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ABSTRACT

Motif-scaffolding is a fundamental component of protein design, which aims to
construct the scaffold structure that stabilizes motifs conferring desired functions.
Recent advances in generative models are promising for designing scaffolds, with
two main approaches: training-based and sampling-based methods. Training-based
methods are resource-heavy and slow, while training-free sampling-based methods
are flexible but require numerous sampling steps and costly, unstable guidance.
To speed up and improve sampling-based methods, we analyzed failure cases and
found that errors stem from the trade-off between generation and reconstruction.
Thus we proposed to exploit the spatial context and adjust the generative direction
to be consistent with guidance to overcome this trade-off. Motivated by this,
we formulate motif-scaffolding as a Geometric Inverse Design task inspired by
the image inverse problem, and present Evolution-ViA-reconstruction (EVA), a
novel sampling-based coupled flow framework on geometric manifolds, which
starts with a pretrained flow-based generative model. EVA uses motif-aligned
priors to leverage spatial contexts, guiding the generative process along a straighter
probability path, with generative directions aligned with guidance in the early
sampling steps. EVA is 70× faster than SOTA model RFDiffusion with competitive
and even better performance on benchmark tests. Further experiments on real-
world cases including vaccine design and multi-motif scaffolding demonstrate
EVA’s superior efficiency and competitive performance.

1 INTRODUCTION

An important task in protein design is the generation of structural protein fragments, named scaffold,
to support and stabilize a target motif. Here, motifs are structural protein fragments that carry the
desired biological functions. Scaffolds, together with motifs, form complete, stable, and designable
functional proteins. Motif-scaffolding achieves great success in applications to vaccine and enzyme
design (Procko et al., 2014; Correia et al., 2014; Jiang et al., 2008; Siegel et al., 2010). It is similar
to the task of in-painting or out-painting images (as illustrated in Fig. 1), which aims to generate
high-fidelity and consistent images with the desired pixel patches (Chung et al., 2022; Song et al.,
2022). What makes motif-scaffolding more complex is its 3D spatial and geometric nature, where we
need to consider more factors (Castro et al., 2024; Wang et al., 2021), including spatial relationships,
layout, physics, and so on to obtain realistic samples for real-world applications.

Generating diverse and designable scaffolds with accurate motifs of desire is highly challenging. With
the development of techniques in protein structure generation, generative models such as Diffusion
Probabilistic Models (DPM) have been successfully applied to motif-scaffolding (Trippe et al., 2023;
Wu et al., 2023; Watson et al., 2023). Generative methods can be divided into two families: training-
based and sampling-based. Training-based methods (Watson et al., 2023; Yim et al., 2024; Didi
et al., 2023) train a motif-conditioned generative model that takes the motif directly as input and
generates the remainder of the protein as the scaffold. These methods are computationally intensive
with slow inference speed and inflexible to take advantage of different pretrained generative models,
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as they always need additional training. Sampling-based methods (Trippe et al., 2023; Wu et al.,
2023) employ guidance (e.g., constrained gradients) in the sampling process of pre-trained generative
models, bypassing the dependency on extra or specific training. These methods typically complete
two processes at the same time. One is the reconstruction process, which ensures the accurate
display of desired motifs with the aid of guidance. The other is the evolutionary (i.e., generative)
process which helps to generate overall designable proteins from a broad distribution defined by
pretrained generative models. Although training-free and flexible, sampling-based methods require
numerous diffusion sampling steps (500-1000 steps) to gradually shift the generative path to the
desired distribution, along with computationally expensive and unstable guidance steps, such as
backpropagation or sequential Mont-Carlo steps. The slow inference speed impedes the application
of both training- and sampling-based methods.

To further speed up and improve the sampling-based method, we investigate two typical types of
failure for sampling-based methods: samples with low designability or inaccurate motif, as illustrated
in Fig. 1. We attribute these errors to the inherent trade-off between generation (overall protein
generation) and guidance (desired motif reconstruction) in sampling-based methods, which is also
identified for similar image inverse problem solvers (Chung et al., 2022; 2024b). Thus, overcoming
this trade-off and adjusting the generative direction to be consistent with guidance in earlier
sampling stages are the keys to speeding up and improving success rates of sampling-based methods.
To achieve this, we propose leveraging the distinct spatial context offered by the explicit point-
cloud-like representations of proteins. Previous methods focused on applying sampling theories to the
motif-scaffolding, with little exploration into the spatial contexts of protein point clouds with actual
coordinates—such as the orientation and other geometric properties of desired motifs and generated
structures—to better align the generative process with guidance and overcome the trade-off.

Measurement Recon. > Evo. Evo. > Recon.

Desired Motif sc_rmsd = 3.25(×),
motif_rmsd = 0.79

sc_rmsd = 1.43,
motif_rmsd = 2.10(×)

Image 
Inverse Problem

Geometric 
Inverse Design

Low Fidelity 

Not Designable

Not Consistent

Not Accurate

Deviation

Figure 1: Two failures in the image inverse
problem and geometric inverse design (motif-
scaffolding). Recon. is short for motif reconstruc-
tion and Evo. is short for overall evolution (i.e,
generation). Given partial observations, that is,
measurement (motif ), the image inverse problem
(motif-scaffolding) aims to produce high-fidelity
(designable) and consistent (accurate) complete
images (protein structures).The images and pro-
teins are generated with Chung et al. (2024b) and
TDS (Wu et al., 2023).We interpret the ‘undes-
ignability’ issue as the tangible low-fidelity issue
as they both seek for an overall harmonization.

Motivated by the analysis above, we frame
motif-scaffolding as a Geometric Inverse De-
sign problem, providing a geometric perspec-
tive alongside the traditional posterior sampling
view. We introduce Evolution ViA reconstruc-
tion (EVA), a fast, sampling-based method that
uses a novel coupled flow framework on geomet-
ric manifolds, starting from a pretrained flow-
based generative model. EVA uses motif-aligned
priors to exploit spatial contexts and steers the
generative process onto a straighter probability
path, where the generative directions are aligned
with guidance at early sampling steps. EVA is
70× faster than current state-of-the-art RFDif-
fusion with competitive and even better perfor-
mance. It can finish sampling in only 100 steps
with nearly cost-free and highly stable guidance
steps, which include simple spatial alignment
and interpolation.

In detail, we utilize flow-based methods pre-
trained with the flow matching objective (Lip-
man et al., 2022; Tong et al., 2024; Yim et al.,
2023) for faster inference and more flexibility
to control the sampling path. Instead of ran-
dom noises, EVA starts with motif-aligned prior
which leverages the spatial alignment for adjust-
ing the global orientation and center of mass of
initial point clouds to be aligned with given mo-
tif structure. This could reduce extra variance
induced by a random alignment between motifs
and prior point clouds, and avoid a twisted and unstable sampling process. At steps of sampling, EVA
will estimate posterior means (i.e., predicted noise-free overall structures) that are consistent with
desired motif via simple yet effective spatial interpolation of Cα coordinates and residue orientations.
The estimated posterior will give a generative direction consistent with motif reconstruction.
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To evaluate our method, we conducted experiments on the RFDiffusion dataset (Watson et al.,
2023) and benchmarked EVA with various methods including state-of-the-art gradient correction
methods (Pokle et al., 2024; Chung et al., 2022) extended to the geometric manifold. We also
designed a new vaccine design benchmark that reflects real-world scenarios with our curated datasets.
Furthermore, we test EVA in cases requiring to find optimal motif indexes or multi-motif relative
positions. These conditions are provided in benchmark tests, rarely explored before, but actually not
easily accessible in real-world cases. EVA shows comparative results in all benchmark tests with
much reduced inference time. These results suggest our potential for realistic applications.

