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ABSTRACT

Deep learning based methods for image reconstruction are state-of-the-art for a
variety of imaging tasks. However, neural networks often perform worse if the
training data differs significantly from the data they are applied to. For example, a
network trained for accelerated magnetic resonance imaging (MRI) on one scan-
ner performs worse on another scanner. In this work, we investigate the impact of
the training data on the model’s performance and robustness for accelerated MRI.
We find that models trained on the combination of various data distributions, such
as those obtained from different MRI scanners and anatomies, exhibit robustness
equal or superior to models trained on the best single distribution for a specific
distributions shift. Thus training on diverse data tends to improve robustness.
Furthermore, training on diverse data does not compromise in-distribution perfor-
mance, i.e., a model trained on diverse data yields in-distribution performance at
least as good as models trained on the more narrow individual distributions. Our
results suggest that training a model for imaging on a variety of distributions tends
to yield a more effective and robust model than maintaining separate models for
individual distributions.

1 INTRODUCTION

Deep learning models trained end-to-end for image reconstruction are fast and accurate and outper-
form traditional image reconstruction methods for a variety of imaging tasks ranging from denoising
over super-resolution to accelerated MRI (Jin et al., 2017; [Liang et al.l [2021; |Dong et al.l 2014;
Muckley et al.,|2021). Imaging accuracy is typically measured as in-distribution performance: A
model trained on data from one source is applied to data from the same source.

However, in practice a neural network for imaging is typically applied to slightly different data than
it is trained on. For example, a neural network for accelerated magnetic resonance imaging trained
on data from one hospital is applied in a different hospital.

Neural networks for imaging often perform significantly worse under such distribution shifts. For
accelerated MRI, a network trained on knee images performs worse on brain images when compared
to the same network trained on brain images, and similar performance loss occurs for other natural
distribution shifts (Knoll et al., [2019; Johnson et al., 2021} Darestani et al., [2021)).

To date, much of research in deep learning for imaging has focused on developing better models and
algorithms to improve in-distribution performance. Nevertheless, recent literature on computer vi-
sion models, in particular multi-modal models, suggest that a model’s robustness is largely impacted
by the training data, and a key ingredient for robust models are large and diverse training sets (Fang
et al.,[2022; Nguyen et al., 2022; Gadre et al., 2023).

In this paper, we take a step towards a better understanding of the training data for learning robust
deep networks for accelerated magnetic resonance imaging (MRI).

First, we investigate whether deep networks for accelerated MRI compromise performance on in-
dividual distributions when trained on more than one distribution. We find for various pairs of
distributions (different anatomies, image contrasts, and magnetic fields), training a single model on
two distributions yields the same performance as training two individual models.
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Second, we demonstrate for a variety of distribution shifts (anatomy shift, image contrast shift,
and magnetic field shift) that the robustness of models, regardless of its architecture, is largely
determined by the training set and a diverse set enhances robustness towards distribution shifts.

Third, we consider a distribution shift from healthy to non-healthy subjects and find that models
trained on a diverse set of healthy subjects can accurately reconstruct images with pathologies even
if the model has never seen pathologies during training.

Fourth, we empirically find for a variety of distribution shifts that distributional overfitting occurs:
When training for long, in-distribution performance continues to improve slightly while out-of-
distribution performance sharply drops. A related observation was made by Wortsman et al.| (2022)
for fine-tuning of CLIP models. Therefore, early stopping can be helpful for training a robust model
as it can yield a model with almost optimal in-distribution performance without losing robustness.

Taken together, those four findings suggest that training a single model on a diverse set of data
distributions and incorporating early stopping yields a robust model. We test this hypothesis by
training a model on a large and diverse pool of data significantly larger than the fastMRI dataset,
the single largest dataset for accelerated MRI, and find that the network is significantly more robust
than a model trained on the fastMRI dataset, without compromising in-distribution performance.

Related Work. A variety of influential papers have shown that machine learning methods for
problems ranging from image classification to natural language processing perform worse under
distribution shifts (Recht et al.| 2019; Miller et al., 2020; |Taori et al., | 2020; [Hendrycks et al.| [2021).

