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1. Introduction
RNA molecules play essential roles in gene regu-

lation, catalysis, and other biological processes, with
their functions tightly linked to their 3D structures
[1]. While experimental methods like X-ray crys-
tallography and cryo-EM provide high-resolution
structures, they are costly and time-intensive [2],
motivating computational approaches for 3D struc-
ture prediction. Traditional computational meth-
ods, including physics-based and knowledge-based
approaches, have been widely used for the structure
prediction [3–9], but their accuracy remains limited.
The success of AlphaFold models [10, 11] in protein
structure prediction demonstrated the potential of
deep learning, leading to the development of several
deep learning-based models for RNA structure pre-
diction [12–19].
Recent reviews [20–23] and comparative studies

[24–28] highlight the growing interest in RNA 3D
structure prediction. However, the existing bench-
marks often lack systematic dataset design, with
someusing small or evaluation sets that overlapwith
or closely resemble training datasets, limiting their
ability to assess generalization. Additionally, com-
parisons among all available deep learning-based
models remain incomplete, with AlphaFold 3 often
omitted or tested separately.
Our main contribution is twofold. First, we con-

struct GenRNA, a dataset where test RNAs are dis-
tinct from training data, and benchmark six RNA
structure prediction models: DRfold [12], Deep-
FoldRNA (DFR) [13], RhoFold [16], RoseTTAFoldNA
(RF2NA) [29], trRosettaRNA (trRNA) [18], and Al-
phaFold 3 (AF3) [19]. Implementations of epRNA [14]
and NuFold [15] were not available at the time of this
study. We assess the models’ ability to generalize to
unseenRNAsequences andevaluatewhether perfor-
mance remains within acceptable thresholds. Sec-
ond, we investigate ensemble-based selection using
scoring functions. Although several scoring func-
tions exist [30–32], we focus onARES [33] andRosetta
score [34], as they are among the most widely used.
We assess whether scoring functions can improve
structure selection and explore the potential for fur-
ther refinement in model ranking strategies.

2. Methods
Dataset: GenRNA. We introduce GenRNA, a

dataset designed to assess model generalization by
ensuring that evaluationRNAswere sequentially dis-
tinct from those used for training of each of the six
models. Since most models do not disclose their
training data, we used 13 January 2023, the valida-
tion cutoff for AlphaFold 3, as a universal training
cutoff, as this date is after all evaluated models were
developed. RNA structures published in the Protein
Data Bank (PDB) [35]were clustered at 90% sequence
identity. Clusters containing only RNAs deposited
after the mentioned date were selected and further
filtered based on length, resolution, and complete-
ness. To ensure comparability, we included only
RNAs forwhich allmodels producedfinal structures,
resulting in 84 sequences. A detailed dataset con-
struction pipeline is provided in Appendix A.
Scoring functions. We evaluated whether ARES

and Rosetta score could reliably identify the best
prediction among the six models and thereby im-
prove overall structure prediction accuracy. ARES is
a deep learning-based model trained on RMSD val-
ues, while Rosetta score is an energy-based func-
tion. We first analyzed how well each score corre-
lated with RMSD and then evaluated whether choos-
ing the structure identified as the best by ARES or
Rosetta score resulted in a lower RMSD compared to
relyingonly on individualmodel predictions. Aspart
of this analysis, we introduce the optimal function,
which always selects the prediction with the lowest
RMSD value. This serves as an upper bound on per-
formance, representing the best possible accuracy
achievable with existing deep learningmodels when
paired with a perfect scoring function.

3. Results and Discussion
Figure 1 shows all-atom Root Mean Square De-

viation (RMSD), a metric that quantifies the struc-
tural deviation between predicted and reference
RNA structures, calculated using the RNA-Puzzles
Toolkit [36]. Median RMSD values range from 9.64 Å
for DeepFoldRNA to 16.33 Å for AlphaFold 3, indi-
cating that the current models struggle to accurately
predict RNA structure, as RMSD values below 5 Å
are generally considered acceptable, and values be-
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low 2 Å indicate high accuracy [36]. In compar-
ison, when evaluated on the RNA Puzzles dataset
[37–41], which has significant overlap with training
data, models achievemuch lower RMSD values, with
the lowest median 2.65 Å for RoseTTAFoldNA and
the highest 7.92 Å for AlphaFold 3 (Appendix B).
This stark contrast highlights the models’ reliance
on training-set similarity and their limited ability to
generalize to unseen RNAs.
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Fig. 1: RMSD for evaluated RNAs across six RNA
structure prediction models, ARES, Rosetta score,
and an optimal scoring function.

