
Moving Trains like Pebbles: A Feasibility Study on Tree Yards

Issa K. Hanou, Mathijs M. de Weerdt, Jesse Mulderij
Delft University of Technology

i.k.hanou@tudelft.nl
m.m.deweerdt@tudelft.nl

Abstract

The Train Unit Shunting Problem concerns the parking of
trains outside their scheduled use on so-called shunting yards.
This is an NP-hard problem, and the current algorithm used
by the Netherlands Railways cannot detect whether an in-
stance is infeasible. So, infeasible instances can cause need-
lessly long computation times. Therefore, this paper fills the
gap by providing novel approaches to determine the feasibil-
ity. For this, the Pebble Motion problem is considered which
moves pebbles from their starting node to their goal node in
the graph, such that no two pebbles occupy a node at the
same time. A variant of the Pebble Motion problem is pro-
posed to model the Train Unit Shunting Problem, where train
units are represented by pebbles and the arrival and depar-
ture of train unit combinations are also included. This paper
specifically looks at dead-end track shunting yards, as they
can be abstractly represented by trees, such that trains arrive
and depart at the root node. Furthermore, trains cannot be re-
allocated between arrival and departure in the tree, since re-
allocation in practice is a very costly process as moves need
to be performed by a small set of drivers. The conditions for
realizing the departure order of trains are studied, and an ef-
ficient method to (partially) determine the feasibility of prob-
lem instances is given, which can find the minimal number of
tracks required to park the trains. Furthermore, a special case
with tracks of length two is shown to be polynomially solv-
able, while another subset of problem instances with tracks
of length six or more is demonstrated to be NP-complete.

Introduction
Rail transportation in the Netherlands is operated by the NS
(Netherlands Railways) and more passengers are transported
every day, which has led to an increase in required rolling
stock. The vehicles are scheduled according to the timetable
and when they are not in use, they are parked in shunting
yards. The problem of parking and routing the trains in a
shunting yard is known as the Train Unit Shunting Problem
(TUSP), in which trains are considered as compositions of
fixed-length train units (Freling et al. 2005). This is an NP-
hard problem, and it remains a challenge to find good solu-
tions to real-world scenarios in a reasonable time. Because
of changes during the day, and as a sub-problem of finding
a shunting plan, it is desirable to solve the scenarios in a

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

few minutes or at most within half an hour. However, how to
do this remains an open area of research. Moreover, current
algorithms at the NS do not have a feasibility check imple-
mented, thus resulting in long computation times for infea-
sible scenarios. Therefore, this paper considers a novel fea-
sibility approach to the TUSP problem, to avoid these long
computation times in practice.

Many shunting yards have a single-entry point and, with
the use of switches, trains can be routed to different tracks in
the yard. Such a shunting yard is regarded as a shuffleboard
layout and can be abstractly represented by a tree (Huizingh
2018). Trees are recursive structures that do not include cy-
cles, so there is one simple path from a node in the tree to
its root, which forms the single-entry point. Yet, even on
these relatively structured yards, no polynomial algorithms
are known, and the complexity of the problem remains open.

One of the sub-problems of the TUSP is the routing com-
ponent. A simplistic variant of this routing problem can be
seen in the Pebble Motion (PM) problem, for which the fea-
sibility of instances can be determined efficiently. Given a
graph, a set of pebbles, and two configurations of these peb-
bles over the nodes of the graph, the question is whether
there exists a sequence of moves to maneuver the peb-
bles from the initial to the goal configuration (Kornhauser,
Miller, and Spirakis 1984). Each of these moves considers
exactly one pebble that is moved from its current node to
a neighboring node that was empty before this move oper-
ation. The main advantage of the PM problem is that it is
solvable in linear time (Auletta et al. 1999). Therefore, in-
sights from this problem could be useful in finding a better
approach for studying the feasibility of the TUSP.

The main difference between the PM problem and the
TUSP is that in the latter the pebbles are not yet present in
the graph at the start of a scenario, and the PM problem can
thus not be directly applied to TUSP instances. Therefore,
this paper proposes a variant of the PM problem that takes
the arrival and departure movements into account. Consider
a shunting yard with a predefined input sequence of unique
train units to be parked and a required output sequence of
these train units. Is it possible to efficiently determine the
feasibility of realizing the requested permutation between
these sequences? This is similar to the real-world scenario
where first all trains come in fixed order in at night after
their shifts, and each train departs again in the morning, also

in a fixed order. This paper focuses on a process that is ex-
ecuted on several dead-end tracks of limited length, which
are connected in a tree-like configuration, so the tracks can
be seen as disjoint branches in the tree. The aim is to test
the input-output permutation feasibility before trying to find
a plan that enables this permutation.

Both the PM problem and the TUSP allow reallocation.
In the TUSP context, this means that after trains are parked
in the shunting yard, they can be moved intermediately to a
different track, before departing the shunting yard (Wolfha-
gen 2017). Reallocation is often used to create way for an-
other train which has to depart earlier. However, this pro-
cess is also very costly. Shunting yards are often operated
by a small set of drivers, who have to walk along the track
to a train, move it, and then walk back. For safety of opera-
tions, only one train can move at a time. Moreover, in scenar-
ios with tight planning and limited capacity, a reallocation
movement can cause a delay, making the instance infeasi-
ble due to time restrictions. Therefore, this paper considers
a PM variant without reallocation and focuses on the feasi-
bility question raised only by the permutation between the
input and output sequences. This is also related to a Multi-
Agent Path Finding approach, which has been compared to
the TUSP before (Mulderij et al. 2020).