With regards to accelerated MRI Johnson et al.| (2021) evaluate the out-of-distribution robustness
of the models submitted to the 2019 fastMRI challenge (Knoll et al., |2020), and find that they are
sensitive to distribution shifts. Furthermore, |Darestani et al.| (2021) demonstrate that reconstruction
methods for MRI, regardless of whether they are trained or only tuned on data, all exhibit similar
performance loss under distribution shifts. Both work do not propose robustness enhancing strate-
gies, such as training on a diverse dataset. Moreover, there are several works that characterise the
severity of specific distribution-shifts and propose transfer learning as a mitigation strategy (Knoll
et al., 2019; [Huang et al., [2022; Dar et al., |2020). Those works fine-tune on data from the test
distribution, whereas we study-out-of-distribution setup without access to the test distribution.

A potential solution to enhance robustness in accelerated MRI is offered by |Darestani et al.| (2022),
who introduce test-time training to narrow the performance gap on out-of-distribution data, albeit
with high computational costs. In the context of ultrasound imaging, Khun Jush et al.|(2023)) demon-
strate that diversifying simulated training data can improve robustness on real-world data. [Liu et al.
(2021)) propose a special network architecture to improve the performance of training on multiple
anatomies simultaneously. |(Ouyang et al.| (2023) proposes an approach that modifies natural images
for training MRI reconstruction models.

Shifting to computer vision, OpenAI’s CLIP model (Radford et al.|[2021) is remarkably robust under
distribution shifts. |[Fang et al.| (2022)) explore this finding and show that the key contributor to CLIP’s
robustness is the diversity training. However, Nguyen et al.|(2022) show that blindly combining data
can weaken robustness compared to training on the best individual data source.

These studies underscore the pivotal role of dataset design, particularly data diversity, for a model’s
performance and robustness. In light of concerns regarding the robustness of deep learning in med-
ical imaging, we explore the impact of data diversity on models trained for accelerated MRI.

2 SETUP AND BACKGROUND

Reconstruction task. We consider multi-coil accelerated MRI, where the goal is to reconstruct
a complex-valued, two-dimensional image x € C from the measurements of electromagnetic
signals obtained through C' receiver coils according to

yzzMFSZX+Z2€Cm7 i=1,...,C. @))
Here, x € CV is the image to be reconstructed, S; is the sensitivity map of the i-th coil, F' is the

2D discrete Fourier transform, M is an undersampling mask, and z; models additive white Gaussian
noise. The measurements y; are often called k-space measurements (see illustration in Appendix [A).
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Figure 1: Randomly selected example images for a selection of distributions from the fastMRI dataset (Zbontar
et al., [2019) we consider here. Axial view brain images are on the left, coronal view knee images are on the
right. The caption above an image describes the image contrast, and the caption below is the name of the MRI
scanner used.

Table 1: Fully-sampled k-space datasets used here. The percentages are the proportions of the data within a
dataset. Scans containing multiple echoes or averages are separated as such and counted as separate volumes.