2 RELATED WORKS

Motif-Scaffolding Wang et al. (2021) first proposed to use deep learning for motif-scaffolding.
Recently, deep generative models (Trippe et al., 2023; Wu et al., 2023; Yim et al., 2024) have been
applied for motif-scaffolding, which can be divided into two families: training-based and sampling-
based. SMCDiff (Trippe et al., 2023) first proposed the sampling-based training-free method with
diffusion and Sequential Monte Carlo(SMC). TDS (Wu et al., 2023) then improved upon SMCDiff
using reconstruction guidance for each particle in SMC. These SMC-based method require much
more network calls than directly sampling and thus are time-consuming. Wu et al. (2023); Yim et al.
(2024) propose to use gradient correction for motif reconstruction. It is more efficient but requires
numerous sampling steps and costly, unstable guidance. Training-based methods (Yim et al., 2024;
Didi et al., 2023) like RFDiffusion (Watson et al., 2023) achieve state-of-the-art (SOTA) results on
the motif-scaffolding benchmark. However, they rely on expensive fine-tuning of complex model
architectures for conditional generation and have slow inference speeds. Our method lies in the
sampling-based category with competitive performance and much improved efficiency, and thus has
potential for various realistic applications.
Image Inverse Problem Image inverse problem aims to recover the original image given some
measurement (e.g. part of the image, noisy image). Recent methods solve this problem in a plug-
and-play fashion via providing gradient correction by differentiating through the diffusion model
in the form of reconstruction guidance (Ho et al., 2022), which is further extended in DPS (Chung
et al., 2022) to nonlinear inverse problems. ΠGDM (Song et al., 2022) introduces pseudo-inverse
guidance that improves the guidance approximation by inverting the measurement model. Pokle
et al. (2024) extends gradient correction to the flow-based model. Gradient-based methods heavily
rely on a deep gradient approximation of the intractable posterior score, which is costly to compute
and crude for non-small noise levels at many steps of the diffusion process (Mardani et al., 2023;
Chung et al., 2024a). General conditional generation methods can also be applied. SDEdit (Meng
et al., 2022) is based on the replacement-based method which replaces the measurement-region of the
generating samples with noisy given measurement. Our methods is as simple as replacement-based
method with much better performance, which interpolates the predicted clean data with the clean
given measurement. More related works can be found in the Appendix A.3.

3 BACKGROUNDS

3.1 FLOW MATCHING

In this section, we provide an overview of the general flow matching method to introduce the necessary
notations and concepts based on (Pooladian et al., 2023; Tong et al., 2024; Lipman et al., 2022).
Definition. Flow Matching is a family of simulation-free training objectives for continuous nor-
malizing flow (CNF), which proposes to learn the time-dependent vector field v(z, t) : Rd → Rd to
transform a sample z0 ∈ Rd from an easy-to-sample prior distribution p0 to a data point z1 from the
data distribution p1. The vector field v determines a unique time-varying flow ψt∈[0,1] : Rd → Rd

through the Ordinary Differential Equation (ODE):

dψt(z0)

dt
= v(ψt(z0)) with boundary condition ψ0(z0) = z0. (1)

Flow Matching. One wishes to find a vector field v that pushes the flow ψt to reach the desired
data distribution p1, i.e., ψ1 = p1. Generally, such a vector field v is intractable, but can be learned
by regressing the tractable conditional vector fields u(zt, t|z0, z1) = d

dtzt where zt = ψt(z0|z1)
interpolates between endpoints z0 ∼ p0 and z1 ∼ p1. Theoretically, this interpolation defines the
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time-dependent distributions p(zt|z0, z1), which are referred to as conditional probability paths. We
focus on the probability path for the conditional Optimal Transport (OT) path (Lipman et al., 2022):

ψt(z0|z1) = zt = (1− t)z0 + tz1, p(zt|z0, z1) = p(zt|z1) = N (αtx1, σ
2
t I) (2)

where αt = t, and σt = 1−t. The conditional OT path has been demonstrated to have good empirical
properties, including faster inference and better sampling in practice.Based on the conditional OT
path, the conditional vector fields and Flow Matching (FM) regression objective are:

u(zt, t|z0, z1) = u(zt, t|z1) =
z1 − zt
1− t

, L = Et,p0(z0),p1(z1)∥v̂(zt, t)− u(zt, t|z1)∥2 (3)

where v̂(zt, t) is a neural network to regress the conditional vector field. The optimal v̂ that minimizes
LFM includes the posterior of conditional OT path and takes the form the below:

v̂(zt, t) =
ẑ1 − zt
1− t

, ẑ1 = Ep(zt|z1)[z1|zt]. (4)

Guidance-based conditional inference The equation 4 above also holds with extra conditions
c (Pokle et al., 2024). The optimal vector fields for conditional inference could be obtained by
replacing the unconditional posterior with conditional one Ep[z1|zt, c] in Eq. 4.

Given pretrained unconditional generative models that are trained to approximate Ep[z1|zt], guidance-
based conditional inference methods typically convert the conditional posterior Ep[z1|zt, c] approxi-
mation into a guidance term approximation problem via Tweedie’s identity (Yim et al., 2024; Chung
et al., 2022; Song et al., 2022; Pokle et al., 2024). Applying this identity under Conditional OT path
in Eq. 2 and simplifying gives (Pokle et al., 2024):

Ep[z1|zt, c] = Ep[z1|zt] +
σ2
t

αt
∇zt ln p(c|zt),

v̂(zt, t, c) = v̂(zt, t) + σt
ln(αt/σt)

dt
∇zt ln p(c|zt).

(5)

Thus, current guidance-based conditional inference methods focus on approximating the guidance
term ∇zt ln p(c|zt) in a training-free manner. This forms the basis for various training-free conditional
inference methods, including the state-of-the-art sampling-based methods for motif-scaffolding.

3.2 FLOW MATCHING ON THE PROTEIN GEOMETRIC MANIFOLD

Notation. The atom positions of each residue in a protein backbone structure could be represented
as a residue frame tuple g = (x, r) (Jumper et al., 2021b), where x ∈ R3 and r ∈ SO(3) is the
translation vector (i.e., the coordinate of the residue Cα atom) and rotation of a residue frame.
The protein backbone consists of N residues, thus it can be represented by N residue frames as
g = (g(1), ..., g(N)). We use bold face for collections of elements, superscripts for residue indices,
and subscripts for time.