In the proposed PM variant, a train unit is modeled by a
pebble. Thus, train compositions can be modeled with con-
secutively scheduled pebbles in a sequence. Initially, train
units are regarded to all have the same length, since the dif-
ferent train unit lengths do not vary too much in the real-
world application. Afterward, an extension is studied that
does consider train units with different lengths and more
precise track lengths, to resemble real-world scenarios even
more closely. In this variant, pebbles are given a size to in-
dicate the length of the respective train unit. The PM variant
with arrival and departure offers a novel approach to study
the feasibility of the TUSP and reduce unnecessary compu-
tation times in practice, which is where this paper fills the
current research gap.

The main contributions of this paper are:

• the introduction of a new arrival-departure PM variant
including train compositions,

• a linear-time check for infeasibility of instances due to a
limited number of tracks,

• a special case of the arrival-departure variant, with track
lengths of two train units, that is polynomially solvable,

• a subset of the arrival-departure variant, with track
lengths of six or more train units, that is NP-complete,
and

• an extension of the arrival-departure variant with pebble
sizes and parking track length that is NP-complete.

The next section gives related work on the TUSP and
some history on the PM problem in relation to routing.
Then, the problem is formally defined. Next, some termi-
nology is given which is used in the feasibility approach dis-
cussed thereafter. Subsequently, the complexity of the pro-
posed variant is examined, and finally, a problem extension
with pebble sizes and track lengths is given.

Related Work
The Train Unit Shunting Problem has been widely studied
from many angles. Di Stefano and Koči (2004) looked into a
graph theoretical approach for train shunting at night. They
distinguished different orders of shunting, based on which
sides of the yard the trains can enter/depart. The Single In-
put Single Output track assignment is the most relevant to
this paper. They conclude that the number of tracks nec-
essary for parking n trains can be computed in O(n log n)
time. Other work looking into finding this number of tracks
used the chromatic number of the conflict graph, which is
NP-hard (Føns 2006). Bohlin, Hansmann, and Zimmermann
(2018) considered the complexity of finding the number of
tracks for different scenarios, but not the Single Input Sin-
gle Output type. Single Input was compared to Single and
Double Output by a greedy solution algorithm approach pro-
posed by Demange, Di Stefano, and Leroy-Beaulieu (2012).
They considered a graph coloring angle for the online track
assignment, though no other problem details were included.
However, to the best of current knowledge, no study has fo-
cused on the feasibility of the TUSP.

A problem that is theoretically similar to TUSP is the Par-
allel Stack Loading Problem, which considers several paral-
lel stacks to load and unload containers on. The loading and
unloading can be compared to the arrival and departure of
trains at a shunting yard, and the stacks are similar to Single
Input Single Output tracks. Boge and Knust (2020) showed
that this problem is NP-hard. This problem is related to the
TUSP in a very abstract manner, as it considers the same ap-
proach of moving units through a space, which inspires new
ways of looking at the problem.

The first notion of the Pebble Motion problem on graphs
by Kornhauser, Miller, and Spirakis (1984) considered a
tree of bi-connected components to offer a useful structure
for moving pebbles. They presented a decision algorithm
for instances with fewer pebbles than nodes in the graph,
where the initial and goal configurations consist of the same
nodes. Their approach divided the problem into transitive
sub-problems, such that concluding one sub-problem is in-
feasible immediately infers the complete instance to be in-
feasible. This approach resulted in an efficient algorithm for
determining the feasibility of the PM problem on a graph
and emits plans with an upper bound of Θ(n3) number of
moves, where n is the number of pebbles.

Auletta et al. (1999) improved on this bound by provid-
ing a linear-time algorithm for determining the feasibility of
the Pebble Motion problem on Trees. Their algorithm re-
sulted in plans of length O(n2(N − n)) moves, where n is
the number of pebbles and N is the number of nodes. This
is a fairly high upper bound and has been reviewed in the
literature as much higher than the number of moves needed
for real-world instances (Goraly and Hassin 2010). For train
shunting in particular, the number of moves needs to be very
small, as each move requires a driver to move the train man-
ually and walk across the shunting yard. Therefore, this re-
sult is not directly applicable to the PM variant proposed by
this paper.

Related to the PM problem is the Multi-Agent Path
Finding problem, where multiple agents have to be routed

through a graph from their start to their goal location
(Surynek 2009b), and the similar Multi-robot Path Plan-
ning problem, where the robots are controlled as a sin-
gle entity (Surynek 2009a). However, most of the research
in this direction has focused on path planning and finding
(sub)optimal solutions to these problems (Krontiris, Luna,
and Bekris 2013). On the contrary, work on the PM prob-
lem is more focused on efficiently answering the feasibility
question. One application of the PM problem involved 3D
movements through a space (Krontiris et al. 2014), where a
Manipulation Pebble Graph is constructed between poses to
check whether the rearrangement is possible. Here, the PM
problem is used for this feasibility check, although no size
of the pebbles is taken into account.

The Multi-Agent Path Finding problem has been related
to the TUSP in an attempt to gain insights into solving the
latter (Mulderij et al. 2020). However, the additional details
that were added to the Multi-Agent Path Finding problem
extension led to an increase in complexity, and the problem
was studied from an optimality perspective, instead of a fea-
sibility one. To the best of current knowledge, no work has
been done on the relation between the PM problem and the
TUSP, nor has the former been considered with the arrival
and departure of pebbles. Furthermore, no extensions with
pebble sizes currently exist.

Problem Definition
This section starts with the original Pebble Motion on Trees
problem, then gives the variant of this considered in this pa-
per, which includes the arrival and departure of pebbles.

This paper focuses on the shuffleboard shunting yards,
and thereby regards the underlying graph as a tree, where
the trains enter and depart at the root node. In this paper,
each pebble represents a unique train unit. Therefore, the
new variant is based on the Pebble Motion on Trees problem,
which is formally defined below (Auletta et al. 1999). This
is a well-known case of the general Pebble Motion problem
that only considers instances where the graph is a tree. A
configuration C assigns each of the pebbles in P a node in
T such that no two pebbles occupy the same node.
Problem: Pebble Motion on Trees problem
Input: I = (T, P,CA, CD): given is a tree T = (V,E); a

set P of n < |V | pebbles;an arriving configurationCA ⊆
P × V of these pebbles; and a departing configuration
CD ⊆ P × V .

