps R Top1 unchanged while reducing
FID by 0.485. Both models show significant performance improvements, demonstrating that CCL
can not only be seamlessly applied to diffusion and autoregressive methods but also enhances
text-to-motion consistency and generates motion quality.

5 CONCLUSION AND LIMITATION

Conclusion. In this work, we proposed CODA, a novel framework for human interaction generation,
which achieves commonsense plausibility without relying on motion simulators. By leveraging ICS as
a commonsense memory and CCL as a hierarchical constraint, CODA effectively suppresses motion
artifacts such as bone stretching, body leaning, missing contacts, and interpenetration. Extensive
experiments demonstrate that CODA is efficient, flexible, and outperforms state-of-the-art methods
in generating high-quality, commonsense-plausible human motions.

Limitations and Future Work. While our method significantly improves the commonsense plausi-
bility of human interaction generation, it is currently limited by its training on single- and two-person
datasets, which restricts its direct applicability to more complex multi-person interaction scenarios.
To overcome this limitation, future work will explore enhancing the cross-attention mechanism with
a multi-codebook storage strategy, enabling the concatenation and joint modeling of features from
multiple individuals. This extension is expected to facilitate more natural, coherent, and scalable
modeling of complex multi-person interactions.
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LLM usage statement. We employed large language models (LLMs) as auxiliary tools during
manuscript preparation. Their use was strictly limited to surface-level editing tasks, including
grammar correction, minor rephrasing, and stylistic improvements to enhance readability. At no
point did we rely on LLMs for generating research ideas, methods, experiments, or conclusions. All
technical content and analysis presented in this paper are the sole work of the authors.

Overview. The supplementary includes the following sections:

• Human pose data and rendering methods (§A).
• Evaluation metrics (§B).
• Implementation Details (§C and §D).
• Algorithm (§E).
• Hyperparameter Setup (§F).
• More Our Results (§G).
• More Experiments on KIT-ML (§H).
• Visualization Details of ICS(§I).
• Potential Broader Impacts (§J).

The visualization videos and code will be provided in the supplementary materials package.

A HUMAN POSE DATA AND RENDERING METHODS

In this section, we first introduce the skeletal data of the InterHuman dataset, followed by the skinning
method and rendering tools employed. The specific details are presented as follows:

InterHuman dataset. It is the first dataset with text annotations for two-person interactions, contain-
ing 7,779 motion sequences and 23,337 unique descriptions. As shown in Fig. 7 (a), InterHuman
follows the AMASS (Mahmood et al., 2019) skeleton representation with 22 joints, including the
root joint. Each motion sequence representation is formulated as:

xi = [jpg, j
v
g , j

r, cf ] (10)

where the i-th motion state xi is defined as a collection of global joint positions jpg ∈ R3Nj , velocities
jvg ∈ R3Nj in the world frame, 6D representation of local rotations jr ∈ R6Nj in the root frame, and
binary foot-ground contact features cf ∈ R4, Nj = 22 denotes the joints number.

Skinning and rendering. To render the generated human skeletons in an aesthetically pleasing
anime style, we first downloaded the T-Pose skinned models of anime characters from Mixamo in
Fig. 7 (b). Next, the generated human skeletons were converted into BioVision Hierarchy (BVH)
format compatible with Blender. Finally, using the Rokoko plugin in Blender 4.2, the BVH skeleton
animations were rigged to the T-Pose skinned models according to the skeletal joints, thereby
achieving synchronized motion between the skeletons and the anime characters.

B EVALUATION METRICS

We quantitatively evaluate the commonsense plausibility of the generated motions from five per-
spectives. These include realism (e.g., FID), semantic consistency (e.g., R-Precision and MM-Dist),
Diversity, physical plausibility (e.g., Physical Body Contact (PBC)), and geometric plausibility (e.g.,
Interpenetration (IP), Mean Per-Joint Position Error (MPJPE)). The details are as follows:

Fréchet Inception Distance (FID): FID is computed by first extracting features from both generated
and real motions. Then it evaluates the distance between the distributions of these two feature sets.