The protein geometric manifold MP is a product space G of the 3D translation subspace T and
the 3D rotation group SO(3)N of N residues in the protein backbones. Here T is the Zero Center
of Mass (CoM) subspace of RN×3, which means that the average of N translation vectors should
be zero to avoid the extra translation induced by the global rotation. As a start point, we first
build the flow matching on this geometric manifold based on Riemannian flow matching (Chen &
Lipman, 2023). It states that the time-dependent vector field in a manifold M can be defined as:
v(z, t) : M × R → TzM where t ∈ [0, 1] is the time step and TzM is the tangent space of the
manifold at z ∈ M. This vector field determines a CNF ψt∈[0,1] : M → M. Since G is a product
manifold, the tangent space is a direct sum: TgG = TxT ⊕ TrSO(3)N ∼= RN×3 ⊕ RN×3 where
g = (x, r), and the flow ODEs proceed independently in the each manifold. Thus the construction
of the flow on G is equivalent to building flows on each geometry independently. We can define the
conditional vector field u(gt, t|g1) = (ux(xt, t|x1), ur(rt, t|r1)) of Riemannian flows on G with
Conditional Optimal Transport path as follows (Chen & Lipman, 2023; Yim et al., 2023):

ux(xt, t|x1) =
x1 − xt

1− t
, ur(rt, t|r1) =

logrt
(r1)

1− t
. (6)

The first equation is straightforward. Since T ∼= RN×3, it is trivial to build the flow matching on
translation in the same form as in Eq. 3. The second equation involves projecting elements in SO(3)N

to its Lie algebra so(3)N using logarithmic mapping. Its core intuition is very similar to the case of
T, which computes an evolutionary direction from noisy data point xt pointing to denoised data x1.
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Figure 2: The illustration of EVA framework. Our key designs are twofold: (a) The random
prior is first aligned with the desired motif through rotation (formally, the Eq. 8) to minimize the
distance between them, resulting in a shorter sampling path and accelerated sampling. The aligned
prior is referred to as the (Spatial) Motif Aligned Prior. (b) The conditional posteriors ĝ(gt,m)
is approximated as the interpolation between unconditional posteriors and motifs m. This novel
geometric solution could give generative directions consistent with motif reconstruction (formally, the
coupled vector fields in Eq. 12) in early sampling stages.(c) Compared with gradient guidance-based
methods, EVA could alleviate the conflict between generation and reconstruction (the failure cases
1 and 2, which require numerous sampling steps to gradually correct in gradient guidance-based
methods) and thus need less sampling steps for better motif-scaffolding.

4 METHOD

This section describes the Evolution ViA reconstruction (EVA) framework. Our method draws
inspiration from recent advances in flow matching (Song et al., 2023; Tong et al., 2024), which
straighten flows during training for faster inference and better sampling in practice. We extend this
intuition from training to conditional sampling for the speed-up of motif-scaffolding, which seeks to
straighten the sampling path with given motifs. We achieve this through coupled flow, using a spatial
motif-aligned prior that shortens the sampling path and motif-interpolated posterior, which aligns the
generative direction with motif-reconstruction in earlier sampling stages. We summary our algorithm
in Alg. 1 and a high-level schematic is provided in Fig. 2.

4.1 THE GEOMETRIC INVERSE DESIGN PROBLEM

We formulate motif-scaffolding as a Geometric Inverse Design problem. Formally, we observe
motifs gM = {gi1 , ..., gik} of length k where {i1, ..., ik} ⊂ {1, ..., N} and the scaffold gS is all the
remaining residues. Motifs meet the following conditions:

xM = Ax1, rM = exp (A log (r1)). (7)

where g = (x1, r1) ∈ T× SO(3)N is drawn from an unknown data distribution p1, Nm is the total
length of motifs and A ∈ Rk×N is a known or estimated motif mask matrix. The second equation
involves converting between elements in SO(3)N and its Lie algebra so(3)N using Logarithmic and
Exponential Mapping (Chen & Lipman, 2023; Bose et al., 2023; Yim et al., 2023).

Given a pretrained flow model with v̂(gt, t), which is trained to approximate the unconditional
posterior Ep[g1|gt] as in Eq. 4 and the motifs gM , our goal is to generate designable protein
backbones with accurate motif reconstruction via directly approximating the conditional posterior
Ep[g1|gt, gM ] in geometric space.

Our perspective is different from previous training-based and sampling-based methods. Training-
based methods (Watson et al., 2023) directly train a specific conditional model vθ(g, t, gM ) that
only samples the scaffold fragment while our formulation needs to sample the entire protein. As
mentioned in Sec 3.1 and Eq. 5, the sampling-based methods use a proxy guidance gradient for
conditional sampling while our formulation aims to directly approximate the conditional posterior
Ep[g1|gt, gM ] as a concrete protein point clouds using geometric methods. By leveraging the spatial
context of explicit representations, our formulation offers a geometric solution to the generation vs.
reconstruction trade-off, while the implicit approximation via guidance term is more exposed to the
risk of the inherent trade-off.
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4.2 THE GEOMETRIC SOLUTION

(Noisy) protein structures are not abstract latents or pixels but point clouds with specific coordinates
and geometric properties (e.g., global orientations). The proposed EVA framework leverages these
spatial contexts as a breakthrough point to overcome the trade-off and align the generative direction
with motif reconstruction. Our geometric solution includes the spatial motif-aligned prior and
motif-interpolated posterior,

The isotropic Gaussian prior used in the pretrained flow model may cause issues (Song et al., 2023)
when directly applying the vector fields in Eq. 6. Since x0 (the point cloud from the prior) and xM

(the motif structure) are independent, random alignment between them introduces extra variance,
leading to a twisted and unstable sampling process. To mitigate this issue, we introduce a mapping that
aligns the global orientation and CoM between xM and x0 to the ’closest’ or optimal configuration,
thereby reducing variance. The geometrically modified prior straightens the sampling path and paves
the way for geometric interpolation as the orientations of data and prior are aligned. Additionally,
noisy motif structure information provides an initial estimate for the motif parts of the prior. Further
details can be referred in Sec. 4.3.

In Sec. 4.4, we introduce a geometric method for conditional sampling in the EVA framework.
Instead of complex models or guidance terms, we directly use geometric interpolation between
the unconditional posterior Ep[g1|gt] and the target motif gM to approximate the conditional
posterior Ep[g1|gt, gM ]. This gives us a clear evolutionary (i.e., generative) direction that aligns
with motif reconstruction from the start by reconstructing the motif in the denoised protein ĝ1 (i.e.,
unconditional posterior), which we term Evolution ViA reconstruction. It is straightforward yet
effective. Further analysis shows our approximation is equivariant to adding an extra OT conditional
vector field corresponding to the motif reconstruction process. Thus, EVA steers the sampling process
into a coupling of two conditional OT paths as in Eq. 6, which we call the Coupled Flow.

4.3 SPATIAL MOTIF-ALIGNED PRIOR

Starting from prior g0 = (x0, r0) ∼ U(SO(3))N ⊗N (0, I3)
N following (Yim et al., 2023), where

U(SO(3)) is uniform distribution over SO(3) and N (0, I3) is the isotropic Gaussian with Zero CoM,
we make it coupled with the motif from two aspects of orientation and specific coordinates.

Motif Geometry-aware Prior At the start of the sampling, we have access to the specific motif
backbone coordinates xM and the prior point clouds coordinates x0, we seek to estimate a mapping
that aligns the global orientation and CoM between xM and xM

0 . Formally for the global orientation,
we need to solve the equivariant optimal transport mapping as:

π∗,R∗ = argmin
π,R

∥π(Rx10,Rx20, . . . ,RxN0 )− (xi1 , xi2 , . . . , xik)∥2. (8)

where π is a selection of k residues as the motif in Eq. 7 out of N total residues (i.e, defining the
motif placement or indexes in the overall protein) and R ∈ R3×3 represents a rotation matrix in the
3D space. With both sides in the zero mass space (by subtracting CoM at first), the mappings in Eq. 8
are optimal for E(3)-equivariant transformations on either side of the point clouds (Song et al., 2023).
Thus, we refer to these mappings as equivariant optimal transport (EOT).