Dataset Anatomy View Image contrast Vendor Magnet Coils  Vol./Subj. Slices
fastMRI knee (Zbontar et al.}[2019] knee coronal PD (50%), PDFS (50%) Siemens 1.5T (45%), 15 1.2k/1.2k 42k
3T (55%)
fastMRI brain (Zbontar et al.;2019] brain axial ~ TI (11%), TIPOST (21%),  Siemens  1.5T (43%), 4-20 6.4k/6.4k 100k
T2 (60%), FLAIR (8%) 3T (67%)
fastMRI prostate (Tibrewala et al.|2023) prostate axial T2 Siemens 3T 10-30 312/312 9.5k
M4Raw (Lyu et al.}2023) brain axial T1 (37%), T2 (37%), XGY 0.3T 4 1.4k/183 25k
FLAIR (26%)
SKM-TEA, 3D (Desai et al. 2021} knee  sagittal qDESS GE 3T 8,16 310/155 50k
Stanford 3D (Epperson/[2013] knee axial PDFS GE 3T 8 19/19 6k
Stanford 3D (Epperson/[2013] knee coronal PDFS GE 3T 8 19/19 6k
Stanford 3D (Epperson/[2013] knee sagittal PDFS GE 3T 8 19/19 4.8k
7T database, 3D (Caan/2022] brain axial MP2RAGE-ME Philips 7T 32 385/77 112k
7T database, 3D (Caan/2022] brain coronal MP2RAGE-ME Philips 7T 32 385/77 112k
7T database, 3D (Caan/[2022] brain sagittal MP2RAGE-ME Philips T 32 385/77 91k
CC-359, 3D (Souza et al./2018] brain axial GRE GE 3T 12 67/67 17k
CC-359, 3D (Souza et al.J2018] brain  coronal GRE GE 3T 12 67/67 14k
CC-359, 3D (Souza et al.J2018) brain  sagittal GRE GE 3T 12 67/67 11k
Stanford 2D (Cheng2018] various various various GE 3T 3-32 89/89 2k
NYU data (Hammernik et al.|2018] knee various PD (40%), PDFS (20%), Siemens 3T 15 100/20 3.5k
T2FS(40%)
M4Raw GRE (Lyu et al.}[2023] brain axial GRE XGY 0.3T 4 366/183 6.6k

In this work, we consider 4-fold accelerated (i.e., m = N/4) multi-coil 2D MRI reconstruction
with 1D Cartesian undersampling. The central k-space region is fully sampled including 8% of all
k-space lines, and the remaining lines are sampled equidistantly with a random offset from the start.
We choose 4-fold acceleration as going beyond 4-fold acceleration, radiologists tend to reject the
reconstructions by neural networks (Muckley et al.| 2021} |Radmanesh et al.| [2022)). Equidistant
sampling is chosen due to the ease of implementation on existing machines (Zbontar et al.,[2019).

Class of reconstruction methods. We focus on deep learning models trained end-to-end for ac-
celerated MRI, as this class of methods consistently deliver state-of-the-art performance in accu-
racy and speed (Hammernik et al., 2018} |Aggarwal et al., 2019; |Sriram et al., |2020; |[Fabian et al.,
2022). A neural network fg with parameters @ mapping a measurement y = {y1,...,yc} to
an image is most commonly trained to reconstruct an image from the measurements y by mini-
mizing the supervised loss £(0) = > loss(fe(y;),x;) over a training set consisting of target
image and corresponding measurements {(x1,y1), - -, (Xn, ¥»)}. This dataset is typically derived
from fully-sampled k-space data (i.e., data where the undersampling mask M is identity). From
the fully-sampled k-space data, a target image x is estimated, and retrospectively undersampled
measurements y are generated by applying the undersampling mask to the fully-sampled data.

Several choices of network architectures work well. A standard baseline is a U-net (Ronneberger
et al.,|2015)) trained to reconstruct the image from a coarse least-squares reconstruction of the mea-
surements (Zbontar et al.,[2019). A vision transformer for image reconstruction applied in the same
fashion as the U-net also works well (Lin & Heckel, 2022). The best-performing models are un-
rolled neural networks such as the variational network (Hammernik et al.,2018) and a deep cascade
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of convolutional neural networks (Schlemper et al., [2018)). The unrolled networks often use either
the U-net as backbone, like the end-to-end VarNet (Sriram et al., [2020), or a transformer based
architecture (Fabian et al.| [2022).

We expect our results in this paper to be model agnostic, as related works have demonstrated that
factors like robustness and changes in the training set affect a large variety of different model ar-
chitectures equally (Darestani & Heckel, 2021} [Miller et al., 2021). We show that this is indeed the
case for convolutional, transformer, and unrolled networks.

Datasets. We consider the datasets listed in Table[T} which are all fully-sampled MRI dataset with
varying attributes. The datasets include the largest publicly available fully-sampled MRI datasets.