R-Precision: For each generated motion, a candidate pool is constructed comprising its ground-
truth textual description and 31 randomly selected mismatched descriptions from the test set. The
Euclidean distances between the motion feature and the text features of all candidates are computed
and ranked. Retrieval is considered successful if the ground-truth description appears in the top-k
entries. The final R-Precision is reported as the average accuracy at top-1, top-2, and top-3 ranks.
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(a)

Aj Amy

Mousey Kaya

(b)

Figure 7: (a) AMSS skeleton; (b) The character skinning from the Mixamo website.

Matching Distance (MM Dist): MM Distance quantifies the alignment between generated motions
and their corresponding text descriptions. It is defined as the mean Euclidean distance between the
motion feature and the feature of its associated text description in the test set.

Diversity: Diversity measures the variability among generated motions. Two random subsets of gen-
erated motions, each of size Sd, are sampled. For each subset, motion feature vectors {v1, . . . ,vSd

}
and {v′

1, . . . ,v
′
Sd
} are extracted. Diversity is then computed as:

Diversity =
1

Sd

Sd∑
i=1

∥vi − v′
i∥2 . (11)

Physical Body Contact (PBC): To overcome the limitation of the Physical Foot Contact Score,
which only considers the lower body, PBC (Physical Body Contact) incorporates factors related to the
neck and hands based on PFC, extending the evaluation scope to the entire body (Luo et al., 2024).
The formulas are as follows:

PBC =
1

N

N∑
i=1

[
− vilfoot·virfoot·airoot+v

i
lhand·vilchest·ailchest+v

i
rhand·virchest·airchest+v

i
head·vineck·aineck

]
(12)

where "l" denotes the joints on the left side and "r" denotes the joints on the right side.

Interpenetration: Interpenetration computes the average volumetric overlap of human meshes in
two-person scenarios. Specifically, each human body is approximated by 45 spheres, and the volume
intersecting these spheres is calculated to obtain a measure of interpenetration (Yao et al., 2025).

Mean Per-Joint Position Error (MPJPE): MPJPE compares joint positions between position-based
and rotation-based motion representations. It captures discrepancies between motion components,
emphasizing the importance of decoupled evaluation and application.

C BASELINE IMPLEMENTATION

To ensure fair comparisons in our experiments, all baseline methods are trained and tested using a
two-stage process on the same dataset. During training, the first stage employs a VQ-VAE model
with a batch size of 512. In the second stage, due to the memory limitations of the RTX 3090
GPU, we adopt a gradient accumulation strategy in the Inter-M Transformer to mitigate performance
degradation caused by a smaller batch size. Specifically, the batch size is set to 12 with 8 accumulation
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steps. Except for the above settings, all other training and inference hyperparameters follow the
official configurations provided in the InterMask (Javed et al., 2025).

D IMPLEMENTATION DETAILS

In this section, we describe the proposed CODA model architecture and the experimental details of
the training and inference stages. Further details are provided in Section D.1 and Section D.2.

D.1 MODEL ARCHITECTURE

The Motion CVQ-VAE architecture utilizes 2D convolutional residual blocks in both its encoder
and decoder. Temporal downsampling is fixed at a ratio of n/N = 1/4 across both datasets, while
spatial downsampling is dataset-specific: j/J = 5/22 for InterHuman. Downsampling in the
encoder is achieved using strided convolutions, whereas the decoder employs upsampling followed
by convolutional layers to restore the original dimensions. The latent representations generated by
the CVQ-VAE have a dimensionality of d′ = 512. The size of the single-person pose codebook is
|C| = 1024, and the size of the interaction codebook is |ρ| = 1024.

For the Inter-M transformer, we adopt L = 6 transformer blocks, each comprising 6 attention heads.
The embedding dimension for the transformer is set to d̃ = 384.

Table 8: CVQ-VAE and Inter-M Transformer Model Parameters.

Parameter Value Description

d′ 512 Latent space dimension of CVQ-VAE
|C| 1024 Single-person pose codebook size
|ρ| 1024 Interaction Codebook size
n/N 1/4 Temporal downsampling factor for both datasets
j/J (InterHuman) 5/22 Spatial downsampling for InterHuman dataset
L 6 Number of transformer blocks
Attention heads 6 Number of attention heads per block
d̃ 384 Transformer embedding dimension
CLIP version ViT-L/14@336px Version of CLIP used for text in transformer

Table 9: Training Hyperparameters for the CVQ-VAE and Inter-M Transformer.