The equivariant optimal transport finds the minimum straight-line distance between the paired atom
coordinates upon all the possible rotations and alignment. Applying these mapping, we can obtain
the optimized prior g̃0 = (x̃0, r̃0) = (R∗x0,R

∗r0), with the selected motif indexes π∗. For solving
this EOT, we first enumerate the motif region using sliding windows on the entire protein sequences
and then conduct Kabsch algorithm (Kabsch, 1976) to solve the optimal rotation matrix based on
the atom alignments. We will try different motif regions in different samples of one target to finally
obtain designable proteins. For multi-motif with unknown relative positions, we extend EOT in the
prior to the generative process. More details can be referred to the Appendix C.1.

Geometric Interpolation Given the known motif structure gM = (xM , rM ), we can initialize the
motif part (the other is still original prior) of the protein with noised motif structure at some time
steps t along the Gaussian probability path which interpolates the prior and the data, we note:

x̃M
0 = (1− t) · x̃M

0 + t · xM , r̃M0 = expr̃M
0
(t · logr̃M

0
(rM )). (9)

This interpolation transforms the initialization of motif part into the conditional OT probability path
of motif reconstruction at time t. This initialization g∗

0 prepares for the subsequent coupling of the
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overall structure conditional OT path and the motif reconstruction OT path, and also provides the
prior with specific coordinate information of the desired motifs.

Algorithm 1 A training-free Coupled Flow-based Framework for fast Motif-Scaffolding (EVA)
Input: Pretrained flow model vθ(g, t) which can estimate posterior ĝ1(gt); Desired Motif Structure
m as in Eq. 7; Enumerated or given (as in the benchmark test) motif region indexes π∗.
Output: Designable backbones g1 with desired motifs.

1: Sample: original prior g0, initial time t0.
2: Obtain motif-aligned prior g∗

0 via solving Eq. 8 with Kabsch algorithm.
3: for each time step t ∈ [t0, 1] of ODE integration do
4: Get predicted unconditional posterior ĝ1(gt) = (r̂1, x̂1) from pretrained vθ(g, t);
5: Predict motif-interpolated conditional posterior as follow:
6: Ep[r

M
1 |rt, rM ] = expr̂M

1
(βt · logr̂M

1
(rM )),Ep[x

M
1 |xt,x

M ] = (1− βt) · x̂M
1 + βt · xM

7: Calculating estimated conditional vector fields v̂x(xt,x
M ) and v̂r(rt, rM ). as in Eq. 12;

8: Continuing the ODE update step and get intermediate results gt;
9: end for

10: return Designable backbones g1 with desired motifs.

4.4 EVOLUTION VIA RECONSTRUCTION

Recall the vector field we defined in Eq. 6. For conditional sampling on the OT path as in Section 3.1,
we can parameterize the conditional vector field as:

vx(xt|xM ) =
x̂1(xt|xM )− xt

1− t
, vr(rt|xM ) =

logrt
(r̂1(rt|rM ))

1− t
. (10)

where ĝ1 = (x̂1, r̂1) is the denoised prediction of gt. When ĝ1(gt, g
M ) = Ep[g1|gt, gM ], the vector

field v(gt, gM ) is the optimal, the same equations hold without gM (Pokle et al., 2024).

We propose to explicitly approximate the conditional posterior Ep[g1|gt, gM ] via geometric inter-
polation between unconditional posterior ĝ1(gt) given by a pretrained unconditional flow model
Ep[g1|gt] and gM , instead of implicit approximation via estimating the gradient of guidance and then
combining gradients as in Eq. 5. Further analysis shows that this spatial interpolation approximation
will lead to adding an extra vector field corresponding to a motif reconstruction OT path from the
start. Thus, EVA steers the sampling process onto a coupling of two OT paths and estimates the
evolution direction via directly reconstructing motif in ĝ1.

Motif-interpolated Posterior For simplicity, we denote the unconditional posterior ĝ1(gt) =
(x̂1, r̂1). During conditional inference ODE, the optimal vector fields v̂(gt|gM ) are as follows:

Conditional Inference ODE:
dψt(g0|gM )

dt
= v̂(gt, t|gM ), ψ0(g0|gM ) = g̃0, (11)

v̂x(xt|xM ) =
Ep[x1|xt|xM ]− xt

1− t
, v̂r(rt,x

M ) =
logrt

(Ep[r1|rt, rM ])

1− t
. (12)

We approximate the posterior Ep and obtain the estimated conditional vector fields as follows:

Ep[r
M
1 |rt, rM ] = expr̂M

1
(βt · logr̂M

1
(rM )) (13)

Ep[x
M
1 |xt,x

M ] = (1− βt) · x̂M
1 + βt · xM . (14)

where βt = 1 − γt ∈ [0, 1] is the coupling strength and γ is an extra scaling factor that can be
adjusted case by case. The scaffold region is still approximated with the unconditional posterior.

Coupled Flow Taking a closer look into its formula, we find the vector field is the coupling of the
unconditional vector field and the motif reconstruction vector field, which are both corresponding to
the conditional OT paths. Taking v̂x as example, inserting the expressions in Eq. 14 into Eq. 12 gives:

(1− t)v̂x(x
M
t |xM ) = (1− βt) · x̂M

1 + βt · xM − xM
t

= (1− βt) · x̂M
1 + βt · xM −

[
(1− βt) · xM

t + βt · xM
t

]
v̂x(x

M
t |xM ) = (1− β) · vx(xM

t ) + β · vM (xM
t ).
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Method Success Rate (%) Designable Rate (%) mRMSD %<1 scRMSD %<2 Div. Solved Time(s)
<100 >= 100 All <100 >= 100 All <100 >= 100 All <100 >= 100 All

TDS 43 13 36 88 85 87 48 13 40 56 43 52 161 19 63
FF-G 18 4.0 13 86 86 87 29 7.0 21 52 36 47 153 18 15

RFDiff 44 20 36 87 90 89 46 24 43 55 45 53 141 20 61

EVA 45 18 36 89 86 88 47 19 42 59 36 53 173 20 0.87

Table 1: Performance on the RFDiffusion benchmark of 24 targets. The best metrics are marked by
bold and the second best metrics are marked by underline. <100 refers to targets with total length
less than 100 residues and >= 100 refers to targets with total length greater or equal to 100 residues.

Method Succ.
(%)

Des.
(%)

mRMSD
(%<1)

scRMSD
(%<2)

SDEdit 2.0 32 7.0 18
DPS 10 67 11 43

FF-G 12 85 16 46
RFDiff 16 91 19 45
TDS 14 83 22 22

EVA 17 94 18 41

Table 2: Performance on the Vaccine Design bench-
mark. The best metrics are bold. EVA can achieve
better balance and thus higher success rate.

Des. Nov. Div.
Metrics

0.0

0.2

0.4

0.6

0.8

De
s. 

/ N
ov

.

Unconditional Generation Metrics

RFDiff
FrameFlow
OT-Flow

0

20

40

60

80

100

120

140

160

Di
v.

Figure 3: Unconditional Generation Results. The
results suggest that both of the flow models can
serve as strong unconditional foundations.

where vM (xM
t ) is the vector fields determining a conditional OT path towards xM for motif recon-

struction and vx(xM
t ) is the original unconditional vector fields evolving on another conditional OT

path for overall designable proteins. This coupling works on the motif regions. In early sampling
steps, the motif reconstruction vector field quickly evolves the sampling motif towards the desired
structure to align the overall generative direction with motif reconstruction, since the gradually
reconstructed motif structure will influence the prediction of x̂1. Later, the overall generative vector
fields take over, enabling the designability of the entire protein. From the perspective of manipulating
x̂1, beyond motif-scaffolding, other conditional generation tasks that can formulate constraints on x̂1

can utilize our framework. It simply requires modifying x̂1 using gradient-based (simply on x̂1 not
deep gradients on xt) or direct modification methods and blending the modified with the original.
We leave this for future work.

