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A APPENDIX

A.1 SUPPORTED TASKS

TASK1: ANNOTATION

(Definition & Metric) Annotation tasks aim to predict functional characteristics of proteins. These
tasks include predicting the subcellular localization of proteins (Cellular Component), their biochemi-
cal activities (Molecular Function), the broader biological processes they participate in (Biological
Process) Ashburner et al. (2000), and their classification number according to the chemical reactions
they catalyze (Enzyme Commission) Bairoch (2000). F1 Score is the primary metric.

(Impact) Accurate annotation facilitates the identification of protein roles in cellular contexts, aiding
in the discovery of novel drug targets and the elucidation of disease pathways.

TASK2: SOLUBILITY

(Definition & Metric) Solubility tasks evaluate a protein’s ability to remain soluble under physiologi-
cal conditions, which is a critical factor for successful protein expression and purification. PFMBench
includes datasets such as DeepSol Khurana et al. (2018), DeepSoluE Wang & Zou (2023), ProtSolM
Tan et al. (2024b), and eSOL Chen et al. (2021). The primary metrics are AUROC for DeepSoluE,
DeepSol, and ProtSolM, and Spearman correlation for eSOL.

(Impact) Predicting protein solubility is crucial for the successful expression and purification of
recombinant proteins, which are essential in drug development and industrial applications. Insoluble
proteins can lead to aggregation, reducing biological activity and complicating downstream processes.

TASK3: LOCALIZATION

(Definition & Metric) Localization tasks focus on predicting the specific subcellular compartments
where proteins are localized, which is crucial for understanding protein functions and interaction
networks. These tasks include DeepLoc Multi Almagro Armenteros et al. (2017), DeepLoc2 Multi
Thumuluri et al. (2022), DeepLoc Binary Almagro Armenteros et al. (2017), and Sorting Signal
Thumuluri et al. (2022). The evaluation metrics are Accuracy for DeepLoc Multi, F1 Score for
DeepLoc2 Multi and Sorting Signal, and AUROC for DeepLoc Binary.

(Impact) Accurate localization prediction aids in deciphering protein functions, interactions, and
cellular pathways, contributing to our understanding of cellular organization and dynamics.

TASK4: MUTATION

(Definition & Metric) Mutation tasks evaluate the impact of amino acid substitutions on protein
properties, which is pivotal in understanding disease mechanisms and guiding protein engineering.
PFMBench includes datasets such as PETA CHS Sol, PETA LGK Sol, PETA TEM Sol Tan et al.
(2024a), FLIP AAV, FLIP GB1 Dallago et al., TAPE Stability, TAPE Fluorescence Rao et al. (2019),
and β-lactamase activity Gray et al. (2018). The primary metric is Spearman correlation for all
datasets.

(Impact) Understanding the effects of mutations on protein function and stability is vital for elucidat-
ing disease mechanisms and guiding therapeutic interventions.

TASK5: INTERACTION

(Definition & Metric) Protein-protein and protein-ligand interactions are fundamental to cellular
processes and drug discovery. These tasks include datasets such as Human-PPI Pan et al. (2010),
Yeast-PPI Guo et al. (2008), PPI affinity Moal & Fernández-Recio (2012), PDBbind Liu et al. (2017),
BindingDB Liu et al. (2007), Metal Ion Binding Hu et al. (2022b), Peptide HLA MHC Affinity
Wu et al. (2023), and TCR PMHC Affinity Koyama et al. (2023). The evaluation metrics include
AUROC for Human-PPI, Yeast-PPI, Peptide HLA MHC Affinity, and TCR PMHC Affinity; Spearman
correlation for PPI affinity, PDBbind, and BindingDB; and Accuracy for Metal Ion Binding.
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(Impact) Accurate interaction prediction is crucial for understanding cellular signaling pathways,
protein complexes, and drug-target interactions, facilitating drug discovery and development.

TASK6: STRUCTURE

(Definition & Metric) Structure tasks focus on predicting the structural properties of proteins
based on their sequences, which is essential for understanding their function and stability. These
tasks include Contact prediction Yang et al. (2020), Fold classification Lo Conte et al. (2000), and
Secondary structure prediction Klausen et al. (2019). The evaluation metrics are Top L/5 for Contact
prediction, and Accuracy for both Fold classification and Secondary structure prediction.

(Impact) Accurate structure prediction enables the understanding of protein mechanisms, the design
of novel proteins, and the development of structure-based therapeutics.

TASK7: PRODUCTION

(Definition & Metric) Production tasks involve predicting properties that influence protein expression
and manufacturing, which are critical for biotechnological applications. Datasets include Optimal pH
Gado et al. (2023), DeepET Topt Li et al. (2022b), Cloning CLF, Material Production Wang et al.
(2014), Enzyme Catalytic Efficiency Li et al. (2022a), Antibiotic Resistance Hu et al. (2022b), and
Thermostability Jarzab et al. (2020). The evaluation metrics include Spearman correlation for Optimal
pH, Enzyme Catalytic Efficiency, and DeepET Topt; AUROC for Cloning CLF and Thermostability;
and Accuracy for Material Production and Antibiotic Resistance.

