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Here we provide additional ablation results on mini-Audioset (Sec. A) as well as analyse the per-class
average precision of fusion over single modality baselines (Sec. B). We then provide results on two
additional datasets, Moments in Time and Kinetics in Sec. C and perform some preliminary transfer
learning experiments in Sec. E. Finally we provide details on the AS-500K split.

A Ablations on mini-Audioset

In this section we expand on the ablations provided in Sec. 4.3 of the main paper. Unless otherwise
specified, ablations are performed using Audioset-mini as the training set and the Audioset test set
for evaluation. For most experiments we conduct 3 runs and report mean and standard deviation.

A.1 Symmetric vs asymmetric bottleneck updates

We also experiment with an asymmetric bottleneck update. This involves replacing Eq. 8 and 9 with
the following:

[zl+1
rgb ||ẑl+1

fsn ] = Transformer([zlrgb||zlfsn]; θrgb) (1)

[zl+1
spec||zl+1

fsn ] = Transformer([zlspec||ẑl+1
fsn ]; θspec) (2)

Here the bottleneck tokens are updated twice, first with visual information (Equation 1), and then
with audio information (Equation 2). We also experimented with updating the bottlenecks with
audio information first and compare both variations to the symmetric update in Table 1. We find
performance is robust to all variations.

RGB first Spec first Symmetric updates

43.42±0.19 43.23±0.12 43.66±0.26

Table 1: Asymmetric vs symmetric bottleneck updates.

A.2 Backbone architecture

We experiment with three standard ViT [5] backbones, ViT-Small, ViT-Base and ViT-Large on both
Audioset-mini and VGGSound. We report results in Table 2 for audiovisual fusion with our best
MBT model. We find that performance increases from ViT-Small to ViT-Base, but then drops for
ViT-Large. This could be due to the fact that these datasets are on the smaller side, and more data
might be required to take advantage of larger models.
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Backbone AS-mini VGGSound

ViT-Small 38.2 59.0
ViT-Base 43.3 64.1
ViT-Large 42.2 61.4

Table 2: Performance with varying backbones on AS-mini and VGGSound.

A.3 The impact of weight sharing

We investigate the impact of sharing the encoder weights for both modalities (strategy (i) vs (ii))
as described in Sec. 4.3.1 . Results are provided in Fig. 1 for different fusion layers Lf . When
modalities are fused at earlier layers, using separate encoders improves performance. For models
with later fusion layers, performance is similar for both models.

A.4 Input sampling

Here we investigate asynchronous sampling of different modalities (where input windows are sampled
independently from the entire video clip for each modality) as compared to synchronous sampling.
Results are provided in Fig. 2 for different input span lengths t. Over multiple runs we find that
performance is largely robust to either sampling choice. We hypothesise that asynchronous sampling
provides the following trade-off: while it introduces a misalignment between the two modality inputs,
slight shifts are also a good source of temporal augmentation. As the video clip span length grows,
the possible options for misalignment between inputs are less severe, while the impact of additional
augmentation is more evident.

In Table 3, we provide the results in numerical form used to create Fig. 4 . We perform 3 runs per
experiment and report mean and standard deviation. All segments in AudioSet are 10 seconds long.

Span Length t 2s 4s 6s 8s

Visual only 26.23±0.16 25.74±0.18 25.68±0.02 25.43±0.02
Audio only 27.10±0.54 29.91±0.21 30.08±0.21 30.55±0.22

Audio-Visual 37.95±0.51 40.32±0.20 41.51±0.24 42.37±0.44

Table 3: The effect of varying input clip span t on performance.

B Per class performance

We also examine per-class average precision (AP) results for our best model trained on the mini-
Audioset (note that this dataset has 527 classes). We first show the results for the 60 top ranked
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Figure 1: The effect of sharing weights for vanilla
fusion.
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Figure 2: Asynchronous vs synchronous sam-
pling of RGB and spectrogram inputs.
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classes in Audioset (by audio-visual mAP performance) in Fig. 3. We show the per class AP using
our best fusion model (MBT), as well as the performance of audio only and visual only baselines.
Audio-visual fusion improves performance over audio only or visual only for almost all (57 out of
60) classes, except for ‘bagpiping’, ‘emergency vehicle’ and ‘didgeridoo’ which have strong audio
signatures. We then analyse the top 60 classes for which fusion has the largest improvement over
single modality performance, over audio-only (Figure 4, top) and visual-only (Figure 4, bottom). For
some classes such as ‘bicycle’ and ‘shuffling cards’, fusion improves over the audio-only baseline by
over 60% in absolute AP. The class that benefits most from audio-visual fusion over a visual-only
baseline is ‘Whistling’ (almost 80% improvement in absolute AP).
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Figure 3: Per-class average precision for the top 60 classes in Audioset ranked by mAP. Best viewed
in colour and zoomed in. Note how audio-visual fusion helps improve performance over audio only
for almost all classes. The visual only model performs well for classes that have a stronger visual
signature than audio, eg ‘bicycle’, ‘mechanical fan’, ‘boat’ and ‘arrow’.
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Figure 4: Top 60 classes that have the highest gain with fusion over a audio only (top) and visual only
(bottom) baseline. Note how fusion improves the per class AP for certain classes by over 50% over a
unimodal model. As expected, the classes that benefit most from visual information are ‘bicycle’ and
‘shuffling cards’ and the class that benefits most from audio is ‘Whistling’.
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C Additional Datasets

In this section we report results on 2 additional datasets, Moments in Time [11] and Kinetics [9].

