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ABSTRACT

Real-world formal theorem proving often depends on a wealth of context, including
definitions, lemmas, comments, file structure, and other information. We introduce
miniCTX, which tests a model’s ability to prove formal mathematical theorems
that depend on new context that is not seen during training. miniCTX contains
theorems sourced from real Lean projects and textbooks, each associated with a
context that can span tens of thousands of tokens. Models are tasked with proving a
theorem given access to code from the theorem’s repository, which contains context
that is needed for the proof. As a baseline for miniCTX, we tested fine-tuning and
prompting methods that condition theorem proving on preceding context. Both
approaches substantially outperform traditional methods that rely solely on state
information. We found that this ability to use context is not captured by previous
benchmarks such as miniF2F. Alongside miniCTX, we offer NTP-TOOLKIT for
automatically extracting and annotating theorem proving data, making it easy to
add new projects into miniCTX to ensure that contexts are not seen during training.
miniCTX offers a challenging and realistic evaluation of neural theorem provers.1

1 INTRODUCTION

Formal theorem proving in interactive theorem provers (ITPs) provides a testbed for evaluating the
reasoning capabilities of large language models (LLMs). Theorem proving capabilities can then
directly translate to automation for mathematicians, such as via tools that complete or formalize
proofs (Welleck & Saha, 2023; Song et al., 2024; Welleck, 2024; Agrawal et al., 2022). However,
despite their promise, we see a gap between the evaluation of current language model-based provers
and the complexity of real-world theorem proving.

Our motivating observation is that theorems and proofs depend on various forms of context, such
as newly-defined definitions and lemmas. For instance, to prove results about a square, one might
first formalize a definition of a rectangle, prove some results about rectangles, then specialize them
to a newly-defined square (Kontorovich, 2024b) (Figure 1). However, existing methods for training
and evaluating LLM-based theorem provers often fail to incorporate the full range of contextual
information available in real-world projects. For example, benchmarks often focus on proving
standalone competition problems (e.g., miniF2F (Zheng et al., 2022)) or theorems from a library that
the model has trained on (e.g., Mathlib (Han et al., 2022; Yang et al., 2023)), and state-of-the-art
LLM-based provers are trained to accept only a proof state as input, making them unaware of new
theorems and definitions (Polu & Sutskever, 2020; Ying et al., 2024; Xin et al., 2024). While some
existing work, including premise selection techniques (Jiang et al., 2022; Mikuła et al., 2023; Yang
et al., 2023) and datasets like CoqGym (Yang & Deng, 2019), have explored theorem proving based on
information beyond the current state, they often focus only on providing relevant premises—lemmas
that can assist proof construction—which are only a subset of the available information.

Building on these foundations, we propose miniCTX: a benchmark that seeks to expand the scope of
context used in theorem proving. We extend beyond traditional premise selection explored in prior
benchmarks (e.g., Yang et al. (2023); Yang & Deng (2019)) by incorporating a more comprehensive
set of contextual elements. This includes premises, prior proofs, comments, notation, and structural

1Project page: https://cmu-l3.github.io/minictx. Please refer to our project page for our dataset
and evaluation links, and future updates including miniCTX-v2.
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Table 1: Comparison of theorem proving benchmarks across several key features.

Benchmark Language Premise Full Context Multi-source Temporal Split
miniF2F (Zheng et al., 2022) Multiple ✗ ✗ ✗ ✗
ProofNet (Azerbayev et al., 2023) Lean ✗ ✓ ✓ ✗
LeanDojo (Yang et al., 2023) Lean ✓ ✗ ✗ ✗
LeanStep (Han et al., 2022) Lean ✓ ✗ ✓ ✗
CoqGym (Yang & Deng, 2019) Coq ✓ ✗ ✓ ✗
PISA (Jiang et al., 2021) Isabelle ✗ ✗ ✓ ✗

miniCTX (Ours) Lean ✓ ✓ ✓ ✓

components like imports and declarations. By doing so, miniCTX aims to drive the development
of methods that understand and work with context that occurs in complex, real-world theorem
proving tasks. We compare miniCTX with several popular theorem proving datasets to highlight its
unique contributions in terms of contextual dependency and real-world applicability (see Table 1).
Additionally, considering the common use of pre-trained language models we mitigate potential data
contamination by continually and automatically updating miniCTX with new Lean projects, so that
evaluated theorems are not seen during training. Our key contributions are:

miniCTX Benchmark: We introduce miniCTX, the first benchmark designed specifically to evaluate
theorem proving in real-world settings where proofs depend on in-file definitions, lemmas, and
context from formal projects. miniCTX presents a unique challenge by requiring models to reason
over long contexts and handle dependencies that arise in real-world theorem proving tasks.

NTP-TOOLKIT: To facilitate the automatic updating of miniCTX, we developed the NTP-TOOLKIT,
which automatically extracts relevant theorems and contexts from Lean projects. Additionally, we
provide a Lean REPL wrapper that enables simpler evaluation on miniCTX.

Baseline Evaluations: We evaluate miniCTX on several existing baseline models, including different
fine-tuning and prompting strategies, as well as methods with premise selection. We also propose file-
tuning, a strong baseline method for training models using full file contexts, where both the theorem
statements and their surrounding context are provided during training. This approach establishes a
robust baseline for future work on context-dependent theorem proving.

Figure 1: Many state of the art provers are trained on a static dataset of theorems and proofs, then
evaluated on standalone problems such as competition problems (left). We argue that neural provers
must also operate in the realistic context-dependent setting, in which results depend on working
with new mathematical objects and their facts, notations, and the structural elements of the project
(imports, variables, etc.) (right).

2 THEOREM PROVING WITH CONTEXT

For language model-based provers to function as useful tools in this real-world setting, they need
to be able to work with new information such as new definitions or lemmas. For example, a system
suggesting proofs in the Prime Number Theorem project should be familiar with the project’s
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definition of “square”. Many current language model-based provers are trained on a static snapshot
of data, and are hence unaware of any context that was created after the model was trained (Figure 1).
They are often evaluated on either context-less standalone competition problems (Zheng et al., 2022;
Azerbayev et al., 2023) that do not reflect realistic settings, or existing Mathlib proofs (Yang et al.,
2023) which risks data contamination. As a result, it remains unclear whether these models can work
with new information, which is necessary for using them as an assistant in a real proof development,
and how to enable this capability.

Context-dependent proving. We study context-dependent theorem proving, where the goal is for
a model to generate proofs y for new theorems x, based on a context c that includes background
information such as definitions, lemmas, or natural language comments. Formally, the problem is

maximizeM E(x,c)∼pEy∼M(·|x,c)v(x, c, y), (1)
where (x, c) ∼ p denotes a (theorem, context) pair from a context distribution p, M is a model that
produces a proof y, and v returns 1 if the proof is correct and 0 otherwise.

Evaluating context-dependent proving. We choose Lean (Moura & Ullrich, 2021) as the verifier
v, because of the large body of recent theorems in Lean that can be used as evaluation data, and
the abundance of proving methods in Lean that we use as baselines. We treat a Lean repository as
the distribution p. Each context c is a subset of the repository, including new definitions, lemmas,
notations, imports, and comments that are relevant to the theorem.

Given a language model, we can test three kinds of generalization by ensuring the following:

• Theorem-level generalization: the proof must not occur in the model’s training data.
• Context-level generalization: the code c and proof must not occur in the training data.
• Project-level generalization: the entire repository must not occur in the training data.