(Impact) Predicting factors that influence expression levels, stability, and yield can optimize produc-
tion processes, reducing costs and improving scalability.

TASK8: ZERO-SHOT

(Definition & Metric) Zero-shot tasks evaluate models’ generalization abilities to unseen data
without additional training. PFMBench incorporates the ProteinGym dataset Notin et al. (2023),
which assesses the robustness and adaptability of models in predicting mutation effects across diverse
proteins. Spearman correlation is the primary metric.

(Impact) Zero-shot learning is crucial for evaluating models’ generalization capabilities, reflecting
real-world scenarios where labeled data is scarce or unavailable.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed as assistive tools in the preparation of this work. In
particular, we used GPT-5 to support minor edits to academic writing, including drafting and refining
sections. All scientific claims, methodological contributions, and experimental results were entirely
conceived, implemented, and validated by the authors. The authors retain full responsibility for the
content of this paper.

B.1 MORE RESULTS

Table 7 summarizes core model performance across 28 tasks using 6-layer transformer adapters.
Sequence-only models performed similarly to ESM2, with no model significantly exceeding the
baseline. ProTrek, with contrastive pretraining, achieved the best performance, though potential label
leakage from overlapping functional annotation data remains a concern for function-aware models.

The detailed model rankings across different tasks are shown in Fig. 6, with tasks grouped by category.
Different models excel at different types of tasks, such as ProTrek for annotation, ESM2 for solubility,
and PGLM for interaction. The zero-shot results do not correlate with the supervised tuning results.
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Table 7: Adapter tuning performance of core models on core tasks.

Model ESM-2 VenusPLM ESM-C ProtGPT2 PGLM ProtT5 DPLM SaProt ProstT5 ProtST ESM3 ProTrek

PDBbind 0.14677 0.16536 0.14692 0.13503 0.16877 0.20105 0.13659 0.15549 0.18344 0.19514 0.15572 0.17322
BindingDB 0.13692 0.16834 0.20716 0.17169 0.16884 0.19730 0.17408 0.16557 0.16642 0.18886 0.22519 0.19230
M. I. Bin. 0.71170 0.70195 0.70195 0.71170 0.74513 0.72145 0.70056 0.76323 0.72145 0.51532 0.70334 0.80362
Stability 0.32112 0.33907 0.29976 0.14803 0.33127 0.18638 0.29440 0.24804 0.13032 0.06623 0.15650 0.04924
Anti. Res 0.63422 0.64602 0.67257 0.68437 0.67257 0.68732 0.68732 0.65782 0.69027 0.63422 0.58407 0.59292
TCR P. Aff. 0.93190 0.93784 0.93378 0.94002 0.94542 0.93983 0.92470 0.89967 0.93078 0.91649 0.86510 0.90497
Contact 0.71755 0.58946 0.72026 0.07141 0.63453 0.79012 0.71687 0.83507 0.82642 0.52120 0.76616 0.73618
Sec. Str. 0.76375 0.71637 0.76777 0.49371 0.72842 0.77978 0.75695 0.82389 0.81397 0.68468 0.81264 0.77363
FLIP AAV 0.93848 0.92354 0.93936 0.33732 0.87888 0.93825 0.94491 0.94822 0.93977 0.92250 0.92514 0.93999
Fluo. 0.68116 0.66353 0.65043 0.61042 0.66926 0.67662 0.67930 0.69642 0.68020 0.56488 0.66469 0.66987
Mat. Pro. 0.81189 0.82018 0.81009 0.76757 0.79495 0.80072 0.80144 0.81081 0.81622 0.69261 0.77514 0.81477
FLIP GB1 0.95306 0.94869 0.95772 0.86281 0.91945 0.95217 0.92162 0.95133 0.95408 0.82742 0.88144 0.94049
Fold Cls 0.77546 0.75460 0.73067 0.64724 0.77055 0.82761 0.79448 0.80552 0.82761 0.72577 0.72515 0.80613
GO BP 0.54411 0.54212 0.51338 0.48536 0.52669 0.55179 0.55989 0.53964 0.56237 0.53352 0.41313 0.61936
EC 0.73578 0.75194 0.71694 0.69687 0.74659 0.76201 0.75521 0.75144 0.76829 0.71761 0.64830 0.76408
GO MF 0.64062 0.66136 0.60517 0.58921 0.64860 0.65762 0.66604 0.65340 0.68076 0.62999 0.54672 0.71195
GO CC 0.61448 0.62054 0.61501 0.58498 0.61593 0.60873 0.62185 0.62047 0.60785 0.63078 0.52218 0.70202
DL Bin. 0.90619 0.91855 0.90482 0.90117 0.91495 0.90736 0.93305 0.92042 0.91657 0.94016 0.90032 0.94336
Sor. Sig. 0.87027 0.80974 0.85391 0.77861 0.81180 0.79012 0.83804 0.81408 0.82789 0.87278 0.79688 0.86161
DL Multi 0.75899 0.73502 0.76165 0.68442 0.72437 0.69907 0.78029 0.69241 0.73236 0.76698 0.62051 0.80826
DL2 Multi 0.76191 0.73814 0.75395 0.70341 0.74772 0.72624 0.75759 0.74006 0.73190 0.74886 0.65853 0.83944
Pep. H/M Aff. 0.96347 0.96616 0.96046 0.90498 0.96638 0.95677 0.96310 0.94768 0.95392 0.94323 0.93000 0.94650
Hum. PPI 0.85095 0.82147 0.83961 0.79784 0.87692 0.81359 0.85760 0.85100 0.79113 0.80034 0.72483 0.84690
Clo. CLF 0.80586 0.83172 0.81033 0.77730 0.83638 0.78485 0.81247 0.81206 0.79853 0.80714 0.77391 0.82612
Thermo. 0.95036 0.91701 0.94953 0.91401 0.94224 0.92826 0.93949 0.96930 0.91747 0.94393 0.87837 0.93172
DeepSol 0.84494 0.82775 0.84171 0.78883 0.82160 0.78741 0.82841 0.84364 0.81937 0.81951 0.78106 0.83427
DeepSoluE 0.77630 0.74926 0.76009 0.68645 0.75549 0.72004 0.74118 0.75492 0.74905 0.72849 0.67909 0.73090
ProtSolM 0.85874 0.84107 0.85452 0.79735 0.84894 0.80456 0.84847 0.85718 0.84728 0.79923 0.80773 0.83168
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Figure 6: Model rank on tasks.
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B.2 MUTUAL INFORMATION