Parameter Value Description

CVQ-VAE batch size 256*2 Batch size and accumulation steps of CVQ-VAE
Transformer batch size 12*8 Batch size and accumulation steps of transformer
Initial learning rate 0.0002 Starting learning rate for both models
Learning rate decay 0.1 / 1/3 Decay factor for CVQ-VAE / Transformer learning rate
α and β 0.02 Commitment loss factor for CVQ-VAE
λvel, λfc, λbl (InterHuman) 100, 500, 5 Geometric loss weights for InterHuman
Condition drop prob. 0.1 Drop probability for text conditioning during transformer training
pr 0.8 Random Masking probability for stage 1 masking during training

D.2 TRAINING AND INFERENCE DETAILS

The CVQ-VAE is trained for 50 epochs using a batch size of 256 with gradient accumulation, where
the accumulation step is set to 2. The learning rate is initialized at 0.0002 and follows a multistep
decay schedule, decreasing by a factor of 0.1 after 70% and 85% of the total iterations. A linear
warm-up is applied during the first 25% of the iterations. The geometric losses for velocity, foot
contact, and bone length are weighted differently in the data sets.

The Inter-M transformer is trained for 500 epochs using gradient accumulation with a batch size of
12 and an accumulation step of 8. A similar multistep learning rate decay strategy is employed, where
the learning rate is reduced by a factor of 1/3 at 50%, 70%, and 85% of the total iterations.
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During inference, the number of iterations I is set to 20 for interaction generation. A classifier-free
guidance (CFG) scale of 2 is applied, and the temperature is set to 1 to balance diversity and coherence
in the generated results.

E ALGORITHM

Algorithm 1 provides a detailed computation process of the physical constraint loss. To ensure
reproducibility, we will release the code in the future.

Algorithm 1 The computation of Physical Constraint Loss (CCL)

Require: m̂, m: Predicted and ground-truth motions with shape [B, T, J, 3], λCOM, λKTraj, λGDM,
and λPPL: Weight coefficients, τ : Temperature coefficient, CH: Number of body-part chains, root:
Pelvis joint.

Ensure: LCCL: Commonsense Constraint Loss

1: /* Common Geometric Loss (e.g., foot contact, velocity, bone length)*/
2: Lgeo ← Lfc + Lvel + Lbl

3: /* Center-of-Mass (COM) Loss*/
4: ĉ← 1

J

∑
j m̂j , c← 1

J

∑
j mj

5: C(·)← ∥c∗ − root∥2
6: A(·)← cos(c∗ − root, XY-plane)
7: LCOM ← ∥C(m̂)− C(m)∥22 + ∥A(m̂)− A(m)∥22
8: /* Key Joint Trajectory Loss */
9: k ← Select key joints (e.g., hands, feet, pelvis).

10: LKTraj ← 1
T

∑
t ∥m̂k(t)−mk(t)∥1

11: /* Gaussian Joint Distance Map (GDM) Loss */
12: Dpred, Dtgt ← Compute pairwise distance maps

13: Wpred ← exp
(
− (Dpred)

2

2τ2

)
, Wtgt ← exp

(
− (Dtgt)

2

2τ2

)
14: L(1)

GDM ←
|Dpred−Dtgt|·Wpred∑

Wpred+ε , L(2)
GDM ←

|Dpred|·Wtgt∑
Wtgt+ε

15: LGDM ← L(1)
GDM + L(2)

GDM

16: /* Penetration Penalty Loss (PPL) */
17: LPPL ← 0
18: for ch = 1 to CH do
19: 1

ch
overlap ← Axis-Aligned Bounding Boxes (AABB) overlap

20: dpred, dgt ←Minimum inter-chain distance
21: Lch

PPL ← 1
ch
overlap ×

[
max(0, 0.9× dgt − dpred) + (dpred − dgt)2

]
22: LPPL ← LPPL + LchPPL
23: end for
24: LPPL ← 1

CHLPPL

25: /* Final Aggregation */
26: LCCL ← Lgeo + λCOMLCOM + λKTrajLKTraj + λGDMLGDM + λPPLLPPL
27: return LCCL

F HYPERPARAMETER SETUP

As shown in Tab. 10–13 and Fig.8, we systematically evaluated the impact of four physical constraint
loss hyperparameters (e.g., λCOM, λKTraj, λGDM, and λPPL) on model performance. The experimental
results indicate that both excessively large and small values of these hyperparameters negatively affect
generation quality and motion consistency. Specifically, when the weights are too small, the physical
constraints are insufficient, causing unrealistic behaviors such as backward leaning, abnormal bone
stretching, lack of ground contact, and bone penetration. Conversely, when the weights are too large,
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Figure 8: Ablation analysis of hyperparameter settings on InterHuman test dataset. R Precision
measures text-to-action consistency, while FID evaluates the quality of generated motions.