For baseline evaluations, we investigate the in-file context case where c is the source code that
precedes the theorem x in a file, as well as cross-file context where c includes both preceding code
and relevant premises retrieved from imported modules through premise selection.

3 miniCTX: A BENCHMARK FOR THEOREM PROVING WITH CONTEXT

We develop miniCTX, a Lean 4 theorem proving benchmark of theorems that depend on newly-
defined lemmas, definitions, and proofs from within a project. miniCTX is currently based on 762
theorems from six projects: (1) Prime Number Theorem (PNT) (Kontorovich, 2024a), (2) Polynomial
Freiman-Ruzsa Conjecture and its extension with high cross-file dependency (PFR) (Tao, 2023),
(3) recent results from the standard mathematical library (Mathlib), (4) an introductory text on
theorem proving (HTPI) (Macbeth, 2023), (5) high energy physics formalization in HepLean (HEP)
(Tooby-Smith, 2024), and (6) scientific computing formalizations (SciLean) (Skřivan, 2021). These
theorems are equally split into 381 validation and 381 test theorems. Table 2 shows an overview of
the dataset. Each theorem in miniCTX consists of the theorem statement, preceding file contents up
to the theorem statement, and metadata, in JSON (see §A.1).

1. Theorem statement,
2. Preceding file contents up to the theorem statement,
3. Metadata, including:

(a) File name,
(b) Project commit and version,
(c) Commit and time at which the theorem and its file was added,
(d) Position of the theorem in the file and number of premises preceding it,
(e) Number of in-file premises and cross-file premises used by the statement or proof,
(f) Imported modules (for premise selection support),
(g) Proof length and type.

Using our benchmark, users can easily reconstruct the complete context for each theorem, including
both in-file and cross-file context. The in-file context is provided directly by preceding file contents,
while the cross-file context can be reconstructed using the metadata, which includes information on
imported modules. We open-source the dataset and evaluation code.

3



Published as a conference paper at ICLR 2025

Table 2: Problem statistics in miniF2F (Zheng et al., 2022) and miniCTX.

Split Problems Context Size In-File Premises Repo. Premises Proof Size
valid + test (tokens) (premises / 100 tokens) (premises / 100 tokens) (lines)

miniF2F 244 + 244 153* — — 3.0†

miniCTX

PNT 85 + 85 10,858 1.87 0.30 3.3
PFR 51 + 51 18,059 0.65 1.10 27.2
PFRcross 43 + 43 4,351 0.44 2.75 2.7
Mathlib 50 + 50 14,440 — — 6.1
HTPI 45 + 45 65,082 2.85 0.00 10.7†

HEP 61 + 61 3,585 5.65 4.25 3.1
SciLean 46 + 46 6,249 2.08 9.72 1.8
All 381 + 381 18,690 1.94 2.63 8.5

*Only counting library imports and definitions. †Excluding theorems without proofs.

3.1 miniCTX SOURCES

PNT. PrimeNumberTheoremAnd (Kontorovich, 2024a) is a project started in January 2024 that
formalizes the prime number theorem in Lean as well as related concepts, such as counter integral
on rectangles in C. We find the files Rectangle.lean and ResidueCalcOnRectangles.lean
suitable for our purpose of testing context-dependent theorem proving, especially when we use
preceding file content as context, as each file is self-contained within the project and contains new
definitions (rectangles, squares) and many interdependent lemmas. See §A.2 for an illustration of
such lemmas.

PFR. PFR (Tao, 2023) is a project started in November 2023 that formalizes a proof of the Polynomial
Freiman–Ruzsa (PFR) conjecture. We included 51 validation and 51 test theorems from PFR. We
find that proofs of theorems in PFR tend to be much more monolithic and longer in length than those
in Mathlib or other libraries. PFR also defines custom mathematical concepts and notations (such as
Ruzsa distance) and a proof typically depends on many lemmas in PFR outside the current file.

PFRcrossfile. PFRcrossfile is an extension of the PFR split, which includes additional problems to further
evaluate cross-file dependencies. To evaluate models’ performance on problems with extensive cross-
file dependencies, we added 43 test theorems from Entropy.Group and Entropy.Kernel.Group,
which have the highest cross-file dependencies in the project. These problems contain three times
the number of cross-file premises compared to other math splits, making them a strong candidate for
evaluating a model’s ability to utilize cross-file premises. 43 validation theorems are chosen similarly.

Recent Mathlib Commits. Mathlib (Mathlib Community, 2020), is Lean’s largest community-
maintained repository, encompassing a wide range of mathematical concepts, programming APIs,
and common tactics. It is commonly used for training theorem-proving models and is frequently
updated with new definitions, theorems, and refactorings. Therefore, to avoid data contamination, we
included 50 test and 50 validation theorems newly added to Mathlib since March 2024, by filtering
recent Mathlib commits to ones that only add new theorems. Assuming that the model was trained
prior to April 2024, the Mathlib split guarantees the evaluation of theorem-level generalization.

HTPI. HTPI contains the Lean code for the book How to Prove It (HTPI) (Velleman, 2019), which
explains a systematic approach to constructing mathematical proofs with Lean. It covers topics like
elementary logic and number theory, and proving techniques like induction.The files in HTPI typically
start with basic definitions and lemmas that might be used throughout the entire file, followed by
exercises and several example problems. Therefore, models can utilize definitions, lemmas, and proof
structures from example problems to solve exercises, making it an effective benchmark for testing
context-dependent theorem-proving models.

HEP. HepLean (Tooby-Smith, 2024) is an open-source project that digitalizes definitions, theorems,
proofs, and calculations in high energy physics using Lean. HepLean aims to facilitate discovery,
automate new findings, verify correctness, and provide educational tools in physics. We selected files
from the space and time section, which introduces several new definitions, including 4D Euclidean
spacetime models. These files contain high in-file and cross-file dependencies, ideal for evaluating
context-dependent theorem proving. This split represents an area outside of mathematics, further
expanding the generalization of the benchmark.
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Recent SciLean Commits. SciLean (Skřivan, 2021) is an open-source project designed to formalize
concepts in scientific computing using Lean 4. SciLean aims to provide formalized tools and
frameworks for efficiently representing and proving properties of numerical methods, differential
equations, and optimization problems, bridging applied mathematics and computer science. Given
Scilean has been created for 3 years and accessed by multiple projects, similar to our Mathlib split, we
selected 46 test and 46 validation theorems added to SciLean since March 2024 in order to ensure the
data is more likely unseen for evaluating models. The newly added problems are mostly supplements
to existing files, so they evaluate the model’s ability to apply and learn from previous lemmas.

3.2 PROBLEM SELECTION METHODOLOGY

The problem selection process for different splits in miniCTX follows three main criteria: (1) ensuring
new problems are less likely to have appeared in training data, (2) utilizing an automated selection
process, and (3) promoting generalization. Depending on the properties and goals of each split, we
adopted three primary approaches:

1. Recency-based selection: For popular libraries such as Mathlib and SciLean, which are
highly likely to be used for training, we aim to select newly added theorems. This is achieved
by sorting theorems based on the timestamp of when the theorem was first added to the
project, which is extracted by NTP-TOOLKIT. This helps mitigate data contamination.

2. Random selection: For more recent projects, such as the PFR split, where the risk of data
contamination is lower, we randomly select proved theorems to ensure a representative
sample of the entire project. This approach maintains generality of the selected problems.