Mutual Information Difference Metric. For a set of MSA sequences {x(0), x(1), x(2), x(3), · · · },
we compute the mutual information (MI) Tschannen et al.; Poole et al. (2019); McAllester & Stratos
(2020) between the target sequence x(0) and a query sequence x(i). When the two MSA sequences
differ in length, the mutual information is computed only over their aligned and overlapping regions.
The mutual information is defined as:

I(x(i);x(0)) =
∑
k∈I

log
p(x

(i)
k | x(0)

/k )

p(x
(i)
k )

,

where I represents the set of mask indices, p(x(i)
k | x(0)

/k ) denotes the conditional probability of the

k-th token in x(i) predicted by a PLM given the context of x(0)
/k , x(0)

/k indicates that the k-th residue

is masked, and p(x
(i)
k ) refers to the marginal probability when the input is fully masked. We use a

PLM to estimate pθ(x
(i)
k | x(0)

/k ) and compute the MI difference between different PLMs. Taking
ESM2-35M as the base model θ0, the MI difference for a new model θ1 is defined as:

I(x(i);x(0), θ1)− I(x(i);x(0), θ0) =
∑
k∈I

log
pθ1(x

(i)
k | x(0)

/k )

pθ0(x
(i)
k | x(0)

/k )
.

B.3 CRITERION FOR SELECTING CORE MODELS

We selected EC classification as our representative benchmark based on a systematic evaluation of
tasks with performance bias below 0.1%. As shown in Table 8, EC classification emerges as the
optimal choice for three compelling reasons:

Computational Efficiency: With only 13,090 training samples, EC classification has the smallest
dataset among all low-bias tasks, making it computationally accessible and efficient for evaluation.

Scientific Validity: EC classification is well-established in the AI-for-biology literature and has been
extensively validated in prior work (Fan et al., 2022; Zhang et al., b; Hu et al., 2024b;a; Hua et al.,
2024), ensuring robust baseline comparisons and meaningful scientific interpretation.

Performance Stability: The task exhibits extremely low performance bias (0.09%), making it a
stable and reliable benchmark for fair model comparison.

Table 8: Tasks with performance bias below 0.1%.

Task #Train Bias(%)

Human-PPI 30133 0.00
Secondary Structure 67007 0.00
Pept.HLA/MHC Aff 57357 0.00
Material Production 22196 0.00
TCR PMHC Affinity 19264 0.00
EC 13090 0.09

Table 9: Inclusive 85% threshold across tasks.

Model Yeast-PPI FoldPrediction Localization TCR–pMHC Affinity Antibody Resistance

ESM2 0.6307 0.7902 0.7683 0.8995 0.6254
ProGen2 0.52343 0.4724 0.5686 0.5232 0.5487
GearNet 0.51921 0.0200 0.5068 0.5240 0.4425
ProLLaMA 0.53137 0.4178 0.6059 0.7169 0.5428
ProCyon 0.57145 0.0900 0.5054 0.5000 0.3717

Inclusive Threshold: Our 85% performance threshold (relative to ESM-2) was strategically designed
to balance inclusivity with rigor. As demonstrated in Table 9, this threshold successfully captures all
candidate models across diverse tasks while maintaining meaningful performance differentiation.
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