Question: Is there a sequence of moves, which each trans-
fers a pebble from its current position v ∈ V to an adja-
cent unoccupied node v′ ∈ V s.t. {v, v′} ∈ E, to move
the pebbles from CA to CD?

First, a variant of this problem will be created that in-
cludes arrival and departure of pebbles. Say there are n peb-
bles, which arrive in a sequence S = (s1, .., sn) and depart
in a sequence D = (d1, .., dn). The arriving sequence is
defined as the first to the last arrival, while the departing se-
quence is defined as the last departure to the first departure.
This ensures that when S = D, the order will be completely
Last In First Out, so the solution is straightforward: the in-
stance is feasible if there is sufficient capacity.

The instances considered in this paper assume that the last
arrival is always scheduled before the first arrival, which is
the real-world scenario of a shunting yard at night. More-
over, no reallocation is allowed, resembling real-world sce-
narios as discussed in the introduction. Finally, in this paper,
pebbles are considered to be unique, and pebbles must be
uniquely matched between the sequences S and D. In other
words, when types or colors are considered, as also done in
PM literature (Goraly and Hassin 2010), there are n pebbles
and n different colors which are perfectly matched to the
pebbles.

To model the arrivals and departures, a simple path L
of length n (the number of pebbles) is added to the tree
that can be used to position the pebbles in the correct se-
quence to form the arriving and departing sequences con-
figurations (see Definition 1). This paper considers the fol-
lowing (novel) variant of the Pebble Motion problem, the
PMTAD problem.

Problem: Pebble Motion problem on a Tree with Arrival
and Departure (PMTAD)

Input: I = (P, S,D, TL): a set P of n unique pebbles with
a size of exactly one node each; an arriving sequence S of
the pebbles; a departing sequence D of the pebbles; and
a shunting tree TL, which is the tree representation T of a
shunting yard, extended at the root node with a path L of
length n, which is used for positioning the arriving and
departing configurations.

Question: Is there a sequence of moves that first transfer
all pebbles from their arriving position on L to a park-
ing location in the tree T , and then transfer all pebbles
from their parking location in T back to their departing
position on L, without intermediate moves?

Here, all pebbles are unique and represent train units
which are all the same size (the number of carriages). The
sizes of pebbles are later introduced in the Problem Exten-
sion with Pebble Size and Track Length. Train compositions
can still be formed by putting two (or more) train units that
belong to the same composition after each other in the arriv-
ing sequence. They can be split up or not, depending on the
departing sequence. The shunting tree as used in this prob-
lem variant is illustrated in Figure 1. The nodes on the path
L can thus not be used for parking pebbles.

Definition 1 (Shunting tree). A shunting tree TL = {T ∪
L ∪ eT } consists of the tree T , rooted by node t0, which
is connected to the path L = (v1, .., vn) through the edge
eT = {t0, v1}, such that removing this edge eT would dis-
connect T from L.

t0

v1 v2 v3
t1

t2t3

p1 p2 p3
eT

Path L = {v1, v2, v3}

Tree T = {t0, t1, t2, t3}

Figure 1: Definition of a shunting tree.

Partitioning the Pebbles
This section introduces terminology which is used in the
hereafter discussed feasibility approach.

Some patterns in a sequence can easily be determined
from the arrival and departure order, so the solution can be
quickly determined. Say there are three pebbles (p1, p2, p3)
that arrive in that order, and the departure sequence is the
same; meaning that first p3 departs, then p2, and finally
p1. In this case, the pebbles can park in a tree with suffi-
cient space and depart when necessary, without intermedi-
ate re-ordering movements. The same principle can be ap-
plied to pebbles that do not arrive exactly after each other,
but are still in the same relative order. For example, if
the arriving sequence is (p1, p3, p2, p4) and they depart as
(p1, p2, p3, p4), then p1 and p2 are still in the same relative
order, and so are p3 and p4, so both pairs could be parked
together such that they can depart in their correct order, as
long as the two pairs are not parked together as well (see
Figure 2c).

Now, this idea is employed to determine the ordered sets
of pebbles that are in the correct relative order, which is
called a partition Π(S) of the arriving sequence, compared
to the departing sequence D. Here, the latter is assumed
to always be the ordered sequence (p1, p2, . . . , pn). A par-
tition is a structure that is often used to signal parts of
the problem that belong together, and is more frequently
used in newly identified relations (Lindner and Liebchen
2019). Since the order of the pebbles is considered, each
set of the partition is referred to as a totally ordered
set (toset) because between each pair of pebbles within
such a set their order in S and D is respected. The par-
tition is defined in Definition 2, and there can be differ-
ent partitions for a sequence S. Consider, again, the pre-
vious example of arrival sequence (p1, p3, p2, p4) and de-
parture sequence (p1, p2, p3, p4). One way of defining the
partition is Π1(S) = {(p1, p2), (p3, p4)}, but Π2(S) =
{(p1, p3), (p2, p4)} is also a valid partition. This example
is shown in Figure 2.
Definition 2 (Partition). A partition Π(S) of an arriving se-
quence S is the set of tosets Π(S) = {π1, .., πm} such that
i) all tosets are disjoint: ∀πj ∈ Π(S) s.t. πi ̸= πj : πi ∩
πj = ∅,

ii) the union of the tosets includes all pebbles:
⋃
πi ∈

Π(S) = P , thus
∑

πi∈Π(S) |πi| = n, and
iii) the tosets respect the orders of S and D: S(pk) <
S(pl)∧D(pk) < D(pl) , 1 ≤ k < l ≤ |πi|,∀πi ∈ Π(S),
in other words, two pebbles in the same toset appear in
the same order in the toset as they do in S and D.