To assess generalizationmore rigorously, we eval-
uated model performance on the GenRNA-Struct
dataset, a subset of GenRNA, where RNAs were se-
lected to be both sequentially and structurally dis-
tinct from training data. Details on dataset construc-
tion and additional results are provided in Appendix
C. Median RMSD values increased for all models,
with DeepFoldRNA rising to 9.97 Å (+3.42%) and Al-
phaFold 3 to 18.66 Å (+14.27%), confirming that mod-
els struggle with structurally novel RNAs and rein-
forcing their limited generalization beyond training
distributions. The results obtainedusingother struc-
tural evaluation metrics further support these find-
ings, with particularly poor performance in non-
Watson-Crick interactions (Appendix D).
No single model consistently outperforms oth-

ers on either GenRNA or GenRNA-Struct datasets,
with each producing the best prediction for some
RNAs. More specifically, the results on GenRNA
dataset showed that DeepFoldRNA leads in 31% of
cases, followed by DRfold (22.6%), RhoFold (15.5%),
AlphaFold 3 (11.9%), RoseTTAFoldNA (9.5%), and tr-
RosettaRNA (9.5%). This variability suggests that se-
lecting the best prediction on a case-by-case basis
could improve overall structure accuracy.
To test this assumption, we investigated whether

ARES and Rosetta scoring functions could identify
the best predictions for GenRNA dataset. An ef-
fective scoring function should rank lower-RMSD
structures higher. However, both ARES and Rosetta
score performed poorly, showing weak correlation
with RMSD (Spearman values: ARES = −0.2190,

Rosetta score = −0.0027). ARES strongly favored Al-
phaFold 3’s predictions (83.33% of RNAs), despite Al-
phaFold 3 having the worst median RMSD on Gen-
RNA. This suggests that ARES may not be effec-
tively evaluating structural accuracy but instead fa-
voring AlphaFold 3 due to training biases. Since
ARESwas trained exclusively onFARFAR2-generated
structures, which differ from deep learning-based
predictions, it may struggle to generalize to the
structures produced by these models. Retrain-
ing ARES on a broader dataset that includes deep
learning-based predictions could improve its effec-
tiveness. Similarly, Rosetta score exclusively se-
lected trRosettaRNA’s predictions, likely because tr-
RosettaRNA’s refinements are guided by Rosetta’s
own energy function, making its outputs inherently
more compatiblewithRosetta scoring. This suggests
that Rosetta score may prioritize energy-based re-
finements over structural accuracy, limiting its use-
fulness as a general-purpose ranking function.
In contrast, an optimal scoring function, one that

always selects the prediction with the lowest RMSD,
could further reduce the median RMSD from 9.64 Å
achieved by the best individual model, DeepFol-
dRNA, to 7.86 Å. This demonstrates the potential for
significant improvement if a more effective scoring
approach were developed. Developing more robust
scoring methods could improve RNA structure pre-
diction by enabling better model selection beyond
individual rankings.

4. Conclusion
This study benchmarks six state-of-the-art deep

learning models for RNA structure prediction, high-
lighting their limited generalization. While each
model performs the best for some RNAs, none con-
sistently outperforms the others. Moreover, RMSD
values remain above generally acceptable thresh-
old. Performance further drops on structurally
novel RNAs, where RMSD values are significantly
higher than those observed for RNA Puzzles, show-
ing the models’ strong reliance on training-set simi-
larity rather than structural inference.
Beyond the need for better generalization strate-

gies, our results show a weak correlation between
ARES and Rosetta scoring functions with RMSD, in-
dicating that current scoring functions do not reli-
ably identify the most accurate RNA 3D structure
among model predictions. Finally, we demonstrate
that an optimal scoring function could substantially
reduce overall RMSD across the evaluation dataset,
revealing the potential for significant improvement
in existing scoring functions.
Future work should focus on both enhancing

model generalization to unseen RNA structures and
developingmore effective scoring functions that can
reliably distinguish high-quality predictions across
diverse RNA types, ultimately improving the selec-
tion of accurate 3D structures.
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Appendix A. GenRNA dataset creation