C.1 Moments In Time

Moments In Time [11] consists of 800,000, 3-second clips from YouTube videos. The videos are
diverse and capture dynamic scenes involving animals, objects, people, or natural phenomena. The
videos are labelled with 330 verb classes, each associated with over 1,000 videos. We show results
for MBT compared to single modality baselines in Table 4. Our first observation is that audio-only
performance is much lower than visual-only. This is largely a function of the annotation procedure
for the dataset, however we also note that clips are only 3 seconds long, and as shown in Fig. 4 ,
audio-only performance is heavily dependant on the span length t on Audioset, suggesting that it
may be difficult to recognise audio events from shorter inputs. Our fusion model provides a further
modest 1% boost to performance over the visual-only baseline.

Model Top-1 acc Top-5 acc

I3D [4] 29.5 56.1
blVNet [6] 31.4 59.3
AssembleNet-101 [13] 34.3 62.7
ViViT-Base [2] 37.3 64.2
Ours (Audio-only) 8.2 18.2
Ours (Visual-only) 36.3 59.3
MBT (AV) 37.3 61.2

Table 4: Comparison to state of the art on Moments in Time [11]. We report top 1 and top 5
classification accuracy. AV: Refers to audio-visual fusion.

C.2 Kinetics

Kinetics [9] consists of 10-second videos sampled at 25fps from YouTube. We evaluate on both
Kinetics 400 [9] and a commonly used subset Kinetics-Sound [1], containing 400 and 36 classes
respectively. As these are dynamic datasets (videos may be removed from YouTube), we train and
test on 209,552 and 17,069 videos respectively for Kinetics and report results on 1,165 videos for
Kinetics-Sound. Results for MBT compared to single modality baselines are shown in Table 5. We
note that on the entire Kinetics test set, our fusion model outperforms the visual only baseline by
about 1% in top 1 accuracy (in line with other works [14] that demonstrate that audio for the large
part does not improve performance for most Kinetics classes). This gap is widened, however, for the
Kinetics-Sound subset of the dataset (over 4%), as expected because this subset consists of classes in
Kinetics selected to have a strong audio signature [1].

D Dataset Variations for MBT vs Late Fusion

In this section we further analyse the significance of our method across all the popular video
classification datasets used in the paper (most ablations results are only shown for mini-Audioset
in the main paper). We note that the gap between MBT and late-fusion is highly dataset dependant
(see Table 6), with our method providing an even greater advantage for Epic-Kitchens (almost 6%
difference in Top 1 action accuracy).

E Transfer learning

We use checkpoints pretrained on VGGSound, Kinetics400 and AS-500K and finetune them on
Audioset-mini and VGGSound (note we use a ViT-B backbone for these experiments, and report
results for audiovisual fusion with our best MBT model). Results are provided in Table 7. While
Kinetics400 pretraining gives a slight 0.7% mAP boost on AS-mini, VGGSound initialisation gives a
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Model Kinetics Kinetics-Sounds
Top-1 Top-5 Top-1 Top-5

blVNet [6] 73.5 91.2 - -
STM[8] 73.7 91.6 - -
TEA [10] 76.1 92.5 - -
TS S3D-G [15] 77.2 93.0 - -
3-stream SATT [3] 77.7 93.2 - -
AVSlowFast, R101 [14] 78.8 93.6 85.0† -
LGD-3D R101 [12] 79.4 94.4 - -
SlowFast R101-NL [7] 79.8 93.9 - -
ViViT-Base [2] 80.0 94.0 - -

Ours (Audio-only) 25.0 43.9 52.6 71.5
Ours (Visual-only) 79.4 94.0 80.7 94.9
MBT (AV) 80.8 94.6 85.0 96.8

Table 5: Comparison to state of the art on Kinetics [9] and Kinetics Sound [1]. We report top-1 and
top-5 classification accuracy. AV: Refers to audio-visual fusion. † Note the Kinetics-Sound test set
has reduced since this work as videos have been removed from YouTube, hence this is not a direct
comparison.

Dataset mini-Audioset Epic-Kitchens VGGSound Moments in Time Kinetics

Late Fusion 41.80 37.90 63.3 36.48 77.0
MBT 43.92 43.40 64.1 37.26 80.8

Table 6: MBT vs late Fusion for different datasets. For each dataset we report the widely used primary
metric, i.e. Audioset: mAP, Epic-Kitchens: Top-1 action accuracy, VGGSound, Moments in Time
and Kinetics: Top-1 classification accuracy.

substantial 3% mAP boost over Imagenet Initialisation. On VGGSound, AS500K pretraining gives
a more modest boost of 1.2% Top 1 Acc, while Kinetics pretraining does not help (expected as
VGGSound is a larger dataset).

Initialisation Checkpoint AS-mini VGGSound

ImageNet init. 43.3 64.1
VGGSound init. 46.6 N/A

K400 init. 44.0 64.0
AS-500K init. N/A 65.3

Table 7: Transfer learning on Audioset-mini and VGGSound.

F AS-500K details

The original unbalanced AudioSet training set consists of almost 2M samples, and is extremely
unbalanced with most samples either labelled as speech or music. To improve training efficiency,
we create a slightly more balanced subset called AudioSet-500K. The main issue is that AudioSet
is multilabel, and this makes balancing difficult. We create AS-500K by greedily restricting the
maximum number of samples per class to be 200K. Given the distribution of labels, this gives us a
total size of 508,994 samples. We provide the full histogram of labels in Fig. 5 (note the number of
samples is on a log10 scale).
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Figure 5: Class label histogram in the AudioSet-500K split.
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