The partition of a sequence can be used to determine
which pebbles can be parked together. The problem is based
on a shunting tree T , which is given in practice, and the
tree T can be expressed in a set of disjoint branches B(T).
The branches have to be disjoint so that they are always
reachable from the root node. Otherwise, consider a sub-
tree shaped like T in Figure 1, such that t0 is not the root.
If the branches are {(t0, t1), (t0, t2, t3)} and a toset of size
two is parked on branch (t0, t1), then the pebble parked on
t0 blocks other pebbles from reaching the second branch.
Therefore, branches must always be disjoint and start at the
child of a branching node (t0 in this case). The branch set is
defined in Definition 3.

Definition 3 (Branch set). A branch set B(T) of the tree
T = (V,E) is the set B(T) = {bi}, where each branch
bi ⊂ V is a set of nodes such that:

i) all branches are disjoint: ∀bi, bj ∈ B(T) s.t. bi ̸= bj :
bi ∩ bj = ∅,

ii) a branch begins at the child of a branching node v ∈ V ,
such that v has more than one child node,

iii) a branch is a subtree of T , and
iv) the length ℓi of a branch bi is given by the number of

nodes it includes.

Each branch b can be used to park the pebbles associated
with a single toset π if the branch is large enough to hold
|π| pebbles. However, the branch set is not unique to a tree,
unless each branch is a simple path. Otherwise, the tree can
be one very large branch that includes subbranches, or each
branch can be defined individually.

To determine the feasibility of a given instance of the PM-
TAD problem with a sequence S and a tree T , a pairwise
comparison of the partition Π(S) and branch set B(T) is
used. The relation between a partition and branch set is ex-
pressed by whether they are pairwise comparable (Corol-
lary 1).

Corollary 1 (Pairwise comparable). Since branches are dis-
joint, just like the tosets in a partition, it follows that these
can mapped one-to-one to provide a sufficient condition for
feasibility. This is referred to as the pairwise comparability
of the branch set and partition.

As both the partition of a sequence and the branch set of a
tree are neither uniquely defined, it is not a trivial problem to
determine whether they are pairwise comparable, and a sce-
nario is thus feasible. For example, consider an instance of
the PMTAD problem where T has two branches with each
two nodes (like in Figure 2), P = {p1, p2, p3, p4}, S =
(p1, p3, p2, p4), and D = (p1, p2, p3, p4). The configuration

t0 v1 v2 v3 v4t1

t2

t3

t4

p1 p2p3 p4

(a) S = (p1, p3, p2, p4)

t0 v1 v2 v3 v4t1

t2

t3

t4

p1 p2 p3 p4

(b) D = (p1, p2, p3, p4)

t0 v1 v2 v3 v4t1

t2

t3

t4

p1 p2

p3 p4

(c) Π1(S) = {(p1, p2), (p3, p4)}

t0 v1 v2 v3 v4t1

t2

t3

t4

p1

p2

p3

p4

(d) Π2(S) = {(p1, p3), (p2, p4)}

Figure 2: Different partitions for arriving sequence S = (p1, p3, p2, p4) and departing sequence D = (p1, p2, p3, p4).

of pebbles like in Figure 2d clearly shows this instance is
feasible, because the partition Π2(S) = {(p1, p3), (p2, p4)}
matches the branch set. However, the also valid partition
Π3(S) = {(p1, p3, p4), (p2)} does not match the branch set
in this tree because each toset must be assigned a subset of
branches that is disjoint with the other branches. So, the par-
tition Π2 immediately shows the scenario is feasible, while
the validity of the partition does not imply the feasibility of
a scenario, like for partition Π3.

Therefore, the next problem (PPST) takes a given branch
set of a shunting tree and the question is whether a partition
exists that is pairwise comparable with that branch set.

Problem: Partition for a Pebble Sequence on a Tree (PPST)
Input: I = (B,P, S,D): given is a branch set B(T) based

on a shunting tree TL; a set P of n unique pebbles; an
arriving sequence of pebbles S; and a departing sequence
over the pebbles D.

Question: Is there a valid partition Π(S) into tosets
Π1, ..,Πm such that the tosets of Π(S) and the individual
branches of B(T) are pairwise comparable?

An answer of the PPST, in the form of a partition, means
that there exists a parking configuration of pebbles such that
the associated PMTAD instance is also feasible (see proof in
supplement Section 41). However, it can be very difficult to
determine whether a partition exists. Consider, for example,
the scenario in Figure 3, is the permutation between S andD
possible given this tree? The next section gives an approach
to decide this example.

Feasibility Approach
This section includes several Lemmas that can be used to de-
cide the (in)feasibility of a PPST instance. At the end, these
Lemmas are combined into an efficient feasibility approach,
of which some elementary results are given.

To help determine the feasibility of an instance, and thus
check the compatibility of the branch set and partition, a Di-
rected Acyclic Graph (DAG) of the sequence can be con-
structed, as described in Method 1. Here, theDAG(S)+ and
DAG(S)− are introduced, where the former gives the rela-
tions between pebbles that are compatible and can be in the
same toset, while the latter indicates the pebbles that cannot
be in the same toset. By displaying the nodes of these graphs
on an n× n grid, the two different DAGs can be clearly dis-
tinguished, and the coefficients of the connections are obvi-
ous. However, this grid is not necessary for the validity of
the lemmas introduced hereafter.

Existing graph algorithms can be executed on the con-
structed DAGs to determine the feasibility of certain in-

1Visit the supplementary material at rebrand.ly/supmat.

S

D

? ?

? ?

?p1p2 p3 p4p5

p1p2p3p4p5

Figure 3: Is this instance feasible?