Our aim was to create GenRNA, a dataset that could
effectively evaluate the generalization abilities of the
models. Sincemostmodels do not explicitly disclose
their training datasets, we used 13 January 2023, the
validation set cutoff date for AlphaFold 3, as the
training cutoff for all models. This assumption is
reasonable, as five other models were developed for
CASP15 in April 2022, indicating they were trained
ondata publishedwell before our chosen cutoffdate.
To compile this dataset, we selected structures pub-
lished in the PDB database after 13 January 2023, en-
suring that these RNAswere unseen during training.
This approach enables a robust assessment of the
models’ generalization ability to novel structures.
Starting with a download of all available RNA

chains from PDB, which was 20, 320 RNA chains, we
applied sequence identity clustering usingMMseqs2
[42, 43], filtering for aminimumsequence identity of
90% and coverage of at least 80%, resulting in 3, 822
clusters. Clusters containing only RNAs published
after 13 January 2023 were retained, followed by fur-
ther filtering to remove sequences shorter than 16
nucleotides, with resolution greater than 9 Å, those
with fewer than 90% defined residues, and those
consisting solely of unknown residues (’N’ or ’X’). Af-
ter these steps, 143 clusters remained, each uniquely
represented by sequences with optimal resolution
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andmaximal percentage of nucleotideswith defined
locations. This process is visualized in Figure A1.
For comparability, we only included sequences

for which all models could produce final structures,
yielding a final subset of 84 sequences.

20,320 RNA chains
5,262 unique sequences

3,822 clusters

Sequence identity 
clustering 
(90% identity, 
80% coverage)

all RNAs in the cluster
published after :

320 clusters

143 clusters

defined nucleotides > 90%

at least some nucleotides 
known (A, C, G, U)

length ≥ 16 nt

resolution < 9 Å

Filter RNAs :Choose 1 RNA 
per cluster :

lower resolution
higher % of 

defined nucl.

Selection criteria:

DRfold
DeepFoldRNA
RhoFold
RoseTTAFoldNA
trRosettaRNA
AlphaFold3

Successful for all of the tools

84 RNA chains

Fig. A1: Process of creating the evaluation dataset.

Appendix B. RNA Puzzles Dataset

The RNA Puzzles dataset consists of 37 RNA struc-
tures from the RNA-Puzzles initiative [37–41], a
widely usedbenchmark forRNA3Dstructurepredic-
tion. To avoid overlap with CASP15 targets [44], Puz-
zles 35 and 36 were excluded. While it is unknown
whether these RNA Puzzles were explicitly included
in the training datasets of the evaluated models,
manywere published in the Protein Data Bank (PDB)
well before the models were developed. As a re-
sult, modelsmay have encountered structurally sim-
ilar RNAs during training, potentially making this
dataset less challenging for evaluation.
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Fig. A2: RMSD for RNA Puzzles across six RNA struc-
ture predictionmodels, ARES, Rosetta score, and
an optimal scoring function.

When evaluated on this dataset, models
achieve their best performance, with signifi-
cantly lower RMSD values compared to our dataset.
RoseTTAFoldNA achieves the lowest median RMSD

(2.65 Å), indicating that these models perform
particularly well when trained on similar examples.
AlphaFold 3, however, lags behind, with the highest
median RMSD (7.92Å), suggesting differences in
training data or model architecture. These results
reinforce that models struggle more when applied
to unseen RNAs, as performance drops significantly
when evaluated on datasets without training-set
similarity.

Appendix C. GenRNA-Struct: Stricter general-
ization assessment using structural
and sequential clustering

To further assess generalization, we constructed
GenRNA-Struct, a subset of GenRNA, designed to in-
clude RNAs that are not only sequentially distinct
from training data but also structurally dissimilar.
We applied the RNA3DB pipeline [45], which clusters
RNAs based on both sequence and structural simi-
larity. We retained only RNAs from clusters where
all members were published after 13 January 2023,
ensuring that no structural relatives were present in
trainingdata. Thefinal evaluation subset contains 60
RNAs, forming a stricter benchmark for model gen-
eralization.
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Fig. A3: RMSD (upper panel) and TM-score (lower
panel) for GenRNA and GenRNA-Struct datasets.