Most of our experiments are based on splits of the fastMRI dataset (Zbontar et al., 2019), the most
commonly used dataset for MRI reconstruction research. Figure[T|depicts samples from the fastMRI
dataset and shows that MRI data varies significantly in appearance across different anatomies and
image contrasts (FLAIR, T1, PD, etc). The image distribution also varies across vendors and mag-
netic field strengths of scanners, as the strength of the magnet impacts the signal-to-noise ratio
(SNR), with stronger magnets leading to higher SNRs. The fastMRI dataset stands out for its di-
versity and size, making it particularly well-suited for exploring how different data distributions can
affect the performance of deep learning models for accelerated MRI. We exploit this fact for our ex-
periments in Section 3] 4] B} and[6]by splitting the fastMRI dataset according to different attributes of
the data. In Section[7} we showcase the generalizability of our findings by training models on all the
datasets listed in Table[I} excluding the last four rows, which are reserved for robustness evaluation.

3 TRAINING A SINGLE MODEL OR SEPARATE MODELS ON DIFFERENT
DISTRIBUTIONS

We start with studying whether training a model on data from a diverse set of distributions com-
promises the performance on the individual distributions. In its simplest instance, the question is
whether a model for image reconstruction trained on data from both distributions P and @) performs
as well on distributions P and () as a model trained on P and applied on P and a model trained on
@ and applied on Q.

In general, this depends on the distributions P and @, and on the estimator. For example, consider a
simple toy denoising problem, where the data from distribution P is generated as y = x + e, with
X is drawn i.i.d. from the unit sphere of a subspace, and e is drawn from a zero-mean Gaussian with
co-variance matrix opI. Data for distribution () is generated equally, but the noise is drawn from
a zero-mean distribution with different noise variance, i.e., e ~ N (0, o2 I) with 0'123 #* aé. Then
the optimal linear estimator learned from data drawn from both distribution P and @ is sub-optimal
for both distributions P and ). However, there exists a non-linear estimator that is as good as the
optimal linear estimator on distribution P and distribution Q.

In addition, conventional approaches to MRI such as ¢;-regularized least-squares need to be tuned
individually on different distributions to achieve best performance, as discussed in Appendix

Thus it is unclear whether it is preferable to train a neural network for MRI on diverse data from
many distributions or to train several networks and use them for each individual distribution. For
example, is it better to train a network specific for knees and another one for brains or to train a single
network on knees and brains together? Here, we find that training a network on several distributions
simultaneously does not compromise performance on the individual distribution relative to training
one model for each distribution.

Experiments for training a joint or separate models. We consider two distributions P and @,
and train VarNets (Sriram et al., 2020), U-nets (Ronneberger et al., | 2015)), and ViTs (Lin & Heckel,
2022)) on data Dp from distributions P and on data Dq from distribution () separately. We also
train a VarNet, U-net, and ViT on data from P and @), i.e., Dp U Dg. We then evaluate on separate
test sets from distribution P and (). We consider the VarNet because it is a state-of-the-art model
for accelerated MRI, and consider the U-net and ViT as popular baseline models to demonstrate that
our qualitative results are independent of the architecture. We consider the following choices of the
datasets Dp and D, which are subsets of the fastMRI dataset specified in Figure
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Figure 2: The and bars are the models (End-to-end VarNet) trained exclusively on data from

(Dp)and ) (17), respectively, and the teal bars are the models trained on both sets Dp U Dg,. As a reference
point, the black bars are the performance of models trained on random samples of Dp U Dg of half the
size. The number below each bar is the total number of training images. It can be seen that we are in the
high-data regime where increasing the dataset further gives minor improvements. For all distributions, the joint
model trained on P and @ performs as well on P and ) as the models trained individually for each of those
distributions.
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Figure 3: Training a single model on a skewed dataset does not harm performance on the individual data
distributions. The number below each bar is the number of training examples used. We report the mean + two
standard deviations from five runs, each with a different random seed for sampling training data from P and
model initialization. We note for training sets exceeding 3k images, there is next to no variation (see Figure[T4),
therefore we only have error bars for this experiment which includes training runs on small datasets.

e Anatomies. P are knees scans collected with 6 different combinations of image contrasts
and scanners and () are the brain scans collected with 10 different combinations of image
contrasts and scanners.

o Contrasts. We select P as PD-weighted knee images from 3 different scanners and () are
PDFS-weighted knee images from the same 3 scanners.

e Magnetic field. Here, we pick P to contain all 3.0T scanners and @) to contain all 1.5T
scanners regardless of anatomy or image contrast.