1

1

2

2

3

3

4

4

5

5

Position in D

Po
si

tio
n

in
S

p1

p2

p3

p4

p5

Figure 4: Directed acyclic graph of S = (p4, p1, p3, p2, p5).
Method 1 (Constructing a DAG of a sequence). Given peb-
ble sequences S and D of length n:

1. Construct an n × n grid with the departure positions on
the x-axis and the arrival positions on the y-axis.

2. Create a point for each pebble p: the row is the position
of p in S and the column is the position of p in D.

3. Create the positive graph DAG(S)+ by connecting the
point of pebble p with green to every point of a pebble
that arrives earlier but departs later (these are the lines
with a positive coefficient).

4. Create the negative graph DAG(S)− by connecting the
point of pebble p with dashed blue to every point of a
pebble that arrives earlier and departs earlier (these are
the lines with negative coefficient).

stances. Take the Longest Path problem (definition in sup-
plement Section 5) on the DAG(S)−, in which pebbles
of respectively connected nodes cannot be parked together.
Therefore, the length of the longest path of these pebbles
determines the minimal number of disjoint branches that are
necessary for a feasible solution for the PPST problem. As
an example, the DAG in Figure 4 matches the sequence in
Figure 3, and we can thus conclude the length of the longest
path in the DAG(S)− (three) is higher than the number of
branches (two), so this example is infeasible.

Since the longest path can be found in O(n) time in
a DAG (Sedgewick 2011), this is an improvement to the
O(n log n) bound found by Di Stefano and Koči (2004).
This is a great speed-up and can also be used as an infeasi-
bility check: when there are fewer branches than the length
of the longest path in the DAG(S)−, the instance is infeasi-
ble (Lemma 1, proof in supplement Section 6). Although it
should be noted that there are other checks for infeasibility,
so this is not a necessary condition.
Lemma 1 (Minimal number of branches). If there are fewer
branches than the length of the longest path L(S)− in the
DAG(S)−, i.e. |B(T)| < |L(S)−|, then I is infeasible.

On the other hand, the longest path in the DAG(S)+ rep-
resents the maximum number of pebbles that can be in a
toset together. If there exists a branch of that length in the
tree, then this branch can be filled with pebbles from that
toset. However, if the largest branch in B(T) has a length k
and the longest path in theDAG(S)+ has a length l < k, the

instance is only feasible if there are more than k − l empty
nodes in the graph. This is most easily visualized when there
are exactly as many nodes in the tree as there are pebbles. If
the largest branch cannot be filled with pebbles from one
toset then there will be pebbles that cannot be parked, so
the instance is infeasible. Take c ≥ 0 to be the difference
between n and the total number of nodes in the branch set
(Lemma 2, see proof in supplement Section 7).

As an example, if a tree would have one branch of length
four and one branch of length one, then c = 0, because there
are five nodes in B(T) and five pebbles. The longest path of
length three in the DAG(S)+, e.g. (p1, p2, p5). The branch
of length four cannot be filled, so it is infeasible. However,
given the largest branch of length three (as in Figure 3), these
pebbles can be parked, though the scenario is still infeasible
(Lemma 1), so Lemma 2 is not a necessary condition for
feasibility.
Lemma 2 (Parking in the largest branch). For c ≥ 0 empty
nodes, if

∑
b∈B |b| = n+c and |B(T)| > |L(S)+|+c, then

the instance is infeasible.
Besides this infeasibility condition, the DAG(S)+ can

also be used to find a feasible solution. Since the pebbles
that are connected in the DAG(S)+ are in the correct rel-
ative order, they can be together in a toset of the partition.
Therefore, a path cover (definition in supplement Section 5)
of the DAG(S)+ gives a possible partition of the sequence
(Lemma 3, see proof in supplement Section 8). Moreover,
given the number of branches m = |B(T)|, a path cover
withm paths can be found in polynomial time. However, the
lengths of the individual branches cannot be included in this
search, unless all exponentially many options are exhausted,
so it is not a complete solution to the PPST problem.

As an example, a path cover of the DAG(S)+ gives the
partition {(p1, p2, p5), (p3), (p4)}. If the tree in Figure 3
would two branches of length one instead of the branch of
length two, then this partition would fit, and the instance
would be feasible.
Lemma 3 (Find a vertex-disjoint path cover). Given the
number of branches |B(T)|, a vertex-disjoint path cover of
size K = |B(T)| can be found.

The three lemmas introduced here can be used to create an
initial proof-of-concept algorithm to determine the feasibil-
ity of an instance given sequence S and branch set B. First,
Lemma 1 can be used to check if there are enough branches
in B. If not, return INFEASIBLE. Then, take the longest path
from the DAG(S)+ (or a random one if there are several
of the same length) that fits in the largest branch, and fill
branches in non-increasing order. If all pebbles are parked,
return FEASIBLE, else return UNKNOWN because the three
Lemmas cannot provide a decision.

In Figure 5, the results are shown for all possible 4! = 24
sequences of length four, on four different branch sets B ∈
{(4), (3, 1)(2, 2), (2, 1, 1)}, since the branch set (1, 1, 1, 1)
is always feasible for a sequence of length four. For longer
sequences, the number of UNKNOWN returns is expected to
go up, because cases like the previous example will occur
more often. Each instance was tested 10 times and the aver-
ages are shown in the figure. Between the 10 runs, the input

10.2%

44%45.8%

UNKNOWN

FEASIBLE

INFEASIBLE

Figure 5: Results for length-4 sequences on four branch sets.

did not change, but due to the random drawing of the longest
path in the DAG(S)+, some feasible instances were some-
times marked UNKNOWN. For example, S = (p1, p4, p2, p3)
is feasible on branch set (2, 2), but only if (p1, p4) is a toset,
and if path (p1, p3) is selected first, the feasible solution will
not be found and UNKNOWN is returned.

Complexity of the Problem
The approach discussed so far cannot determine the feasibil-
ity of the PPST problem in polynomial time for all instances.
So, the complexity of the overall problem is studied, and two
subsets of problem instances are distinguished in this sec-
tion.