Figure A3 shows comparison of all-atom RMSD
and TM-score [46] performance on GenRNA and
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GenRNA-Struct datasets. We observe that median
RMSD remains similar, but TM-scores are slightly
lower, with all models continuing to produce very
lowTM-scores (∼ 0.2), consistentwith randomfolds.
An example of these modeling challenges is

shown in Figure A4, which illustrates predictions
for the RNA chain with PDB_ID 8T29_R, included
in both GenRNA and GenRNA-Struct. The native
structure is shown in green and the predicted struc-
tures in blue. All six predicted structures for this
RNA chain exhibit relatively high RMSD and low
TM-scores. Among these, AlphaFold 3 produced the
most accurate prediction, capturing a reasonable
global fold. Visualizations of the structures were
generated using PyMOL [47].

TM-score = 0.4685

RMSD = 10.14 Å

AlphaFold3

TM-score = 0.3567

RMSD = 10.70 Å

trRosettaRNA

TM-score = 0.2901

RMSD = 15.79 Å

RoseTTAFoldNA

TM-score = 0.3058
RMSD = 14.84 Å

RhoFold

TM-score = 0.3142
RMSD = 16.44 Å

DeepFoldRNA

TM-score = 0.3432

RMSD = 21.09 Å

DRfold

Fig. A4: Predictions for RNA chain 8T29_R.

Appendix D. Other metrics

In addition to all-atomRMSD, we calculate seven ad-
ditionalmetrics to evaluate RNA3D structure predic-
tions. TM-score [46], computed using USalign [48],
assesses how well the predicted global fold aligns
with the native structure. lDDT [49], calculated us-
ing OpenStructure [50], evaluates local atomic ac-
curacy. The clash score [51], computed with Mol-
Probity [51], measures steric clashes between atoms,
where lower values indicate better structural feasi-
bility. Interaction Network Fidelity (INF) metrics
[52], calculated using the RNA Puzzles Toolkit [36],
assess RNA-specific structural accuracy by detect-
ing essential base interactions with MC-Annotate
[53]. These include INF_WC (Watson-Crick inter-
actions), INF_NWC (non-Watson-Crick interactions),
and INF_STACK (stacking interactions), as well as an
overall INF_ALL score.
Figure A5 shows the median values for each tool

across the GenRNA dataset. Since all metrics except
RMSD and clash score range from 0 to 1, where 1 rep-
resents perfect agreement with the native structure,
we adjusted RMSD and clash score for consistency.
Specifically, we took their negative values (as lower
values are better for thesemetrics) and appliedmin-
max normalization, ensuring that a larger surface

area in the spider plot indicates better overall per-
formance.

TM-score

clash_score

RMSD

lDDT

INF_STACK

INF_NWC

INF_WC

INF_ALL

DRfold
DeepFoldRNA
RhoFold
RoseTTAFoldNA
trRosettaRNA
AlphaFold 3

Fig. A5: Comparisonof tool performance acrossnor-
malized metrics on GenRNA.

TM-score results indicate that none of themodels
achieve meaningful global fold accuracy, with me-
dian values ranging from 0.207 for RhoFold to 0.261
for DeepFoldRNA, which corresponds to randomly
generated folds since only values above 0.45 indicate
meaningful structural similarity. While INF_WC and
INF_STACK show moderate agreement with native
interactions, INF_NWC remains particularly chal-
lenging, with all models performing poorly. Among
them, AlphaFold 3 achieves the highest INF_NWC
score, but the overall accuracy of non-Watson-Crick
interaction predictions remains low across all mod-
els.
No single tool performs best across all metrics:

DeepFoldRNA achieves the best results for all-atom
RMSD, TM-score, INF_ALL, and INF_STACK, while
also maintaining a respectable clash score (third
best, median = 0.76) and strong lDDT (second best,
median = 0.651). However, it performs worse for
INF_WC and INF_NWC, where AlphaFold 3 and
RoseTTAFoldNA outperform it.
Figure A6 presents the same evaluation met-

rics for GenRNA-Struct, a stricter subset of Gen-
RNA. Given that GenRNA-Struct comprises over 70%
of GenRNA, the overall trends remain consistent.
DeepFoldRNA continues to achieve the best perfor-
mance across most metrics. However, the results
still fall short of desirable accuracy, with TM-scores
only slightly above 0.2. While some INF metrics,
such as INF_WC, show strong agreement with na-
tive interactions (median > 0.84), INF_NWC remains
a major challenge across all models.
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Fig. A6: Comparisonof tool performance across nor-
malized metrics on GenRNA-Struct.
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