5 EXPERIMENTS

We justify the advantages of EVA with comprehensive experiments. The experimental setup is
introduced in Section 5.1. As a start-up, we also report the unconditional generation performance for
pretrained flow models. We aim to answer five research questions. Q1: How effective is EVA for
motif-scaffolding against other training-free inverse problem solvers? Q2: How does EVA perform
compared to the state-of-the-art motif-scaffolding models in efficiency and results Q3: Can EVA
generalize well to more challenging and realistic tasks (e.g. vaccine design)? Q4: How do key
designs impact the performance of EVA? Q5: what’s the quality of generated samples of EVA?

5.1 EXPERIMENTAL SETUPS

Datasets. We conduct sampling for motif-scaffolding on the RFDiffusion Benchmark (Watson
et al., 2023) of 24 targets following previous works (Trippe et al., 2023; Wu et al., 2023; Zheng et al.,
2024). For vaccine design, we established an in silico benchmark test comprising 10 vaccine design
targets addressed in recent publications, including epitopes from the respiratory syncytial virus (RSV)
fusion protein (RSVF) that can produce neutralizing effect (Castro et al., 2024). More details can be
referred in the Appendix B.
Metrics and Sampling. We use the self-consistency evaluation protocol following (Trippe et al.,
2023; Yim et al., 2024; Zheng et al., 2024), including metrics as self-consistency backbone root-mean-
squere deviation (scRMSD), self-consistency motif rmsd (mRMSD), Designability (Des.), Diversity
(Div.) and Novelty (Nov.). Given a generated protein sample, the self-consistency evaluation includes
three stages: 1) inverse folding generated backbones with ProteinMPNN to get designed sequences.
We predict 8 designed sequences per backbone following (Yim et al., 2024). 2) refolding the

8
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Figure 4: Performance of inverse problem solvers on
the RFDiffusion benchmark.

Method Succ.
(%)

Des.
(%)

mRMSD
(%<1)

scRMSD
(%<2)

FF-G 12 85 16 46
RFDiff 27 85 27 45
TDS 10 87 13 25

EVA 28 83 28 38

Table 3: Performance on targets with 2 or
more discontinuous motifs in the RFDif-
fusion Benchmark. The best metrics are
marked by bold. EVA can achieve better bal-
ance on challenging targets and thus higher
overall success rate.

designed sequences via ESMFold. 3) calculating various metrics including RMSD, TM-score (Zhang
& Skolnick, 2005), to evaluate the consistency (i.e., structural similarity) between the generated
sample and the refolded sample. We use self-consistency TM-score(scTM) for evaluating the overall
similarity between generated samples and refolded structures. scRMSD, which is more sensitive to
minor structural variances, is also applied for a more stringent measurement. In addition, to judge
whether the motif scaffolding was successful or not, we calculate the motif RMSD between the
predicted design structure and the original input motif (mRMSD). A protein scaffold is designable if
it meets: scTM >0.5, pLDDT >70 (pAE <5), which are confidence metrics employed in ESMFold
or AlphaFold2 to ascertain the reliability of the self-consistency metrics. A designable scaffold with
mRMSD <1 is considered a successful motif-scaffold.

We generate 100 scaffolds per target with 100 time-steps using Euler integrator, perform the self-
consistency evaluation above on every scaffold, and report the percentage of samples that designable
and successful (designable rate, Des. and success rate, Succ.), the percentage of samples with
scRMSD <2 and mRMSD <1. Furthermore, we also report diversity in designable samples, which
is the cluster number with TM-score Threshold set to 0.5. Novelty (Nov.) is also reported for the
unconditional generation, which is the average TM-score of each sample to its closet protein in
the PDB computed using FoldSeek (van Kempen et al., 2022). Average metrics across targets are
reported. We evaluate the efficiency with the average time (over 100 samples in total for each method)
for generating a 100 amino acid backbone in the same device.

Baselines We compare EVA with state-of-the-art motif-scaffolding methods including RFDiffusion
(short as RFDiff) (Watson et al., 2023), TDS (Wu et al., 2023), and FrameFlow-Guidance (FF-G for
short) (Yim et al., 2024) (and its pretrained flow model, FrameFlow (Yim et al., 2023)), and inverse
problem solvers including SDEdit (Meng et al., 2022) (the Replacement method), DPS (Chung et al.,
2022) (the Gradient Correction method), which we both extended to the geometric manifold. We
use the original sampling set ups in their paper for fair comparison. Unless otherwise specified, all
conditional generation experiments are based on the pretrained FrameFlow (Yim et al., 2023)
model. In addition, we have reproduced the OT-Flow model (Bose et al., 2023) to test the flexibility
of our approach. More details can be found in Appendix B. It is noted that we are not comparing the
FrameFlow and OT-Flow. As long as they are successfully trained, we can use them for conditional
sampling. We add OT-Flow as another choice just for the Ablation study.
5.2 RESULTS ON UNCONDITIONAL GENERATION

To demonstrate the flexibility of EVA, we additionally reproduced a protein flow model OT-Flow (Bose
et al., 2023) and evaluated its performance. The unconditional generation result in Fig. 3 shows
that we are using reliable pretrained generative models for training-free methods, which builds basic
intuitions for the performance of the following conditional sampling. We evaluate these models by
sampling 100 samples from lengths 70, 100, 200, 300 following (Watson et al., 2023).

5.3 RESULTS OF INVERSE SOLVERS (Q1)

Fig. 4 shows the results of different inverse problem solvers for motif-scaffolding. Our EVA signifi-
cantly outperforms all inverse problem solvers including replacement-based and gradient correction
methods, highlighting the better balance between reconstruction and evolution of EVA. The results
imply when the unconditional generative bases are not as strong as in the image domains, training-free
methods need to carefully reach a trade-off.
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mRMSD=0.68,
scRMSD=1.41

mRMSD=0.54,
scRMSD=1.10

Case1: RSV-F SiteⅣ (Vaccine Design)

Case2: Double EF-hand motif (Multi-Motif)

mRMSD=0.77 
scRMSD=1.95

mRMSD=0.31
scRMSD=0.84

Figure 5: Case Study on RSVF4 and 1PRW.

Method Solved mRMSD
(%<1)

Des.
(%)

EVA 20 42 88
EVA (OT-Flow) 20 39 90

DPS 14 12 71

w/o our Prior 18 39 87
Interp. to DPS 14 15 69
setting γ = 1.1 19 40 91
setting γ = 0.9 20 41 86

Table 4: Ablation study for designed com-
ponents on motif-scaffolding in RFDiffu-
sion Benchmark. The best metrics are
marked by bold. Des. is the short for Des-
ignable Rate.

5.4 RESULTS ON RFDIFFUSION BENCHMARK(Q2)

We compare EVA with state-of-the-art methods in RFDiffusion benchmark in Table 1. EVA is 70×
faster than current state-of-the-art RFDiffusion, which supports our analysis about the trade-off
and demonstrates the effectiveness of the spatial context. As a training-free approach, we achieve
comparable performance with current SOTA training-based methods, RFDiffusion and superior
performance on targets with total length <100. It should be noted that RFDiffusion is based on a
much more complex protein structure prediction model, which is better at generating larger proteins
and requires time-consuming structure prediction pretraining and generative fine-tuning. We also
achieve leading performance across training-free methods, including SOTA particle-based SMC
methods, TDS, which enjoys good performance in the cost of intensive guidance computation.