Here, ℓmax is used to say that all branches have the same
length of ℓmax. In the first case, there are m = |B(T)|
branches, each of length ℓmax = 2, and n ≤ 2m pebbles.
This 2-PPST variant can be solved in polynomial time (The-
orem 1, proof in supplement Section 2), which can be shown
by transforming the problem to a bipartite matching prob-
lem, to which the solution can be found in polynomial time
(Sedgewick 2004). The idea is that a bipartite matching will
create pairs of pebbles that are compatible for the same toset
and can thus be parked on the same branch. A bipartite graph
can be constructed by creating a node v♭p and v♯p for each
pebble p and an edge {u♭p, v♯q} exists in the bipartite graph if
pebble p arrives earlier than pebble q but departs later.

Theorem 1 (2-PPST is in P). The Partition for a Pebble
Sequence on a Tree problem is in P if there are m = |B(T)|
branches of length ℓmax = 2 and n ≤ 2m pebbles.

The other subset concerns instances where the length of
the branches is fixed to six (or more) nodes. Then, a re-
duction can be constructed from the known Mutual Exclu-
sion Scheduling problem (MES). The MES problem takes a
set of jobs that have to be scheduled on a set of machines
within a given number of time slots. Furthermore, a rela-
tion between the jobs is given that indicates which jobs can-
not be processed simultaneously. The MES problem can also
be thought of in graphical terms: given an undirected graph
G = (V,E) with a node for each job and an edge between
every pair of conflicting jobs; then any subset V ′ ⊂ V of
jobs, for which |V ′| ≤ M and V ′ is an independent set of
G, can be executed at each time step (Jansen 2003).

The idea behind the reduction is that these independent
sets of jobs can be thought of as tosets, since these jobs
cannot be conflicting, just like pebbles in tosets cannot be
conflicting. Thus, the jobs that are processed at each time
step correspond to the pebbles that are parked on the same

branch. The conflicts between jobs can be used to define the
sequences, which becomes apparent with the introduction of
the permutation graph.

A specific variant of the MES problem uses a permutation
graph for these relations, and this variant has been shown to
be NP-hard for a fixed constant M ≥ 6 number of machines
(Jansen 2003). A permutation Ψ = (ψ1, .., ψN) of the jobs
{1, .., N} is given along with the input. Ψ−1(i) gives the
position of job i in the permutation. The permutation graph
GΨ = (V,EΨ) with V = {1, .., N} has an edge {i, j} ∈ E
if and only if i < j andψi > ψj (Boge and Knust 2020). The
MES problem on a permutation graph is introduced below.

Problem: Mutual Exclusion Scheduling problem on a per-
mutation graph (MESP)

Input: I = (V,U,M,Ψ): given is a set V of N jobs, a
number of time slots U , a number of machines M , and a
permutation graph Ψ = (V,EΨ);

Question: Is there a partition of V into at most U indepen-
dent setsWu : u = 1, .., U (independent means that there
is no edge {i, j} ∈ EΨ for any pair i, j ∈ Wu) with
|Wu| ≤M for all u?

Since the arrival sequence of pebbles is a permutation of
the departure sequence, this has a clear relation to the per-
mutation graph that shows the conflicting jobs. Jobs that
conflict with each other have a different order in the per-
mutation than in the original sequence, same as the pebbles
which conflict between the arrival and departure sequences.

A simple example to illustrate this: instance I of
the MESP has M = 4 machines, U = 3 time slots,
N = 10 jobs V = {1, .., 10}, and the permutation
Ψ = (4, 1, 3, 10, 2, 6, 5, 8, 7, 9). The constructed instance
I ′ of the PPST has n = N = 10 pebbles with S =
(p4, p1, p3, p10, p2, p6, p5, p8, p7, p9) and D = (p1, .., p10),
where the branch set B consists of m = U = 3 branches
each of length ℓmax = M = 4 nodes. For example, a fea-
sible solution for I consists of the three independent sets
W1 = {1, 7, 9, 10} which corresponds to pebble toset π1 =
(p4, p5, p7, p9);W2 = {5, 6, 8} with toset π2 = (p2, p6, p8);
and W3 = {2, 3, 4} with toset π3 = (p1, p3, p10). These
tosets can form a partition, such that there are exactly U = 3
branches used and on each branch at most M = 4 pebbles
can be parked that have a correct order in both S and D.
Theorem 2 (PPST is NP-complete). The Partition for a
Pebble Sequence on a Tree problem is NP-complete if all
branches have length ℓmax ≥ 6 nodes.

Proof. PPST ∈ NP: Given a solution Π(S) to an instance
I ′ = (B,P, S,D) of the PPST problem, it can be estab-
lished in O(n) time whether the solution is a valid solution
of the PPST by checking all conditions of a valid partition
and the pairwise comparability.

PPST ∈ NP-HARD: Given an instance I = (V,U,M,Ψ)
of the MESP problem, construct an instance I ′ =
(B,P, S,D) as follows. For each job i ∈ V , create a pebble
pi ∈ P . Set S = Ψ and D = (p1, .., pn), such that a peb-
ble pi has position Ψ−1(i) in the arriving sequence. More-
over, create m = U branches in B, with each a length of
ℓmax =M nodes. All these steps can be performed in O(n)

time, so the reduction is polynomial. Next, it is shown that I
is a yes-instance of the MESP if (=⇒) and only if (⇐=) I ′
is a yes-instance of the PPST.