3. Dependency-based selection: To explicitly evaluate models’ performance in context-
dependent proving, we selected files based on the in-file and cross-file premise labels
available in our benchmark. For the PNT split, we chose the file with the highest number
of in-file dependencies, while for PFRcrossfile, we selected files with the highest cross-file
dependencies. For HEP, we selected files with a balance of both types. The level of
dependency is also extracted automatically by NTP-TOOLKIT.

Although human inspection and expertise are involved in ensuring that the selected problems are
valid and sufficiently general for evaluating models across diverse settings, all selection processes
are ultimately automated by using the labels extracted through our toolkit. This ensures consistency
across the benchmark and scalability to future updates.

3.3 KEY FEATURES AND CHALLENGES

miniCTX introduces several key features that distinguish it from other theorem proving benchmarks,
addressing challenges that have not been tackled by previous benchmarks:

Real-world theorem proving. Unlike popular benchmarks (e.g., miniF2F (Zheng et al., 2022),
ProofNet (Azerbayev et al., 2023), FIMO (Liu et al., 2023)) that focus on isolated competition
problems, real-world research-level theorem proving is heavily dependent on rich mathematical
contexts. Therefore, miniCTX includes real-world, complex theorems from a variety of ongoing
Lean projects, such as Prime Number Theorem (PNT) and Polynomial Freiman–Ruzsa Conjecture
(PFR). They rigorously test a model’s ability in real-world formalization projects. This diversity
contrasts with the LeanDojo benchmark (Yang et al., 2023), which focuses solely on Mathlib, enabling
miniCTX to better test a model’s generalization in different settings.

Contextual evaluation. Proving a theorem often depends on new definitions, lemmas, or other
contextual information, which a model may not have seen during training. miniCTX includes theorems
along with this new context. During evaluation, the model is expected to leverage the provided new
context to help prove the theorem.

Beyond previous datasets like LeanDojo (Yang et al., 2023) and CoqGym (Yang & Deng, 2019),
which include relevant definitions and theorems, miniCTX includes additional useful contextual
information that may make some theorems easier to prove compared to standalone theorems. For
instance, Lean source code can have natural language comments that may help constrain the space of
possible proofs. Moreover, some proofs within a file often have analogous patterns or structure, which
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may make subsequent theorems easier to prove (see §A.2). These additional forms of context occur
in the real-world process of formalization, yet their use in neural theorem proving is underexplored.

Automatically updating the benchmark. Most modern neural theorem provers use a large language
model as a backbone. Therefore, it is crucial to ensure that evaluation content is not seen during
(pre-)training, a problem not addressed by previous benchmarks (see §G). We plan to update miniCTX
periodically to include theorems beyond a certain cut-off date (see our project page). Future updates
will be automatically extracted from new Lean projects using NTP-TOOLKIT (§3.4). See Figure 2.

GPT-4o, DeepSeek
training cutoff

miniCTX
compiled with new 

Lean theorems
 

Evaluate using 
GPT-4o, DeepSeek

Future LLMs 
training cutoff

miniCTX-v2
compiled with newer 

Lean theorems
 

Evaluate using
future LLMs

…

Previous benchmarks 
compiled with Lean 

theorems
(Mathlib, miniF2F)

2023                                           2024                                           2025
New Lean theorems New Lean theoremsLean theorems

Figure 2: miniCTX is automatically updated with Lean
projects to stay ahead of LLM training cutoff dates, making
it a suitable benchmark for real-world theorem proving for
pre-trained models. Figure 3: State-tactic vs. file tuning.

3.4 NTP-TOOLKIT: AUTOMATED DATA EXTRACTION AND EVALUATION

We provide NTP-TOOLKIT that automatically extracts miniCTX and metadata. NTP-TOOLKIT is also
used to extract data for training baselines, and it provides an interactive Lean evaluation environment.

Data extraction. NTP-TOOLKIT contains a general-purpose data extraction tool that extracts examples
from an arbitrary Lean 4 repository and formats them into individual theorems in miniCTX. The
tool is implemented in Lean based on lean-training-data (Morrison, 2023). Specifically, NTP-
TOOLKIT takes in a configuration file with some Lean repositories specified. Then for each theorem in
each repository, it outputs a JSON-formatted entry in miniCTX, including the full context information,
theorem statement, and proof. It also extracts useful metadata that is used for automated problem
selection in miniCTX (see §3.2), and for our experimental analysis. See Appendix §A and §C.1 for
the formats provided by the data extraction.

Interaction via Lean REPL. In order to evaluate a model on miniCTX, a model needs to efficiently
communicate generated proofs with Lean and receive current state and error information. To better
integrate LLMs and Lean, we developed a Python wrapper for the Lean Read-Eval-Print Loop
(REPL) (Lean Prover Community, 2024). The Lean REPL offers an interactive environment for
submitting code to and receiving messages from a Lean instance. We provide a Python interface
for (1) submitting both complete Lean proofs and individual tactics, and (2) receiving and handling
feedback from Lean, such as error messages or indicators that a tactic application is valid or a proof
is complete. This interface enables simpler evaluation on the miniCTX benchmark.

4 EXPERIMENTS

We evaluate several baselines on miniCTX, demonstrating the importance of context in real-world
theorem proving. We study performance along various axes, including premise dependency, context
length, difficulty, and the type of information in the context. Our experiments show that file-tuned
models, which can utilize context at evaluation time, improve drastically over traditional state-tactic
models in the context dependent setting. Moreover, we discover that this real-world performance
boost cannot be readily measured by existing benchmarks such as miniF2F. Our investigation reveals
several open challenges that we discuss in §5.

Training data. We ran NTP-TOOLKIT’s next-tactic extraction on a 2023 snapshot of Mathlib, yielding
307,049 examples. We then ran NTP-TOOLKIT’s instruction tuning script on these examples, yielding
training examples and for state-tactic and file-tuning (see §4.1). For the file-tuning examples, as an
initial method for handling the long Lean files, we either truncate the middle of an input file so that
the file contents is 1024 tokens, or take only the preceding 1024 tokens, with the strategy selected
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at random for each example. We open-source our training data for both file-tuning and state-tactic
tuning, split into 583k train, 15k dev, and 15k test examples.

4.1 BASELINES

We select several baselines that we evaluate on miniCTX, as follows:

Prompting LLMs. We first test the ability of a state-of-the-art API-based model, GPT-4o, to generate
the complete proof given a theorem statement in Lean, with several few-shot examples provided for
guidance. We generate 8 such proof samples and measure pass@8 proof rate. We also test whether
adding context in the form of preceding file contents or retrieved premises improves the proof rate.

State-tactic prompting. Another common approach to theorem proving using language models is
to let the model generate a tactic given the current proof state (Han et al., 2022; Yang et al., 2023;
Polu & Sutskever, 2020; Lample et al., 2022). Therefore, we test the state-tactic prompting setting,
which prompts a model specialized for mathematical tasks, Llemma-7b (Azerbayev et al., 2024), to
output a tactic given a proof state. At test time, the model generates one tactic at a time, and we use a
best-first search to construct full proofs (Han et al., 2022; Yang et al., 2023; Polu & Sutskever, 2020).

State-tactic tuning. We can further improve tactic generation by fine-tuning language models on
human-written (state xt, tactic yt) pairs. We follow this state-tactic framework and fine-tune a
state-tactic tuned model from DeepSeek-Coder-1.3b (Guo et al., 2024) to input proof states and
output tactics, trained on human-written tactics in Mathlib, the main mathematical library in Lean,
extracted by NTP-TOOLKIT. Similarly, we use best-first search at test time.