Table 10: Effect of λCOM on performance metrics.

λCOM
R Precision↑ FID↓ MM Dist↓ Diversity→

Top 1 Top 2 Top 3

0.5 0.458±.007 0.615±.006 0.696±.004 5.792±.074 3.787±.001 8.004±.031

1 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

2 0.464±.005 0.621±.006 0.704±.005 5.877±.073 3.786±.001 8.004±.032

Table 11: Effect of λKTraj on performance metrics.

λKTraj
R Precision↑ FID↓ MM Dist↓ Diversity→

Top 1 Top 2 Top 3

0.5 0.427±.006 0.587±.006 0.672±.005 5.680±.089 3.797±.001 7.890±.033

1 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

2 0.444±.005 0.602±.006 0.685±.005 6.119±.074 3.795±.001 7.975±.031

Table 12: Effect of λGDM on performance metrics.

λGDM
R Precision↑ FID↓ MM Dist↓ Diversity→

Top 1 Top 2 Top 3

0.1 0.447±.005 0.598±.004 0.680±.005 5.367±.059 3.792±.001 7.916±.042

0.5 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

1 0.452±.006 0.608±.006 0.690±.005 7.767±.113 3.796±.001 8.077±.030

the physical loss terms dominate the optimization process, overly restricting the model’s flexibility
and resulting in overly conservative generations that degrade overall quality and diversity. Only when
λCOM = 1, λKTraj = 1, λGDM = 0.5, and λPPL = 0.01 do the loss terms achieve a good balance and
synergy, effectively guiding the generation process to ensure physical plausibility while improving
generation quality and motion consistency.

To verify the impact of the size of the codebook on the quality of motion generation, we set the size
of the codebook to 128, 256, 512, and 1024. As shown in Tab. 14, FID decreases consistently as the
size increases, indicating that a larger size enhances the richness of stored information and effectively
improves motion generation quality. The fluctuations in R Precision and MM Dist suggest that only
when the size is sufficiently large can the information be rich enough to ensure reliable text–motion
consistency.
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Table 13: Effect of λPPL on performance metrics.

λPPL
R Precision↑ FID↓ MM Dist↓ Diversity→

Top 1 Top 2 Top 3

0.001 0.450±.005 0.607±.006 0.688±.006 6.649±.097 3.794±.001 8.045±.036

0.01 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

0.1 0.446±.006 0.604±.005 0.684±.005 6.175±.111 3.794±.001 7.861±.035

Table 14: Effect of CodeSize on performance metrics.

CodeSize R Precision↑ FID↓ MM Dist↓ Diversity→
Top 1 Top 2 Top 3

128 0.437±.006 0.590±.005 0.671±.005 8.813±.094 3.801±.001 7.845±.026

256 0.427±.004 0.578±.004 0.661±.005 6.898±.065 3.804±.001 7.953±.030

512 0.397±.006 0.558±.006 0.647±.005 6.288±.088 3.811±.001 8.055±.035

1024 0.456±.006 0.611±.005 0.691±.005 5.358±.070 3.790±.001 8.000±.032

G MORE OUR RESULTS

In this section, we provide more qualitative results of our CODA. As shown in Fig. 9, we can
observe that CODA is capable of generating physically plausible motions (e.g., walking, hugging,
and attacking) while maintaining consistency (e.g., waving, sitting, and blaming) between text
and motions. This further validates the original intention of the proposed method to enhance the
plausibility of motion generation.

H MORE EXPERIMENTS ON KIT-ML

KIT-ML Dataset. It contains 3,911 motion sequences accompanied by 6,278 text annotations. Each
pose is represented by a 251-dimensional feature vector capturing similar global and local motion
attributes, with local information extracted from 21 joints aligned to the SMPL model. The KIT-ML
dataset is divided into training, validation, and testing sets with a ratio of 0.8:0.05:0.15.