PROOF OF (=⇒): Suppose I is a yes-instance with at
most U independent sets Wu, each containing at most M
jobs. Two arbitrarily chosen jobs i > j of an independent
set Wu must satisfy ψi > ψj , since otherwise there would
be an edge in the conflict graph. Thus, all items of one inde-
pendent set can be put into one toset, such that all U tosets
are disjoint, all pebbles are in exactly one toset (because all
jobs must be scheduled on one machine) and the tosets re-
spect the orders of S and D. Therefore, a valid partition is
possible. Furthermore, due to Wu ≤M for all u, there is no
toset with more pebbles than the branch length M and there
are no more than U branches used such that the pebbles of
each toset can be parked together on a branch. So, the valid
partition is pairwise comparable with the branches and thus
I ′ is a yes-instance of the PPST.

PROOF OF (⇐=): Suppose I ′ is a yes-instance of the
PPST. Then, there exists a partition Π that is pairwise com-
parable with branch set B. Each of the tosets contains at
most M elements by construction, because of the branch
length. Furthermore, each toset is parked on a single branch,
so there are no more thanU branches. Since the tosets satisfy
the orders of S and D, for any two pebbles pi, pj in a toset,
where i < j, it must hold that Ψ−1(pi) < Ψ−1(pj). This
implies there cannot be an edge in the permutation graph.
So, all pebbles of one toset form an independent set consist-
ing of at most M and all tosets together form a partition into
at most U independent sets.

To conclude, there is no complete approach to solve the
PPST, and thus the PMTAD, problem. A proof-of-concept
algorithm was shown that can determine about 90% of the
(small) instances. Furthermore, for all instances of 2-PPST
the problem is in P, although for all instances where ℓmax ≥
6, the problem is NP-hard.

Problem Extension with Pebble Size and Track
Length

The variant in the previous sections regarded single train
units and looked more into the feasibility regarding the num-
ber of train units. However, there are slight differences in
the number of carriages per train unit, so this can influence
the feasibility of an instance. Therefore, an extension of the
PMTAD problem is proposed that covers this difference. A
pebble still represents one train unit, but now also has a size
attribute determined by the number of carriages. Similarly, a
branch now needs to fit both the number of train units, and
the total number of carriages that those train units consist
of. The branch length is defined on the edge of a branch,
which connects a branching node (a node with two or more
children) to the branch. The length and sizes could also be
expressed in meters, but since train carriages are always the
same length (at NS), this paper sticks to carriages for sim-
plicity. This problem is defined as the PMTADL problem.

Problem: Pebble Motion problem on a Tree with Arrival,
Departure, and Length inclusion (PMTADL)

Input: I = (P, S,D, TL, EB , ℓ, λ): a set P of n unique
pebbles with a size of exactly one node each; an arriving
sequence S of the pebbles; a departing sequenceD of the
pebbles; and a shunting tree TL, which is the tree repre-
sentation T of a shunting yard, extended at the root node
with a path L of length n, which is used for positioning
the arriving and departing configurations; a set of branch
edges EB which connect a branch to its branching node;
a function ℓ(e) which returns the length of an edge e; and
a function λ(p) which returns the size of a pebble p.

Question: Is there a sequence of moves that first transfers
all pebbles from their arriving position on L to a park-
ing location in the tree T , and then transfers all pebbles
from their parking location in T back to their departing
position on L, without intermediate moves, such that the
edge capacity ℓ(e) for all e ∈ EB is not exceeded by the
sum of the sizes of the pebbles parked in the branch of
this branching edge e?

The original PMTAD problem is a special case of the PM-
TADL problem, where λ(p) = 1,∀p ∈ P and ℓ(et) =
1,∀t ∈ T and the length of a branch b ⊂ B(T) was sim-
ply the number of nodes in the branch. So, to use similar
notation as before, pairwise comparability in length is intro-
duced (Corollary 2).
Corollary 2 (Pairwise comparable in length). For a parti-
tion and branch set to be lengthwise pairwise comparable,
building on Corollary 1, the branch capacity must be also
respected, i.e.

∑
p∈πi

λ(p) ≤ ℓ(ebi), 1 ≤ i ≤ |Π(S)|.
Next, an extension of the PPST, the PPSTL, is proposed

that can solve the PMTADL problem like the PPST solves
the PMTAD problem (supplement Section 4).

Problem: Partition for a Pebble Sequence on a Tree with
Length inclusion (PPSTL)

Input: I = (B,P, S,D, ℓ, λ): given is a branch set B(T)
based on a shunting tree TL; a set P of n unique pebbles;
an arriving sequence of pebbles S; a departing sequence
of pebbles D; an edge length function ℓ; and a pebble
size function λ.

Question: Is there a valid partition Π(S) into tosets
Π1, ..,Πm such that the tosets of Π(S) and the individual
branches of B(T) are lengthwise pairwise comparable?

To create a reduction showing the PPSTL is NP-complete
(Theorem 3), the NP-hard Partition Problem (PP) is intro-
duced (Garey and Johnson 1979). Note, that there can only
be a solution to the PP if the

∑
(X) is even, otherwise, no

two subsets can be the same size.

Problem: Partition problem (PP)
Input: I = (X): given is the multi-set X of positive inte-

gers.
Question: Is there a partition of X into two disjoint subsets
X1 andX2 such that the sum of the numbers inX1 equals
the sum of the numbers in X2?

The intuition of the reduction is as follows. Since each el-
ement of the multi-set in the Partition problem can be seen
as an item with a weight equal to its integer value, these

integers can be associated with the sizes of pebbles. Further-
more, since there is only limited space in each of the two
subsets, this is similar to m = 2 branches with a certain
length. Then, the only remaining attributes of the PPSTL
problem to be defined are the pebble sequences, and when
these are equal (S = D), the main problem is to find out if
there is enough space in the two branches, similar as in the
classic Partition Problem. This reduction leads to the result
of Theorem 3 and its formal proof is given in supplement
Section 3.

Theorem 3 (PPSTL is NP-complete). The Partition for a
Pebble Sequence on a Tree with Length inclusion problem is
NP-complete.

Since the PPSTL is an NP-complete problem, it is impos-
sible to determine whether a scenario is feasible in polyno-
mial time (unless P = NP).