File-tuning. A drawback to the setups above is that they only consider static (state, tactic) pairs, and
do not take into account new context, including comments, definitions, lemmas, and file structure,
encountered during test time. Therefore, we test whether supplying context c, in the form of
preceding file contents, to the model improves performance. Similar to state-tactic tuning, we fine-
tune DeepSeek-Coder-1.3b on human-written (state xt, context c, tactic yt) triples to generate tactics
based on the current context and proof state, resulting in the file-tuned model (see Figure 3).

Premise selection. While in-file context offers valuable information to models, it still overlooks
external resources like imported modules, which are often crucial in real-world interactive theorem
proving. To better simulate a complete context and evaluate on project-level generalization, we
apply premise selection to extract relevant premises from imported files within the same repository.
Specifically, we use the premise retriever provided by LeanDojo (Yang et al., 2023) to identify the
top 20 most relevant definitions or lemmas from imported modules and append them to the in-file
context. Given that the models we are evaluating are trained on Mathlib, and they exhibit a strong
ability to apply Mathlib lemmas, we did not include Mathlib in the potential premises to ensure
that the models gain as much information as possible from the provided context (both infile and
crossfile). All potential premises are automatically extracted using our toolkit, ensuring an efficient
and automated process.

Table 3: Performance comparison (%) of different models on miniF2F-test and miniCTX-test.

miniF2F miniCTX-test

Method Test Prime PFR PFRcross Mathlib HTPI HEP SciLean Avg.
GPT-4o (full proof) 13.52 7.06 1.85 6.98 14.00 13.33 31.15 6.52 11.72

+ context — 31.76 5.56 34.88 26.00 17.78 49.18 17.39 27.08
+ context + premise — 29.41 7.41 39.53 — 15.56 44.26 21.74 26.82

State-tactic prompting 28.28 20.00 5.56 0.00 16.00 0.00 31.15 19.57 14.58
State-tactic tuning 32.79 17.65 5.56 0.00 22.00 11.11 52.46 19.57 19.53
File tuning 33.61 40.00 5.56 44.19 34.00 15.56 60.66 45.65 35.94

+ premise — 42.35 11.11 16.28 — 8.89 50.82 32.61 30.21

4.2 RESULTS

Context-dependent methods improve theorem proving. Table 3 shows baseline performances
on miniCTX. We see a dramatic improvement for the file-tuned model (trained on full file context)
over the state-tactic model (trained only on proof states) (35.94% vs. 19.53%). Similarly, providing
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Figure 4: Model performance by dependency on premises. For each theorem in miniCTX, we record
as metadata whether its human-written proof depends on other definitions or theorems in the same
file (“in-file”) or in other files (“cross-file”), and test the performance of baselines on each type.

the preceding file context, which includes definitions and lemmas, to GPT-4o results in dramatic
improvement compared to using just the proof state (27.08% vs. 11.72%). These findings highlight
the importance of providing models with rich contextual information beyond the immediate proof
state, also demonstrating that miniCTX is able to measure this ability of context-dependent proving.

Premise selection improves performance on high cross-file dependency splits. The results in
Table 3 indicate that premise selection has a mixed impact on model performance. For the GPT-4o,
premise selection improves performance on high cross-file dependency splits, such as PFR, PFRcross,
and SciLean. This suggests that premise selection helps capture the cross-file context, enabling
GPT-4o to make better use of cross-file information. However, for the file-tuned model, premise
selection does not consistently improve results, and even performs worse on the PFRcross split, which
was designed to evaluate the effective use of cross-file premises. This suggests that the retrieved
premises differ significantly from the in-file context. Therefore, developing methods that effectively
support the integration of cross-file context (e.g., premise selection) alongside in-file context remains
an interesting open research direction for improving performance on the miniCTX benchmark.

Evaluation on miniF2F. We evaluate baselines on miniF2F, a standard benchmark based on compe-
tition problems that do not require context. We use import statements as context for the file-tuned
model. The file-tuned model improves very little beyond the state-tactic model (33.61% vs. 32.79%),
showing that the dramatic difference in context-dependent proving abilities seen on miniCTX cannot
be captured by miniF2F.

4.3 ANALYSIS

We analyze the baseline models on miniCTX further along several axes, including the kinds of
contextual dependencies, the difficulty, and the content made available in the context.

File-tuning especially helps on problems with infile dependencies. We use the miniCTX metadata
to categorize theorems based on their in-file dependencies. Figure 6 shows the performance of
state-tactic tuned model and file-tuned model on problems with in-file dependencies compared to
those without. We also show miniF2F as an additional reference point for problems without in-file
dependencies. The file-tuned model shows a marked improvement over the state-tactic tuned model,
especially in problems that have dependencies on context. We conclude that file-tuning specifically
helps in the realistic setting of theorem proving with new definitions and theorems in context.

Premise selection helps but may interfere with in-file context. We use miniCTX metadata to
categorize problems based on their cross-file dependencies, evaluating the impact of premise selection
across the entire dataset. As shown in Figure 4, GPT-4o benefits significantly from premise selection
on problems with high cross-file dependencies, showing improved performance when leveraging
relevant premises from imported files. However, we also observe that premise selection can interfere
with in-file context, leading to inconsistent results, particularly when the available in-file context is
relatively short. This suggests that adding cross-file premises may sometimes disrupt the model’s
ability to focus on the in-file information. Further analysis of this interference is included in §D.3.
This highlights the need for more sophisticated integration strategies that can balance both in-file and
cross-file contexts effectively.
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Table 4: Ablation study on different context components for theorem proving.

Environment Definitions Lemma Lemma Natural Language File-tuning GPT-4o
Statement Proof Comments

✗ ✗ ✗ ✗ ✗ 14.12% 8.24%
✓ ✗ ✗ ✗ ✗ 25.88% 2.35%
✓ ✓ ✗ ✗ ✗ 24.71% 9.41%
✓ ✓ ✓ ✗ ✗ 27.06% 22.35%
✓ ✓ ✓ ✓ ✗ 32.94% 34.12%
✓ ✓ ✓ ✗ ✓ 28.24% 23.53%
✓ ✓ ✓ ✓ ✓ 35.29% 31.76%

Models can learn from previous proofs in the file context. To determine the contribu-
tion of different components in the in-file context, we conducted an ablation study on the
PFR.ForMathlib.Entropy.Basic file, which contains numerous co-related lemmas and rich natu-
ral language comments, making it an ideal candidate to investigate the influence of different context
components. In this ablation, we systematically removed specific parts of the in-file context and
evaluated the model’s ability to generate proofs under these modified conditions. As shown in Table 4,
both the file-tuned model and GPT-4o benefit from the inclusion of previous proofs in the file context.
This indicates that models are capable of learning proof strategies from existing proofs in the file and
effectively applying them to new problems (see §D.4 for more examples).

Natural language comments contribute in certain settings. Our ablation also explored the effect
of natural language comments in the in-file context. Though the impact was not dramatic, comments
written in natural language were found to be helpful in certain settings. In scenarios where proofs
were excluded from the context, adding comments resulted in slight performance gains for both
models. For the file-tuned model, these gains were further amplified when proofs were included
alongside comments, demonstrating the value of combining formal context with explanatory natural
language. However, for GPT-4o, the presence of comments when proofs were included led to a slight
decrease in performance, suggesting that effective context selection may vary depending on the model
architecture and underlying training characteristics.