Quantitative Results. Tab. 15 reports the comparison results on the single-person motion generation
dataset. From the results, we observe that our designed COM loss and KTraj loss reduce the FID
by 2.3%, MM Dist by 5.8%, and multimodality by 0.117 compared to MoMask (Guo et al., 2024).
These results demonstrate that our proposed losses exhibit strong adaptability and effectively improve
motion quality and diversity.

I VISUALIZATION DETAILS OF ICS

To validate the effectiveness of the ICS, we visualize the pose and interaction codebook indices
corresponding to the behaviors in Fig.10. We observe the following: (1) the single-person pose
codebook can effectively reconstruct action sequences that align with single-person descriptions; (2)
when two pose codebooks are combined with one interaction codebook, the generated two-person
action sequences not only maintain motion diversity but also exhibit improved plausibility due to the
constraints imposed by the interaction loss; (3) the occurrence of repeated indices in the codebooks is
mainly due to the sustained holding of motion poses. These results demonstrate that the proposed
ICS method is effective in capturing both single-person and multi-person motion features.

J POTENTIAL BROADER IMPACTS

The proposed CODA introduces a novel framework for human-to-human interaction generation,
which may involve the following broader impacts:
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Table 15: Quantitative evaluation on KIT-ML (Plappert et al., 2016) test set. “→”: closer to real
motion is better.

Methods R Precision↑ FID↓ MM Dist↓ Diversity→
Top 1 Top 2 Top 3

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.080±.097

T2M-GPT (Zhang et al., 2023) 0.402±.006 0.619±.005 0.737±.006 0.717±.041 3.053±.026 10.86±.094

AttT2M (Zhong et al., 2023) 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.123

MMM (Pinyoanuntapong et al., 2024) 0.404±.005 0.621±.005 0.744±.004 0.316±.028 2.977±.019 10.91±.101

BAD (Hosseyni et al., 2025) 0.417±.006 0.631±.006 0.750±.006 0.221±.012 2.941±.025 11.00±.100

MoMask (Guo et al., 2024) 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 -
Ours 0.437±.006 0.653±.006 0.778±.004 0.181±.015 2.721±.018 10.838±.083

Start End

One person approaches the 
other.

Two people are waving
their hands and performing 

a dance step together.

First person is sitting in a 
chair, the second takes a 
step forward with their 

right foot.

The two are blaming each 
other and having an 
intense argument.

Both people are doing fencing
practice, attacking each other 
with their swords. during the 

practice, the first person make 
a short lunge and touches the 
tip of the sword to the top of 

the second's head.

Two persons walk forward 
while hugging each other.

Figure 9: More qualitative results of CODA on the task of text-to-motion.

• Enhanced Human-Robot Collaboration Safety. CODA improves human-robot interaction
by generating contextually appropriate and realistic human motions. In shared workspaces or
service environments, accurately generated human motion sequences help robots anticipate
human motions, thereby reducing the risk of collisions or unsafe responses.

• More Immersive VR, AR, and Gaming Experiences. By generating lifelike human
motions in interactive scenarios, CODA can enrich virtual characters’ responsiveness and
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[224,374,374,374,374,374,83,293,67,67,83,485,809,89,161,233,693,693,238,43,630,271,875,845,845,845,845,845,816,466,234,879
,954,93,655,167,875,875,2,878,958,351,399,93,231,919,919,919,919,88,305,184,184,932,184,564,564,340,877,51,717,305,717,717,
717,638,251,324,324,521,521,521,858,875,875,875,840,840,840,840,840,840,840,840,752,752,752,752,628,628,628,628,946,946,9
46,946,946,946,946,946,213,329,675,675,958,958,958,958,958,13]

One person walk forward. Pose codebobok Index

[144,544,544,953,108,562,723,443,532,238,464,383,726,813,60,60,238,238,383,383,238,413,503,503,503,299,299,870,637,531,45,
110,663,234,234,369,184,584,805,161,837,635,571,507,398,927,927,631,894,542,927,688,981,0,556,992,936,166,315,295,674,877,
400,811,1022,504,380,648,648,648,648,648,348,1019,796,546,563,327,414,198,198,737,737,198,637,134,132,620,769,698,769,769
,556,720,601,601,906,396,101,315,315,490,56,210,324,271,271,877,43,582]

Pose codebobok Index

Two people shake hands.