Conclusion
To avoid long computation times on infeasible instances,
this paper studies the feasibility of the Train Unit Shunting
Problem. A variant of the Pebble Motion on Trees problem
is proposed that includes the arrival and departure of peb-
bles in the tree: the PMTAD problem, where no realloca-
tion is allowed. This variant is representative of the TUSP
because the PMTAD problem includes sequences of train
units that must be parked or permuted in a limited space. A
related problem (PPST) is defined that, given a branch set of
a shunting tree, finds a partition of a pebble sequence, which
is shown to be a good measure for feasibility. A solution ap-
proach is given that can decide the feasibility on the majority
of (small) instances, using derived conditions on the num-
ber of branches and their length. Furthermore, a subset of
problem instances with m branches of length ℓmax = 2 and
n ≤ 2m pebbles can be solved in polynomial time. Finally,
there is a subset of the problem instances, with a fixed branch
length ℓmax ≥ 6, that is NP-complete. Another contribution
is the PMTAD extension with pebble sizes, the PMTADL
problem, and its related PPSTL problem, which is shown to
be NP-complete. The relations between the different prob-
lem variants discussed are shown in supplement Section 1.

This paper only considers scenarios where the underlying
graph can be represented by a tree, based on the common
shuffleboard-layout shunting yard, though future research
could extend this work to general graphs. The remaining gap
for branch lengths ℓmax = 3, 4, 5 remains an open question
but might be applicable for a bounded search tree algorithm,
such that the given lemmas can limit the size of the problem
instance, thereby reducing the overall computation time. Fi-
nally, this paper assumes no reallocation is possible as real-
location is an expensive process that requires a driver to walk
over to the train, move the train, and walk back. Moreover,
in limited capacity shunting yards with tight planning, real-
location can cause delays. A theory is provided that mostly
applies to parking situations, yet the addition of reallocation
could lead to new insights and more application possibilities.
The definitions and results in this paper provide a framework
for studying such other variants.

References
Auletta, V.; Monti, A.; Parente, M.; and Persiano, P. 1999. A
Linear-Time Algorithm for the Feasibility of Pebble Motion
on Trees. Algorithmica, 23: 223–245.
Boge, S.; and Knust, S. 2020. The parallel stack loading
problem minimizing the number of reshuffles in the retrieval
stage. European Journal of Operational Research, 280(3):
940–952.
Bohlin, M.; Hansmann, R.; and Zimmermann, U. T. 2018.
Optimization of Railway Freight Shunting, 181–212. Cham:
Springer International Publishing. ISBN 978-3-319-72153-
8.
Demange, M.; Di Stefano, G.; and Leroy-Beaulieu, B. 2012.
On the online track assignment problem. Discrete Applied
Mathematics, 160(7-8): 1072–1093.
Di Stefano, G.; and Koči, M. L. 2004. A graph theoretical
approach to the shunting problem. Electronic Notes in The-
oretical Computer Science, 92: 16–33.
Freling, R.; Lentink, R. M.; Kroon, L. G.; and Huisman, D.
2005. Shunting of passenger train units in a railway station.
Transportation Science, 39(2): 261–272.
Føns, P. 2006. Decision Support for Depot Planning in the
Railway Industry. MSc Thesis, Technical University of Den-
mark.
Garey, M. R.; and Johnson, D. S. 1979. Computers and
Intractability, A Guide to the Theory of NP-Completeness.
United States of America: Bell Telephone Laboratories, In-
corporated. ISBN 0-7167-1044-7.
Goraly, G.; and Hassin, R. 2010. Multi-color pebble motion
on graphs. Algorithmica, 58(3): 610–636.
Huizingh, E. 2018. Planning first-line services on NS service
stations. MSc Thesis, University of Twente, Enschede.
Jansen, K. 2003. The mutual exclusion scheduling problem
for permutation and comparability graphs. Information and
Computation, 180(2): 71–81.
Kornhauser, D. M.; Miller, G.; and Spirakis, P. 1984. Coor-
dinating pebble motion on graphs, the diameter of permuta-
tion groups, and applications. MSc Thesis, M. I. T., Dept.
of Electrical Engineering and Computer Science.
Krontiris, A.; Luna, R.; and Bekris, K. E. 2013. From fea-
sibility tests to path planners for multi-agent pathfinding. In
Sixth annual symposium on combinatorial search.
Krontiris, A.; Shome, R.; Dobson, A.; Kimmel, A.; and
Bekris, K. 2014. Rearranging similar objects with a manipu-
lator using pebble graphs. In 2014 IEEE-RAS International
Conference on Humanoid Robots, 1081–1087.
Lindner, N.; and Liebchen, C. 2019. New perspectives on
PESP: T-partitions and separators. In 19th Symposium on
Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems (ATMOS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.
Mulderij, J.; Huisman, B.; Tönissen, D.; van der Linden, K.;
and de Weerdt, M. 2020. Train Unit Shunting and Servicing:
a Real-Life Application of Multi-Agent Path Finding. arXiv
preprint arXiv:2006.10422.

Sedgewick, K. D., Robert; Wayne. 2011. Algorithms.
Addison-Wesley Professional, 4th edition.
Sedgewick, R. 2004. Algorithms in Java, Part 5 graph algo-
rithm. Addison-Wesley Pearson Education, 3rd edition.
Surynek, P. 2009a. An application of pebble motion on
graphs to abstract multi-robot path planning. In 2009 21st
IEEE International Conference on Tools with Artificial In-
telligence, 151–158. IEEE.
Surynek, P. 2009b. A novel approach to path planning for
multiple robots in bi-connected graphs. In 2009 IEEE In-
ternational Conference on Robotics and Automation, 3613–
3619. IEEE.
Wolfhagen, F. 2017. The train unit shunting problem with
reallocation. MSc Thesis, Erasmus University Rotterdam.