File-tuning improves across all difficulty levels and context lengths. Finally, Appendix §D.2 shows
performance on problems categorized by the length of the human-written proof (when available),
which we take as a rough proxy of the problem difficulty. The file-tuned model improved on all
three difficulty categories. Appendix §D.2 also shows that file-tuning had improved accuracy across
context lengths, particularly for problems with longer contexts. Longer contexts may imply more
dependencies, suggesting that these problems can benefit more from file-tuning.

Models rely on common symbolic automation. To demonstrate an additional kind of context-
dependence, we perform an additional analysis on Math2001 (Macbeth, 2023), which is another Lean
textbook setting.2 In particular, the textbook code disables powerful automation tactics including
simp and linarith to promote manual reasoning, akin to traditional textbook exercises. For
example, Math2001 includes numerous arithmetic problems that are trivial with automation tactics
(e.g., linarith) but are challenging for models to explicitly prove with step-by-step reasoning (e.g.,
via calc). In Table 6 we evaluate models with the automation disabled, and observe substantial
performance drops, confirming the reliance on automation tactics. We also find that the state-tactic
tuned model relies on simp for unseen definitions, making it performing similarly well to the
file-tuned model on theorems that only rely on new definitions (§D.6).

5 DISCUSSION AND FUTURE CHALLENGES

In addition to general improvements in performance, we comment on some specific open challenges.

Making better use of long-contexts. Our file-tuning method simply truncates contexts to be within
a token budget (1024), which can discard useful contextual information. We found gains in providing
GPT-4o 8,000 tokens of context compared to not providing it context, but its absolute performance
was still low. There are several possible strategies that can be explored in future work, including
feeding in the entire context, retrieval, or mixtures of the two.

2See Appendix B.1 for further details on Math2001. Due to licensing we do not include it in miniCTX.
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Repository-level context. We focused on evaluating in-file context in this paper. As shown in
§D.1, many problems require using context outside of the current file. Although we incorporated
premise selection as a means of leveraging cross-file context, our experiments indicate that it does not
consistently improve performance, even on datasets with high cross-file dependencies. This suggests
a need to further investigate how to better integrate premise selection with in-file context. miniCTX
provides sufficient metadata to reconstruct the entire environment, allowing for comprehensive
investigation into premise selection and other potential methods for leveraging cross-file context.

Challenging proofs. Using context through file tuning did not improve performance on the challeng-
ing PFR proofs. Moreover, performance is relatively low (19%) on proofs that had a human-written
proof of longer than five lines (see §D.2). Proving these kinds of theorems remains an open problem.

Working with constraints. As shown in Table 6, model performance drops when the proof cannot
use powerful automation tactics. Models have a tendency to invoke these powerful tactics, and
struggle with more explicit step-by-step proofs. Improving performance in this setting of miniCTX is
an interesting future direction.

6 RELATED WORK

Formal theorem proving with language models. GPT-f (Polu & Sutskever, 2020) pioneered the
use of language models for theorem proving via next tactic prediction given the current proof state, a
technique adopted by many subsequent methods (Jiang et al., 2021; Han et al., 2022; Lample et al.,
2022; Polu et al., 2022; Welleck & Saha, 2023; Azerbayev et al., 2024). ReProver (Yang et al.,
2023) conditions each generation on retrieved premises, while Draft-sketch-prove (Jiang et al., 2023)
conditions each generation on an informal proof. Baldur (First et al., 2023) fine-tunes a model with
50 lines of the preceding file content as context, but unlike file-tuning trains the model to generate a
full proof without proof states. More broadly, machine learning for formal theorem proving is an
active research area; see Lu et al. (2023); Li et al. (2024) for surveys.

Theorem proving data extraction. Several tools extract training data from interactive theorem
provers, including CoqGym (Yang & Deng, 2019) for Coq, PISA (Jiang et al., 2021) for Isabelle,
LeanStep (Han et al., 2022) for Lean 3, and LeanDojo (Yang et al., 2023) for Lean 3 and 4. Recently,
lean-training-data (Morrison, 2023) provides tools for extracting proof states and other infor-
mation using Lean 4 metaprogramming, which we anecdotally found to be easiest to modify and
fastest among Lean 4 data extraction tools. Our NTP-TOOLKIT adds 3 new tools on top of this code,
along with a pipeline for running on any Lean projects and instruction tuning.

Theorem proving benchmarks. Theorem proving methods are typically evaluated in two settings: (1)
standalone competition problems (Zheng et al., 2022) or textbook (Azerbayev et al., 2023) problems;
(2) holding out theorems from a mathematical library that the model is trained on, such as Mathlib
for Lean (Han et al., 2022; Polu et al., 2022; Yang et al., 2023) or the Archive of Formal Proofs for
Isabelle (Jiang et al., 2021; First et al., 2023). The first does not test the use of context, while the
second tests only theorem-level generalization. miniCTX is designed to test the use of context as well
as theorem-level, context-level, and project-level generalization across several mathematical domains.

Premise selection. Premise selection is an extensively studied class of methods for handling context
in theorem proving. These methods retrieve useful lemmas from previously proved results, to help
prove the current theorem. Many recent premise retrievers embed theorems and premises to a common
space, and then taking a similarity measure (Yang et al., 2023; Mikuła et al., 2023), or use a classifier
to determine if a premise is relevant (Irving et al., 2016; Han et al., 2022). Graph2Tac (Blaauwbroek
et al., 2024) proposes an online learning method that can learn from both proofs and premises in a
new context, which is particularly relevant to our work since it tackles project-level generalization.
However, such methods cannot combine with more advanced pre-training-based methods without
risking data contamination during evaluation. miniCTX aims to fill this gap by our temporal split.

7 CONCLUSION

We studied the realistic setting of proving theorems that depend on new information and project
constraints, and formulated an evaluation framework for testing generalization using real Lean
projects. We built miniCTX, and found that the predominant method for training neural theorem
provers fails to enable context dependent proving. Our file tuning method provides a strong starting
point for the new challenges opened by our investigation into theorem proving with context.
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Appendix

A miniCTX EXAMPLES

Here we give some examples of the miniCTX and its sources to illustrate the format of the data and
how and why we collect certain theorems.

A.1 EXAMPLE ENTRY

An entry in the miniCTX dataset consists of the theorem statement, preceding file contents, and
metadata information. For example, given the following theorem s_eq_pow_two in context:

import Mathlib.Data.Real.Basic

/-!
# Square function
We define the squaring function `s : R → R` to be `s x := x * x`.
-/

def s (x : R) : R := x * x

lemma s_eq_pow_two {x : R} : s x = x ^ 2 := by
rw [s, pow_two]
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We collect its data into miniCTX, formatted in JSON as follows:

{
# Preceding file content
"srcContext": "import␣Mathlib.Data.Real.Basic\\n\\n/-!\\n#␣Square␣function\\nWe␣

define␣the␣squaring␣function␣`s␣:␣\\u211d␣\\u2192␣\\u211d`␣to␣be␣`s␣x␣:=␣x␣*␣
x`.\\n-/\\n\\ndef␣s␣(x␣:␣\\u211d)␣:␣\\u211d␣:=␣x␣*␣x\\n\\n",

# Theorem statement
"theoremStatement": "lemma␣s_eq_pow_two␣{x␣:␣\\u211d}␣:␣s␣x␣=␣x␣^␣2",

# Fully qualified theorem name
"theoremName": "s_eq_pow_two",

# Temporal metadata
"fileCreated": "(git␣commit)",
"theoremCreated": "(git␣commit)",

# Source metadata
"file": "MyProject/Square.lean",
"module": "MyProject.Square",
"positionMetadata": {
# Line number the theorem is on
"lineInFile": 10,
# Number of tokens before the theorem
"tokenPositionInFile": 152,
# Number of premises (definitions, theorems) before the theorem
"theoremPositionInFile": 1

},

# Dependency metadata
"dependencyMetadata": {
# Number of definitions or lemmas defined in this file that the theorem uses
"inFilePremises": true,
"numInFilePremises": 1,
# Number of definitions or lemmas defined in this repository that the theorem

uses (including in-file ones)
"repositoryPremises": true
"numRepositoryPremises": 1,
# Number of total premises (in file, repository, or otherwise)
"numPremises": 2,
# Modules imported in the current file
"importedModules": ["Mathlib.Data.Real.Basic", ...]