[31,486,424,496,16,106,723,544,953,953,93,144,663,776,986,
986,953,953,953,986,986,953,686,168,960,266,120,232,888,4
64,688,688,688,968,93,953,233,1019,233,1019,233,233,953,6
13,323,203,243,203,888,215,89,528,528,941,952,941,941,941,
89,89,941,941,941,941,941,941,259,124,968,3,940,450,450,78
2,923,782,782,450,607,299,450,782,299,782,407,407,407,407,
382,31,912,734,734,538,538,538,668,286,917,917,299,269,28
6,286,286,299,538,450,450,32]

[52,1010,557,52,840,404,404,404,539,85,539,85,539,539,539,40
4,294,404,404,404,404,294,873,927,927,286,450,450,450,450,4
50,450,450,450,450,923,923,858,858,858,858,858,286,286,3,87
0,940,940,450,959,570,570,570,1019,1019,395,767,450,233,395
,1019,1019,1019,1019,1019,161,746,746,746,674,786,592,786,7
86,786,656,516,516,516,450,516,786,786,786,786,786,786,786,
223,223,465,465,466,223,516,450,485,485,516,516,538,538,516
,895,538,538,538,538,450,615]

Person 1 Pose codebobok Index Person 2 Pose codebobok Index

[196,685,76,908,474,980,980,492,673,492,492,221,196,673,673,673,492,673,673,673,673,492,566,324,234,773,381,21,257,257,257,257,257,558,558,810,773,291,4
88,291,488,488,810,275,1019,385,295,295,257,773,45,21,21,773,841,45,574,773,45,45,773,773,773,773,773,158,743,301,574,301,452,813,687,687,856,238,238,23
8,687,687,238,687,687,687,687,687,687,687,802,133,479,880,880,477,636,636,532,275,238,238,982,275,275,687,275,982,636,238,275,168]

Interaction codebobok Index

One person jump forward.

Two people hug each other. Person 1 Pose codebobok Index

[424,595,600,308,308,305,800,157,131,992,954,530,948,4
8,93,145,145,145,145,145,145,48,447,473,560,560,358,56
0,258,956,746,746,428,927,888,927,873,945,687,687,687,
592,892,880,566,487,91,885,639,438,394,98,64,64,78,78,5
07,507,846,846,1019,1019,395,1019,1019,1019,119,181,1
11,271,947,668,938,938,734,144,792,144,168,792,281,281
,281,59,62,59,59,498,601,526,281,682,935,134,536,433,93
4,934,934,934,934,934,934,934,934,934,934,934,390,934]

Person 2 Pose codebobok Index

[157,131,761,177,400,964,896,29,155,28,893,281,646,458,458,458,77
1,28,771,118,411,893,562,891,271,485,88,395,250,316,463,233,449,7
,395,91,7,31,233,562,7,562,7,233,251,251,245,86,858,450,858,878,98
9,919,450,769,401,944,83,485,83,83,83,166,335,888,395,885,653,885
,885,799,919,919,675,675,263,263,263,13,13,13,263,263,675,263,13,
554,223,213,223,258,481,462,560,530,193,762,193,193,193,193,193,
193,193,193,193,193,193,193]

Interaction codebobok Index
[522,431,110,422,496,534,298,903,633,262,797,620,669,985,985,985,35,985,35,871,596,596,22,651,857,601,535,774,563,105,542,335,695,95,841,853,299,134,6
77,946,142,677,142,693,517,254,157,291,22,595,713,133,654,24,905,692,362,362,713,184,291,291,291,101,464,464,329,329,445,544,544,532,555,555,69,201,6
9,201,830,69,1023,1023,69,69,69,69,1023,672,244,342,69,607,206,710,1019,130,1007,77,1007,1007,1007,1007,1007,1007,1007,1007,1007,1007,1007,1007]

Figure 10: Visual index of motions along with poses and interaction codes.

realism. This enables VR/AR systems and video games to provide more natural social
interactions and immersive storytelling, enhancing user engagement and emotional presence.

• Support for Assistive and Rehabilitation Technologies. CODA can benefit elderly users
or people with physical disabilities by generating realistic human actions for simulation,
rehabilitation training, or intelligent prosthetic feedback. It can also help anticipate human
needs and provide proactive support in smart environments.
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