5.5 PERFORMANCE COMPARISON ON REALISTIC TASKS (Q3)

Vaccine design and multi-motif scaffolding are both important and challenging real-world tasks (Cas-
tro et al., 2024). We test EVA on those challenging tasks as in Table 2 and Table 3. Our methods
has achieved competitive performance on the benchmark test, suggesting our scheme of directly
approximating the posterior mean using spatial context is simple yet effective. We also tested cases
requiring to find optimal motif indexes or multi-motif relative positions. More results and details can
be referred in the Appendix C.1.

5.6 ABLATION STUDY (Q4)

As Table 4 suggests, components of EVA all contribute to our superior performance. The results
highlight the flexibility of EVA, which could take advantage of different unconditional generative
foundations. As guidance is the essential for motif-scaffolding, we replace the coupled approximation
module within EVA with DPS guidance to study the importance of motif-aligned approximation.

5.7 CASE STUDY (Q5)

EVA can generate designable scaffolds with accurate motif reconstruction. Fig. 5 shows EVA
can scaffold the epitope of RSVF-site4 and the double motif EF hand of Protein 1PRW successfully,
suggesting the potential of our method for real-world tasks. More cases can be found in the Appendix.
EVA can generate diverse scaffolds Fig. 5 shows different scaffolds with various lengths and
secondary structure for two targets. Diversified scaffolds can improve the experimental success rate.

6 CONCLUSION

We formulate the motif-scaffolding as Geometric Inverse Design and identify its inherent trade-off
between generation and motif reconstruction. Tailored to this perspective, we present EVA, a novel
coupled flow framework on geometric manifolds, which uses motif-aligned priors and steers the
generative process onto a straighter probability path, where the generative directions are aligned with
guidance at early sampling steps. EVA is 70× faster than current state-of-the-art RFDiffusion with
competitive and even better performance. The results on benchmarks demonstrate our efficiency
and effectiveness. Limitations still exist, including insufficient exploration of general conditional
sampling and motif layouts.
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A BACKGROUNDS

A.1 MORE ANALYSIS

A key challenge in motif-scaffolding lies in the trade-off between preserving accurate motifs and
generating overall designable proteins (illustrated in Fig. 6. Traditional machine learning methods
use time-consuming stochastic search techniques, taking hours to generate one scaffold (Wang et al.,
2021). This hinders the creation of diverse scaffolds essential for experimental success.

Epitope

Isolated Epitope (Unstable): 
???????AFDEVDYMDYAMD????? 

Vaccine carrying desired Epitope (Stable): 
AYYGFDYAFDEVDYMDYAMDGKGTF 

Epitope

Scaffold

Design Case: Vaccines carrying RSV-F SiteⅣ

Figure 6: Cases requiring to find optimal motif indexes or multi-motif relative positions

Traditional machine learning-based methods rely on stochastic search techniques that require hours of
computation to generate a single plausible scaffold, which is not desirable as sets of diverse scaffolds
are needed to increase the likelihood of success in experimental validation.

Training or fine-tuning conditional generative models is a natural and effective idea. While these
methods need lots of computing resources and a large number of protein motif-scaffold pairs for
training, resulting in high computational costs. Moreover, training-based methods are inflexible to
take advantage of different pretrained generative models and incorporate various practical constrains
like spatial arrangements or layout for real-world applications, as they always need extra training or
fine-tuning.

This limitation has its root in the Evolution Verse Reconstruction trade-off process mentioned before.
The evolutionary process tries to sample from unconditional distribution to generate overall stable
and designable proteins, while the guidance term focuses on the accurate reconstruction of desired
motifs. Thus, the direction of Evolution and Reconstruction could be conflict. This often leads to two
types of unsatisfied samples with low designablity or inaccurate motif integration (as illustrated in the
Fig.1). The conflict demonstrated the fact that current conditional generative frameworks fail to fully
utilize motif information to guide the evolutionary path of the generation process. Additionally,
the geometric information. In addition, motif geometry information such as orientation can provide
clues to the evolution of the overall protein, and existing methods fail to explicitly account for these
geometric constraints.

we formulated the motif-scaffolding problem as the Geometric Inverse Design task and identified
the Evolution Verse Reconstruction issue in this task. We introduce EVA with Evolution ViA
reconstruction, a flexible and novel coupled flow matching framework on geometric manifolds,
(which uses measurement-coupled priors and steers the generation process explicitly (vs implicitly as
gradient) ) with the measurement-coupled Evolution ViA reconstruction plugin-and-play module, on
E(3) Equivariant Optimal Transport Path. EVA can better balance the evolution and reconstruction
process within generation and achieve comparable performance with greater flexibility.

A.2 FURTHER COMPARISON WITH GRADIENT GUIDANCE

For ease of comparison, the following analysis will be conducted under the unified formulation of
flow-based models.

In algorithmic sense, grad guidance includes two step: a. estimate the unconditional vector field and
unconditional posterior x̂1 b. estimate the guidance gradient ∇xt log p(x

M |xt) and the composition
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of the two:

v̂(xt, t|xM ) = v̂(xt, t) + σt
ln(αt/σt)

dt
∇xt log p(x

M |xt),

∇xt log p(x
M |xt) = ∇xt∥xM − x̂M1 ∥22.

(15)

Where the guidance gradient is usually estimated by the assumption that p(xM |xt) ≈ p(xM |x̂M1 ) is
a Guassian distribution. This is the origin of this term ∇xt

∥xM − x̂M1 ∥22 .

Our method differs from grad guidance in the second step, given the estimated x̂1, we directly
estimate the conditional posterior Ep[x1|xt, xM ], via interpolation between x̂M1 and xM . Then the
conditional update direction is given by:

Ep[x
M
1 |xt, xM ] = (1− βt) · x̂M1 + βt · xM ,

v̂(xt, t|xM ) =
Ep[x1|xt, xM ]− xt

1− t

(16)

Our method doesn’t rely on any assumption (e.g. gaussian distribution assumption in
FrameFlow-Guidance or Chroma) about the form of p(xM |xt) to estimate its gradient. Instead
of two independently estimated gradients, our method gives the overall update direction directly.

Furthermore, our vector field for motif-scaffolding can be viewed as a composition of vector fields
for overall generation and motif reconstruction:

v̂x(x
M
t |xM ) = (1− β) · v(xMt ) + β · vM (xMt )

vM (xMt ) =
xM − xt
1− t

(17)

A.3 MORE RELATED WORK

Motif-Scaffolding SMC-Diff and TDS utilize Sequential Monte Carlo (SMC) algorithm to re-
purpose pretrained DPM for motif-conditioned sampling. Though training-free, these SMC-based
methods need much more network calls to incorporate heuristic approximations, which may result in
unsatisfied and slow generations. Gradient correction-based methods frame the motif-conditioned
sampling as a problem of posterior sampling. Multi-motif scaffolding (Ke et al., 2024) was also
explored, which treat the motifs as floating anchors. We refer a recent benchmark work (Zheng et al.,
2024) for further reading.

Inverse problem Recently there are also many training-based methods to solve the inverse problem
to seek for effectiveness. Notably, Diffusion Bridge-based method (Chung et al., 2023a) applies
the similar idea of data-coupling as our methods. Improved gradient-correction method has also
appeared (Chung et al., 2023b) which uses geometric decomposition.