},

# Proof metadata
"proofMetadata": {
"hasProof": true,
"proof": "by\n␣␣rw␣[s,␣pow_two]",
"proofType": "tactic",
"proofLengthLines": 2,
"proofLengthTokens": 20

}
}

In additional to individual entries, we also record the version (git commit) of the repository.

A.2 PRIME NUMBER THEOREM EXAMPLE

We collect theorems from the Rectangle.lean file in PrimeNumberTheoremAnd. The following
excerpt from Rectangle.lean demonstrates the scenario that often arises in a theorem proving
environment where context is critical to producing a proof:

import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Complex.Convex
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open Complex Set Topology

open scoped Interval

variable {z w : C} {c : R}

/-%%
\begin{definition}\label{Rectangle}\lean{Rectangle}\leanok
A Rectangle has corners $z$ and $w \in \C$.
\end{definition}
%%-/
/-- A `Rectangle` has corners `z` and `w`. -/
def Rectangle (z w : C) : Set C := [[z.re, w.re]] ×C [[z.im, w.im]]

namespace Rectangle

lemma symm : Rectangle z w = Rectangle w z := by
simp [Rectangle, uIcc_comm]

lemma symm_re : Rectangle (w.re + z.im * I) (z.re + w.im * I) = Rectangle z w := by
simp [Rectangle, uIcc_comm]

When proving the final lemma symm_re, a model can benefit much from the preceding file contents,
which include (1) the existing imports from Mathlib, variable declarations, and open namespaces
that provide a syntactic context for this theorem, (2) the new definition Rectangle in the context,
which the model has not seen in training, (3) natural language and LaTeX documentation of the file
and Rectangle definition, (4) the analogous (in this case identical) proof of the preceding theorem
symm. We demonstrate that performance on Rectangle.lean is indeed much higher when preceding
file contents are given as context to a model.

For future data added to miniCTX that specifically test the preceding file contents as context, we will
ensure it is standalone like Rectangle.lean, i.e. it does not import any other unseen files from the
same repository, so the preceding file contents already contain all important information relevant to
the proof.

B ADDITIONAL DATASETS

In addition to problems in miniCTX, we also evaluated other datasets that are not included due to
copyright reasons.

B.1 MATH2001

Math2001 (Macbeth, 2023) contains the Lean code for the book The Mechanics of Proof by Heather
Macbeth, an introductory text on mathematical theorem proving with accompanying Lean code. Each
chapter of The Mechanics of Proof covers an introductory topic and walks through how to write
the associated mathematics in Lean, along with exercises. The topics include proofs by calculation,
proofs with structure, parity and divisibility, logic, induction, number theory, functions, sets, and
relations. A unique aspect of Math2001 is that it disables common Lean automation for pedagogical
purposes. For example, a student must write out an equality proof in detail, with each step justified. It
also defines new tactics and definitions separate from the common Lean libraries. Typically a file in
the textbook will show examples of such proofs, followed by exercises for a student to complete. We
can view this as a form of contextual adaptation: a model must prove the theorem according to the
constraints of the textbook. Math2001 has 41 files that include examples and exercises. We selected 1
to 2 theorems from each file (depending on the length of the file), for a total of 50 theorems. Of these,
31 have no proof in the Math2001 repository, hence testing theorem-level generalization.

Context-aware models surpass state-based models Table 5 shows the performance comparison
of different models. Both the GPT-4o model, which includes context in the input, and the file-tuned
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Models Math2001
GPT-4o (full proof) 11.76%
GPT-4o (+ context) 43.13%
State-tactic prompting 31.37%
State-tactic tuning 27.45%
File tuning 41.18%

Table 5: Performance comparison of different models on Math2001.

Automation File (%) State-tactic (%)

Enabled 41.18 11.76
Disabled 27.45 7.84

Table 6: Performance on the Math2001 split with and without access to standard automation.

model perform significantly better than the other models. This demonstrates the importance of context
information in context-dependent textbook-style problems.

Models rely on common symbolic automation. The Math2001 split originally disables powerful
automation tactics including simp and nlinarith to promote manual reasoning, akin to traditional
textbook exercises. In Table 6 we evaluate models with the automation disabled, and observe
substantial performance drops, confirming a heavy reliance of current models on these automation
tactics. An examination of the training corpus further revealed a general dependency on automated
tactics within real Lean projects, indicating that our models have learned to rely on these tactics.

C NTP-TOOLKIT AND FILE-TUNING DETAILS

C.1 DATA EXTRACTION

NTP-TOOLKIT contains a general-purpose data extraction tool that extracts examples from an arbitrary
Lean 4 repository and formats them into examples that can be used to compile miniCTX, as well
as for language-model fine-tuning. The tool is implemented in Lean based on Kim Morrison’s
lean-training-data.

Specifically, NTP-TOOLKIT takes in a configuration file with one or more Lean repositories specified.
Each repository is transformed into next-tactic and full proof examples stored in JSON Lines files.
The next-tactic data is suitable for making file-tuning examples of the form (context, state, next-tactic):

{
"state": # tactic state ,
"nextTactic": # pretty-printed next tactic,
"srcUpToTactic": # source code in the file up to the tactic invocation,
"decl": # declaration without proof (e.g., statement of a theorem),
"declUpToTactic": # source code in the declaration up to the tactic invocation,
"declId": # unique identifier of the declaration

}

The full proof data is suitable for making evaluation examples of the form (context, theorem, proof):

{
"srcUpToDecl": # source code in the file up to the declaration,
"decl": # declaration without proof (e.g., statement of a theorem),
"declId": # unique identifier of the declaration,
"proof": # proof

}

Full proof data is also suitable for training a model to directly generate a full proof, and NTP-TOOLKIT
also provides Lean source with proof states interleaved, both of which we do not explore in this work.
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C.2 INPUT-OUTPUT FORMATTING.

Below we show the inputs and outputs for file-tuning and state-tactic tuning. In the paper we refer to
the natural language description at the beginning of the input as an “instruction”, and refer to a set of
inputs and outputs as described below as “instruction-tuning data”.

C.2.1 FILE TUNING.

Given an example containing a state, next-tactic, and preceding file contents (srcUpToTactic), the
data is formatted as:

Input:

/- You are proving a theorem in Lean 4.
You are given the following information:
- The file contents up to the current tactic, inside [CTX]...[/CTX]
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
[CTX]
{srcUpToTactic}
[/CTX]
[STATE]
{state}
[/STATE]
[TAC]

Output:

{nextTactic}
[/TAC]

C.2.2 STATE-TACTIC TUNING.

