A RELATED WORKS

Neural models for time-series analysis DeepAR [Salinas et al.| (2020) is a popular forecasting
model that trains an auto-regressive recurrent network to predict the parameters of the forecast
distributions. Deep Markov models |Krishnan et al.|(2017); Rangapuram et al.| (2018); |[Li et al.| (2021);
Gu et al.| (2021)) model the transition and emission components with neural networks. Recent works
have also shown the efficacy of transformer-based models on general time-series forecasting |Oreshkin
et al. (2019);Zhou et al.|(2021); (Chen et al.| (2021)); [Zhou et al. (2022); Liu et al.| (2021). However,
these methods do not perform pre-training and are trained independently for each application domain.
therefore, they do not leverage cross-domain datasets to generate generalized models that can be used
for a wide range of benchmarks and tasks.

Self-supervised learning for time-series Recent works have shown the efficacy of self-supervised
representation learning for time-series for various classification and forecasting tasks in a wide range
of applications such as modeling behavioral datasets [Merrill & Althoff] (2022); |Chowdhury et al.
(2022), power generation |[Zhang et al.| (2019), health care Zhang et al.| (2022). [Franceschi et al.
(2019)) used triplet loss to discriminate segments of the same time-series from others. TS-TCC used
contrastive loss with different augmentations of time-series |[Eldele et al.|(2021). TNC Tonekaboni
et al.| (2021) uses the idea of leveraging neighborhood similarity for unsupervised learning of the local
distribution of temporal dynamics. TS2Vec leveraged hierarchical contrastive loss across multiple
scales of the time-series [Yue et al.|(2022)). However, all these methods apply SSL on the same
dataset that is used for training and may not adapt well to using time-series multiple sources such as
time-series from multiple diseases. Our work, in contrast, tackles the problem of learning general
models from a wide range of heterogeneous datasets that can be fine-tuned for a wide variety of tasks
on multiple datasets that may not be used during pre-training.

B TRAINING DETAILS

For GRU we use a single hidden layer of 50 hidden units. Dimension of v is also 50. The transformer
architecture consists of 6 layers with 8 attention heads each. For forecasting tasks, we train a separate
decoder module with 4 more layers during fine-tuning whereas for classification we aggregate the
embeddings {e;} [, of the last transformer layer and feed them into a single linear layer that provides
logits for all classes. The SSL pre-training was done till convergence via early stopping with a
patience of 1000 epochs. We observed that LPTM takes 5000-8000 epochs to finish pre-training
which takes around 3-4 hours. (Note that pre-training is a one-time step and downstream fine-tuning
takes much less time and epochs). For both pre-training and fine-tuning, we used the Adam optimizer
with a learning rate of 0.001. The hyperparameters are tuned sparingly for both LPTM and baselines
from their default settings. For RANDMASK, we found the optimal v = 0.4, and for LASTMASK
~ = 0.2 was optimal. The model was trained on a Nvidia Tesla V100 GPU with 32 GB memory.
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Figure 3: Performance of LPTM and best baseline with varying fractions of training data. In most
cases LPTM significantly outperforms baselines with lower amount of data.
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