Protein Structure Prediction The self-conditioning approach (Stark et al., 2023; Huang et al.,
2023) is from the recycling mechanism in AlphaFold2 (Jumper et al., 2021a; Huang et al., 2024a)
for improved structure prediction (Hu et al., 2023; Huang et al., 2024b; Hu et al., 2022). It takes the
previous predicted posterior as model input and encodes the posterior to embedding for conditioning
next iteration. In contrast, our method just takes the posterior for interpolation which will not be
taken as model input for embedding.

B EXPERIMENTS SETUP

Inference set-up All baselines and our approach are implemented using the PyTorch 1.6.0 library
with Intel(R) Xeon(R)Gold6240R@2.40GHz CPU and NVIDIA A100 GPU. For a fair comparison,
we follow the original inference set-up of all baselines (Yim et al., 2024; Wu et al., 2023; Watson
et al., 2023). Previous sampling-based methods usually require 500 inference steps for reproducing
their original performance, more than that in EVA. All sampling-based methods use a batch of 25 for
every case, generating 100 scaffolds in total in a single A100 GPU. Because of the memory burden
of running RFDiffusion, we instead use a batch of 2 in a single A100 GPU. The inference code
framework is kept the same as TDS (Wu et al., 2023). The only difference for each sampling-based
method is the time-step number and the conditional sampling implementation.
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Data Curation We download the RFDiffusion benchmark sets via PDB. The data list can be found
in (Watson et al., 2023). The vaccine dataset (Watson et al., 2023; Castro et al., 2024; Correia
et al., 2014) include targets as follows: RSV Fusion Protein Site 0 (4JHW), Site 2 (3IXT), Site 4
(4ZYP), Site 5 (5TPN), RSV G-Protein 2D10 Site (5WN9); epitopes of DENV2 (pdb id: 6FLA) that
corresponding to neutralizing antibodies: 3E31, Z004, Z021, 3H5, 2C8, 2D73). We illustrated these
neutralizing antibodies below in Figure 7:

Figure 7: Neutralizing antibodies targeting DENV2 ED3

Baselines Implementation We implement all the inverse solver baselines according to their official
GitHub repositories and change the data structure from images to protein. The only modification
is the normal distribution defined in different manifold (Rd to SO(3), E(3)). We follow the normal
distribution definitions of TDS (Wu et al., 2023) and FrameFlow (Yim et al., 2023; 2024). The
OT-Flow is reproduced based on the FoldFlow (Bose et al., 2023), using their official Code Repository
for the SO(3) optimal transport path version. As we are not comparing the OT-Flow and FrameFlow,
we can just use the default training settings in their original papers. As long as the pretrained flow
model is capable of generating high-quality unconditional backbones (which we test in the Fig. 5),
we can use them as generative foundations for training-free motif-scaffolding.

Solving Equivariant Optimal Transport Our proposed algorithm solves Eq.7 approximately
based on enumerated motif selections with sliding windows (i.e, enumerating the start indexes
of motif segments) and kabsch algorithm for optimal rotation. The enumeration used here is for
estimating multiple possible motif selections to increase the diversity of generated backbones, which
contributes to the overall success rate. It’s efficient since the sequential enumeration space is not
big (total length - motif length or constrained by prior) and a single enumeration can determine
motif selection for N samples (by simply selecting the top N ), allowing the computation time to be
amortized across multiple samples. Kabsch algorithm is highly efficient and the runtime is negligible.
Additionally, for long scaffolds with multi-motif and no prior constrains, we will apply a variant of
iterative closest point algorithm (Song et al., 2023), where it iteratively obtains motif selection and
Rotation.

C MORE RESULTS

We show the numerical results of unconditional generation and inverse problem solvers in Table 5
and Table 6. More case studies are introduced below.

C.1 MULTI MOTIF SCAFFOLDING

As mentioned in the main text, we also test two cases requiring to find optimal motif indexes or
multi-motif relative positions. These conditions are provided in benchmark tests, rarely explored
before, but actually not easily accessible in real-world cases. As these are not our main focus, we
just want to show the flexibility and extensibility of our method in a proof-of-concept manner. We
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Method Des.(↑) Div.(↑) Nov.(↓)
RFDiff 0.87 156 0.64

FrameFlow 0.80 171 0.61
OT-Flow 0.82 167 0.63

Table 5: Unconditional generation results.

Method Solved(↑) Div(↑)
SDEdit 10 79
FF-G 18 153
DPS 14 126
EVA 20 173

Table 6: Performance of inverse problem solvers on the RFDiffusion benchmark. The best metrics
are marked by bold.

conduct the case study on protein 1PRW, we simulate the two scenarios by not providing the model
with the motif index from existing cases or randomly rotating or translating the given motif structures.
The results are show in Fig 8. For the case with unknown motif indexes, they involve multiple
factors: 1) the spatial location of the motif, 2) the length of the motif itself, and 3) the distances
between motifs. The final evaluation criterion is whether a designable backbone with the desired
motif can be generated, and there is currently no numerical standard for this. Here, we present a
heuristic enumeration method. We assume that the relative positions of multiple motifs are known

Algorithm 2 A training-free Coupled Flow-based Framework for fast Motif-Scaffolding (EVA)
Input: Pretrained flow model vθ(g, t) which can estimate posterior ĝ1(gt); Desired Motif Structure
m as in Eq. 7; Enumerated or given (as in the benchmark test) motif region indexes π∗.
Output: Designable backbones g1 with desired motifs.

1: Sample: original prior g0, initial time t0 ∈ [0.1, 0.2].
2: Obtain spatial motif-aligned prior g∗

0 with Kabsch algorithm.
3: for each time step t ∈ [t0, 1] of ODE integration do
4: Get predicted unconditional posterior ĝ1(gt) = (r̂1, x̂1) from pretrained vθ(g, t);
5: Adjusting motif relative positions according to Eq. 18 and get updated gm.
6: Predict motif-interpolated conditional posterior as follows:
7: Ep[r

M
1 |rt, rM ] = expr̂M

1
(βt · logr̂M

1
(rM )),Ep[x

M
1 |xt,x

M ] = (1− βt) · x̂M
1 + βt · xM

8: Calculating estimated conditional vector fields v̂x(xt,xm) and v̂r(rt,xm) as in Eq. 12;
9: Run the ODE update step as in Eq. 12 and get intermediate results gt;

10: end for
11: return Designable backbones g1 with desired motifs.

(the case where the relative positions of motifs can vary independently will be discussed later). For a
single motif, we only need to enumerate its starting index using a sliding window method, ensuring
it remains within the protein index range. For multiple motifs, we first calculate the number of
intervening amino acids based on the spatial distance between motifs plus their interaction radius
(approximately 2-5 Å), divided by the average amino acid length. Since this value only simulates
the scenario where amino acids are arranged in a straight line, it represents a minimum. We then
enumerate the relative number of amino acids between each motif, i.e., the index difference between
each motif. Once we have enumerated the index differences between motifs, the problem converts
back to the single motif case, and we can continue using the sliding window for enumeration. For the
case with unknown relative motif positions, we assume known motif indexes. Or it’s a little complex
and needs a slow iterative algorithm. The algorithm first conducts the Hungarian algorithm to align
the atoms between the initial geometry from p0 and the ground truth geometry from q1; and then
conducts the Kabsch algorithm to solve the optimal rotation matrix based on the atom alignment.
The proposed algorithm asymptotically converges to the optimal solution. But it’s slow for accurate
exploration of the motif indexes and motif relative positions product space.
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Case Study 1: 1PRW scaffolding with 
unknown motif indexes

mRMSD=0.87,
scRMSD=1.14

Case Study 2: 1PRW scaffolding 
with unknown motif relative positions

Figure 8: Cases requiring to find optimal motif indexes or multi-motif relative positions
On the other hand, if the motifs are independent, we can assume a relative far sequential distances
between the motifs. This intuition comes from the fact that these motifs don’t need to interact
with each other and their relative positions are not necessarily to be close. So we just keep the
independent motifs independent and assign them motif indexes that are far in sequential order.
Note the independent motifs could still be spatially close although they are sequentially far. But it
doesn’t violate our assumptions of independent motifs. Therefore, we can simply enumerate some
motif indexes that are relatively far apart in the sequence, and then focus on exploring their relative
positions.