Given an example containing a state and next-tactic, the data is formatted as:

Input:

/- You are proving a theorem in Lean 4.
You are given the following information:
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
[STATE]
{state}
[/STATE]
[TAC]

Output:
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{nextTactic}
[/TAC]

C.2.3 GPT-4O PROMPT

For full proof generation task with only theorem statement, we use the following prompt:

Your task is to generate complete proofs for problems stated in Lean4. You may use any
tactics available in Mathlib, but no additional context, definitions, or theorems from the
problem’s file will be provided. Focus on crafting proofs using general knowledge and
techniques applicable in Lean4. Here are some examples:

lemma deriv_scale {f : CS (n + 1) E} : (f.scale R).deriv = R−1 ·
f.deriv.scale R := by

ext v ; by_cases hR : R = 0 <;> simp [hR, scale]
· simp [deriv, smul] ; exact deriv_const _ _
· exact ((f.hasDerivAt (R−1 · v)).scomp v (by simpa using (hasDerivAt_id

v).const_smul R−1)).deriv

theorem mul_dvd_mul_left (a : α) (h : b | c) : a * b | a * c := by
obtain ⟨d, rfl⟩ := h
use d
rw [mul_assoc]

/- Now here is your exercise. There is no need to restate the problem. If
needed, think through the proof using comments. -/

{theorem statement}
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For full proof generation task with additional infile context, we use the following prompt:

Your task is to generate complete proofs for problems stated in Lean4. For each problem, you
will be provided with the context from the file in which the theorem is stated. This context
includes useful external libraries, along with important definitions and theorems that are
relevant to the proof. You are encouraged to use any tactics, definitions, lemmas, or theorems
defined within this context to construct your proof. Please pay careful attention to indentation
and formatting to ensure that the proof adheres to Lean4 syntax standards. Here are some
examples:

#Context:
import Mathlib.Analysis.Calculus.Deriv.Support
import Mathlib.Analysis.Distribution.SchwartzSpace
import Mathlib.Order.Filter.ZeroAndBoundedAtFilter

open Real Complex MeasureTheory Filter Topology BoundedContinuousFunction
SchwartzMap BigOperators

variable {E : Type*} [NormedAddCommGroup E] [NormedSpace R E] {{n : N}}

@[ext] structure CS (n : N) (E : Type*) [NormedAddCommGroup E] [NormedSpace
R E] where

toFun : R → E
h1 : ContDiff R n toFun
h2 : HasCompactSupport toFun

noncomputable def scale (g : CS n E) (R : R) : CS n E := by
by_cases h : R = 0
· exact ⟨0, contDiff_const, by simp [HasCompactSupport, tsupport]⟩
· refine ⟨fun x => funscale g R x, ?_, ?_⟩

· exact g.h1.comp (contDiff_const.smul contDiff_id)
· exact g.h2.comp_smul (inv_ne_zero h)

/- Truncated -/

/- Now here is your exercise. There is no need to restate the problem. If
needed, think through the proof using comments. -/

#Context:
{}

#Problem:
{}

{theorem statement}
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D ADDITIONAL RESULTS AND ANALYSIS

We present additional analysis on the composition of miniCTX and additional quantitative and
qualitative evaluation of performance on miniCTX. All tests in this section are done on miniCTX-test.

D.1 DEPENDENCY DISTRIBUTION
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Figure 5: Percentage of different dependencies in the human-written proof of theorems in miniCTX.

D.2 PERFORMANCE BY PROOF LENGTH AND CONTEXT LENGTH
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Figure 6: Performance by dependency type. For each theorem in miniCTX, we record as metadata
whether its human-written proof depends on other definitions or theorems in the same file, and test
the performance of baselines on each type. File-tuned models substantially outperform state-tactic
tuned models on theorems with definition and/or theorem dependencies.

D.3 INTERFERENCE BETWEEN IN-FILE CONTEXT AND RETRIEVED PREMISES

In our experiments, we attempted to supply both in-file context (in the form of preceding code) and
premise context (in the form of retrieved premises) to GPT-4o for proving a theorem. In Figure 8, we
present an analysis of the impact of the length of retrieved premises on the resulting proof success
rate.

Longer retrieved premises hurt performance. The results indicate that problems with a lower
premise-to-context length ratio tend to have higher success rates. Specifically, successful problems
often feature relatively shorter premises as proportion of the full context length. This suggests that
models are better able to utilize and focus on relevant in-file context when the cross-file premises
are proportionally smaller. Conversely, when the length of the premises becomes relatively large
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Figure 7: Performance of two baselines on different difficulty levels and context lengths, as measured
by the length of human-written proof in lines and the size of the preceding file contents in tokens.
File-tuning substantially improves theorem-proving abilities across all cases, but especially when the
theorem is easier and the context is longer.

compared to the full context, it may overwhelm or distract the model, reducing its ability to effec-
tively utilize the in-file information. This finding highlights the importance of ensuring a balanced
integration of premises with the in-file context to maintain model focus and improve proof generation
performance.
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Performance by size of retrieved premises
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Figure 8: Impact of length of retrieved premises on GPT-4o model performance. A higher premise-
to-context length ratio is correlated with lower success rates, suggesting that too much premise in
context overwhelms the model.

D.4 EXAMPLE OF LEARNING PROOFS FROM CONTEXT

The file-tuned model is able to utilize the proofs in the context. Here is an example of the model
making minimal modification to the proofs from the context:

Input:

...

theorem Set.left_not_mem_uIoo {a b : R} : a /∈ Set.uIoo a b :=
fun ⟨h1, h2⟩ 7→ (left_lt_sup.mp h2) (le_of_not_le (inf_lt_left.mp h1))

theorem Set.right_not_mem_uIoo {a b : R} : b /∈ Set.uIoo a b := by

Output:
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rintro ⟨h1, h2⟩
exact (right_lt_sup.mp h2) (le_of_not_le (inf_lt_right.mp h1))

D.5 EXAMPLE OF USING THEOREMS FROM CONTEXT

The file-tuned model is able to utilize the stated theorems in the context. Here is an example of the
model using the previously defined theorem in the proof:

Input:

. . .
lemma RectSubRect {x0 x1 x2 x3 y0 y1 y2 y3 : R} (x0_le_x1 : x0 ≤ x1)

(x1_le_x2 : x1 ≤ x2)
(x2_le_x3 : x2 ≤ x3) (y0_le_y1 : y0 ≤ y1) (y1_le_y2 : y1 ≤ y2) (y2_le_y3
: y2 ≤ y3) :
Rectangle (x1 + y1 * I) (x2 + y2 * I) ⊆ Rectangle (x0 + y0 * I) (x3 + y3 *
I) := by

rw [rect_subset_iff, mem_Rect, mem_Rect]
refine ⟨⟨?_, ?_, ?_, ?_⟩, ?_, ?_, ?_, ?_⟩
all_goals simpa using by linarith

lemma RectSubRect' {z0 z1 z2 z3 : C} (x0_le_x1 : z0.re ≤ z1.re) (x1_le_x2 :
z1.re ≤ z2.re)
(x2_le_x3 : z2.re ≤ z3.re) (y0_le_y1 : z0.im ≤ z1.im) (y1_le_y2 : z1.im ≤
z2.im)

(y2_le_y3 : z2.im ≤ z3.im) :
Rectangle z1 z2 ⊆ Rectangle z0 z3 := by

Output:

simpa using RectSubRect x0_le_x1 x1_le_x2 x2_le_x3 y0_le_y1 y1_le_y2
y2_le_y3

D.6 EXAMPLE OF USING UNSEEN DEFINITIONS

The state-tactic tuned model is able to utilize the unseen definitions that appear in the proof state. In
the following example Set.uIoo is a newly defined definition, which is never seen for state-tactic
tuned model:

Input:
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theorem uIoo_of_le {α : Type*} [Lattice α] {a b : α} (h : a ≤ b) : Set.uIoo
a b = Ioo a b := by

[STATE]
1 goal
zw: C
c: R
α: Type u_1
inst: Lattice α
ab: α
h: a ≤ b
⊢ uIoo a b = Ioo a b
[/STATE]

Output:

simp [uIoo, h]

This leads the state-tactic tuned model to perform similarly well as the file-tuned model on problems
that only rely on new definitions, and not new theorems (see Figure 6).

E DATASET HOSTING AND MAINTENANCE

miniCTX is released on HuggingFace: l3lab/miniCTX, distributed under the Apache 2.0 license.
Data extraction tool NTP-TOOLKIT is released on GitHub: cmu-l3/ntp-toolkit, under the MIT
license. We note that the underlying data for the individual splits of miniCTX are also released
under the Apache 2.0 license. We include the licensing information in the dataset repository. We
plan to regularly update and maintain the dataset to include examples from new projects. For
information about future updates such as miniCTX-v2, please refer to our project page: https:
//cmu-l3.github.io/minictx.

F NTP-TOOLKIT GUIDELINE

We introduced NTP-TOOLKIT in §3.4. With the NTP-TOOLKIT, users can extract and annotate new
theorems and proofs from any valid Lean project, in miniCTX format. The extracted data can be
used either as updates to miniCTX, or as training data (for which we also provide instruction tuning
utilities). We also develop a lightweight evaluation framework for easy evaluation on miniCTX.

F.1 PRELIMINARY

The evaluation code relies heavily on the Lean REPL (Lean Prover Community, 2024), which
operates within the project environment. Therefore, it is essential that the project builds without
any errors. Additionally, the version of Lean used in the project should match the version supported
by the REPL. While the Lean REPL supports versions ≥ 4.3.0, for the best experience with data
extraction and evaluation, we recommend evaluating projects that use Lean version 4.7.0 or higher
(all miniCTX theorems are in 4.7.0). We plan to continuously update NTP-TOOLKIT to support newer
versions.

F.2 USING THE NTP-TOOLKIT

The NTP-TOOLKIT is designed to easily extract and annotate theorem proving data from Lean projects,
by simply providing the project URL. To use the NTP-TOOLKIT for data extraction, follow these
steps:
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1. Installation: Clone the NTP-TOOLKIT repository from GitHub to your local machine. Cur-
rently, to use NTP-TOOLKIT for Lean version 4.7, switch to the lean-v4.7.0 branch;
for 4.8.0 or above, use the main branch. Ensure that you have the required dependencies
installed, as listed in the repository’s README file.

2. Configuration: Supply GitHub URL, commit hash, and root modules of your Lean project
in a JSON configuration file. Make sure that your project is using a compatible version of
Lean. NTP-TOOLKIT will extract data from all modules imported by the root modules.

3. Data extraction: Run the data extraction script provided by the toolkit. Specify the
--full_proof_training_data and --premises options to extract miniCTX-style data,
which will be stored in an minictx.jsonl output file. Specify the --declarations
option to additionally extract the premises in each module, for premise retrieval. The
full_proof_training_data outputs can be additionally used for fine tuning (assuming
the extracted data is dated before the current temporal split of miniCTX).

For detailed commands and additional options, please refer to the README file in the NTP-TOOLKIT
repository.

F.3 miniCTX EVALUATION

We provide a comprehensive evaluation pipeline in the miniCTX-eval repository, supporting both
tactic-prediction and full-proof generation tasks. Users should place the extracted JSONL file from
the NTP-TOOLKIT into the data folder. To run an evaluation task, execute the task script by specifying
the dataset path, the corresponding project path, and the path to the Lean REPL. This setup ensures
that the evaluation is conducted within the correct environment and with the necessary data inputs.

G DATA CONTAMINATION IN EXISTING BENCHMARKS

One of the contributions of miniCTX is the temporal split: using NTP-TOOLKIT, miniCTX only
includes theorems created after a certain cut-off date. This ensures LLMs trained before this date
have not seen problems in miniCTX. We claimed that existing benchmarks face significant risks of
data contamination, and here we provide some evidence to this claim.

With regards to contamination, existing benchmarks can be largely categorized as either extracted
from a standard mathematical library (e.g. Mathlib), or curated as competition-style problems. For
the former category, evaluation benchmarks include Mathlib test problems extracted by LeanDojo
(Yang et al., 2023) or PACT (Han et al., 2022), as well as datasets like CoqGym (Yang & Deng, 2019)
and PISA (Jiang et al., 2021) in other formal languages. They are inherently at risk of contamination,
because they are statically sourced from projects on GitHub, many of which have existed for years
(e.g. Mathlib has existed since 2017). On the other hand, virtually all modern language models are
pre-trained on public GitHub code, and have therefore seen the proofs. This partially invalidates any
evaluation results using these benchmarks.

On the other hand, we have empirically found many solutions of datasets like miniF2F (Zheng et al.,
2022) online. The original repository of miniF2F already contains full solutions to 72 of the 244
test problems (in Lean 3, which is directly translatable to Lean 4)3. Moreover, of the remaining
problems, 12 IMO problems have full solutions in Mathlib4 and Compfiles (a catalog of Lean
proofs of competition problems)5, at the time of writing. In total, at least 84 of the 244 problems in
miniF2F-test, including 12 of the 19 IMO problems, have full solutions on GitHub. This may be an
inherent issue of small competition-style benchmarks, as the theorem-proving community itself has
significant interest in formalizing competition problems and solutions. The scarcity of problems from
competitions like IMO each year, as well as the bias to only formalizing some categories (geometry
problems are often not formalized due to difficulty) also contribute to this issue. Whether temporal
split and other mitigation methods can be applied to competition-style benchmarks may also be an
interesting future direction of research.

3https://github.com/openai/miniF2F
4https://github.com/leanprover-community/mathlib4/tree/master/Archive/Imo
5https://github.com/dwrensha/compfiles

25

https://github.com/openai/miniF2F
https://github.com/leanprover-community/mathlib4/tree/master/Archive/Imo
https://github.com/dwrensha/compfiles

	Introduction
	Theorem proving with context
	miniCTX: a benchmark for theorem proving with context
	miniCTX Sources
	Problem selection methodology
	Key features and challenges
	NTP-Toolkit: automated data extraction and evaluation

	Experiments
	Baselines
	Results
	Analysis

	Discussion and future challenges
	Related work
	Conclusion
	miniCTX Examples
	Example Entry
	Prime Number Theorem example

	Additional datasets
	Math2001

	ntp-toolkit and file-tuning details
	Data extraction
	Input-output formatting.
	File tuning.
	State-tactic tuning.
	GPT-4o prompt


	Additional results and analysis
	Dependency distribution
	Performance by proof length and context length
	Interference between in-file context and retrieved premises
	Example of learning proofs from context
	Example of using theorems from context
	Example of using unseen definitions

	Dataset hosting and maintenance
	NTP-Toolkit guideline
	Preliminary
	Using the ntp-toolkit
	miniCTX Evaluation

	Data contamination in existing benchmarks