We can explore the motif relative positions with a modified version of EVA. This time, we need to
adjust the EOT objective as in Eq. 18:

π∗,R∗ = argmin
π,R

∥π(x1t , x2t , . . . , xNt )− (Rx1m,Rx
2
m, . . . ,Rx

Nm
m )∥2 (18)

In every step (or in just some selected steps for efficiency), we take the intermediate sampling result
xt as a relative reference and use the Kabsch algorithm based on Eq. 18 to compute the optimal
rotation for each motif relative to its corresponding prior part. Then, we apply the optimal rotations
and perform Geometric Interpolation to calculate the conditional posterior. This method implicitly
leverages the pretrained generative model to explore the relative positions of the motifs. As the
protein structure gradually folds into a stable state during generation, the generative model makes
spatial adjustments for each motif part. Our approach aligns with these adjustments step by step
through spatial alignment, while also ensuring that the motif structure itself conforms to the given
structure via Geometric Interpolation. We omit the trivial CoM alignment for simplicity. We summary
the algorithm in Alg. 2.

C.2 MORE ADVANCED RESULTS

More ablations. We provide the performance of FrameFlow against sampling steps in Table 7,
more ablation study of hyperparameters of EVA in Table 8, and more case study results for the
RFDiffusion benchmark in Table 9. The ablations suggest the hyperparameters could control the
strength of motif reconstruction and the designability and users could adjust them case by case. We
find simply setting γ = 1, t0 = 0.1 is enough for most cases.

Method Solved mRMSD(%<1) Des(%) Time(s)

FrameFlow-guidance (100 steps) 16 14 79 3.1
FrameFlow-guidance (300 steps) 16 18 83 9.7
FrameFlow-guidance (500 steps) 18 21 87 15

EVA (ours,100 steps) 20 42 88 0.87
EVA (ours, 500 steps) 21 47 88 4.6

Table 7: The performance of FrameFlow-guidance against sampling steps.

Image In-painting. To demonstrate the broader applicability of EVA’s geometric method, we
conducted an image in-painting case study using EVA algorithms adapted for image tasks. The results
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Hyper-parameter Solved mRMSD(%<1) Des(%)

coupling strength gamma = 0.8 17 45 79
coupling strength gamma = 1.2 18 38 91
starting time t0=0.15 20 43 86
starting time t0=0.05 19 39 88

EVA (original, gamma=1.0, t0=0.1) 20 42 88

Table 8: More ablation study of EVA.

1YCR 6EXZ short 6E6R med 5TRV short 3IXT 6EXZ long 1BCF 2KL8 1PRW 5TRV med

success rate 0.67 0.33 0.33 0.33 0.08 0.08 0.58 1.00 0.33 0.25
designable rate 0.92 1.00 1.00 1.00 0.67 0.92 0.92 1.00 0.83 1.00
motif rmsd rate 0.75 0.42 0.42 0.50 1.00 0.08 1.00 1.00 0.50 0.33
sc rmsd rate 0.75 0.83 0.58 0.75 0.08 0.42 0.58 1.00 0.58 0.75

Table 9: More case study results for the RFDiffusion benchmark.

in Fig. 9 highlight the effectiveness of leveraging spatial context for conditional generation. The mod-
ification of EVA for image in-painting task includes: a. The pretrained generative model is changed
to the DDPM model pretrained in FFHQ dataset (Chung et al., 2022) b) The rotation alignment is no
longer needed since it’s a standard 2D image task without any misalignment. Interpolation between
masked image and random noise is kept for a better initialization. c) The inference setting and
implementation for image in-painting follows DPS (Chung et al., 2022). For the comparison against
DPS (Table 10, we report the LPIPS (lower is better) on FFHQ 256 ×256 in different sampling steps
(i.e., Neural Function Evaluations, NFE).

Original 
Image

Masked 
Image

Inpainted
with EVA

Figure 9: Image in-painting cases of EVA

It is noted that EVA performs better in low NFE setting (NFE≤100), while DPS is better in high
NFE setting (DPS’s original setting). This aligns with the efficient and direct design of our geometric
solution. When the number of sampling steps increases, methods like DPS, which are based on
analytical solutions for image in-painting, can better balance the guidance and unconditional scores,
thereby achieving superior performance. Since images, unlike proteins, are not 3D geometric entities,
making it challenging to fully leverage the advantages of our geometric method. This comparable
performance is acceptable and demonstrate our efficiency and effectiveness.
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DPS EVA

NFE=50 0.36 0.31
NFE=100 0.28 0.26
NFE=500 0.21 0.23

Table 10: The performance of EVA in image in-painting. we report the LPIPS (lower is better) on
FFHQ 256 ×256 in different sampling steps (i.e., Neural Function Evaluations, NFE).

Random Error Analysis. To demonstrate the impact of random errors on the model, we report the
success rates and random errors for fixed targets. Under the original inference setting, we generated
100 scaffolds for each target, calculated the number of samples that successfully achieved the motif-
scaffolding task, and reported the success rate. We now run this process five times for five targets
(with different random seeds as required). Each target yields five success rates, and we report the
average success rate and standard deviation (std) for each target as in Table 11.

6EXZ 6E6R 2KL8 1BCF 1YCR

Success Rate(%) 33±1.0 33±0.75 100±0.40 58±1.5 67±1.2

Table 11: The success rates and random errors for fixed targets. The headers are the PDB ID of five
targets.

The results show that EVA performs consistently on the same case, benefiting from the generation
process of the flow-based ODE. As for the ablation study, it is worth noting that a single metric being
close does not necessarily mean there is no difference between the two methods. For example, higher
designability might result from ignoring the motif constraints. Our method successfully addresses the
most motif-scaffolding targets and achieves the best motif reconstruction performance.

Trajectory Analysis We provide Trajectory Analysis of FrameFlow-guidance and EVA in Table 12.
Empirical results indicate that EVA generates straighter and shorter trajectories.

Method t=0.0 (Prior) t=0.4 t=0.7 t=1.0

FrameFlow-Guidance (100 inference steps) 11.1 (7.33) 7.2 (5.14) 4.6 (3.01) 2.8 (1.74)
EVA (100 inference steps) 9.3 (6.21) 5.6 (3.36) 2.1 (1.49) 1.3 (0.82)

Table 12: Empirical Analysis of Sampling Trajectories for EVA and FrameFlow-Guidance. We
calculated the average RMSD between the noisy point clouds and the fully denoised ground truth
point clouds for 100 sampling trajectories on the target 1YCR. The values outside the parentheses
represent the backbone RMSD, while those inside the parentheses represent the motif RMSD.

D IMPACT STATEMENT

While there exists the potential risk that motif-scaffolding methods could be misused to develop
harmful drugs, it’s important to note that drug development is subject to stringent oversight globally.
This rigorous regulatory environment ensures that such misuses can be effectively managed and
controlled.
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