The results in Figure [2]for VarNet show that the models trained on both P and @) achieve essentially
the same performance on both P and () as the individual models. The model trained on both P + @
uses more examples than the model trained on P and @ individually. To rule out the possibility that
the joint model is only as good as the individual models since it is trained on more examples, we also
trained a model on P + @ with half the number of examples (obtained by randomly subsampling).
Again, the model performs essentially equally well as the other models. The results for Unet and
ViT are qualitatively the same as the results in Figure [2]for VarNet (see App. [E-I), and indicate that
our findings are independent of the architecture used.

Thus, separating datasets into data from individual distributions and training individual models does
not yield benefits, unlike for ¢;-regularized least squares or the toy-subspace example.

Experiments for training a joint or separate models on skewed data. Next, we consider skewed
data, i.e., the training set Dp is by a factor of about 10 smaller than the training set D¢. The choices
for distributions P and @ are as in the previous experiment. The results in Figure 3] show that even
for data skewed by a factor 10, the performance on distributions P and ) of models (here U-net)
trained on both distributions is comparable to the models trained on the individual distributions.
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Figure 4: For a given distribution-shift from distributions P = {Pi, ..., P} to distribution Q, we compare
robustness of models trained on P ( ) to baselines trained on the best single distribution Ppey (violet).
As additional reference, we also report models trained on both P and () to imitate ideally robust models (teal).
Training on the more diverse dataset P typically does not harm effective robustness compared to models trained
on Py, and is often even beneficial.

4 DATA DIVERSITY ENHANCES ROBUSTNESS TOWARDS DISTRIBUTION
SHIFTS

We now study how training on diverse data affects the out-of-distribution performance of a model.
We find that training a model on diverse data improves the models out-of-distribution performance.

Measuring robustness. Our goal is to measure the expected robustness gain by training models
on diverse data, and we would like this measure to be independent of the model itself that we
train on. We therefore measure robustness with the notion of effective robustness by [Taori et al.
(2020). We evaluate models on a standard ‘in-distribution’ test set (i.e., data from the same source
that generated the training data) and on an out-of-distribution test set. We then plot the out-of-
distribution performance of a variety of models as a function of the in-distribution performance, see
Figure [d] It can be seen that the in- and out-of-distribution performance of models trained on data
from one distribution, (e.g., in-distribution data violet) is well described by a linear fit. Thus, a
dataset yields more effective robustness if models trained on it lie above the violet line, since such
models have higher out-of-distribution performance for fixed in-distribution performance.

Experiment. We are given data from two distributions P and (), where distribution P can be split
up into m sub-distributions P, . . ., P,,,. We consider the following choices for the two distributions,
all based on the knee and brain fastMRI datasets illustrated in Figure

e Anatomy shift: P, ... P is knee data collected with 6 different combinations of image
contrasts and scanners, and () are the different brain datasets collected with 8 different com-
binations of image contrasts and scanners. To mitigate changes in the forward map (I)) on
this distribution shift, we excluded the brain data from the scanner Avanto as this data was
collected with significantly fewer coils compared to the data from the knee distributions.

e Contrast shift: Py, ..., P; are FLAIR, TIPOST, or T1-weighted brain images and () are
T2-weighted brain data.

e Magnetic field shift: P;,..., P; are brain and knee data collected with 1.5T scanners
(Aera, Avanto) regardless of image contrast and () are brain and knee data collected with
3T scanners (Skyra, Prisma, Biograph mMR) regardless of image contrast.

For each of the distributions P, ..., P,, we construct a training set with 2048 images and a test set
with 128 images. We then train U-nets on each of the distributions P, . .., I, separately and select
from these distributions the distribution P,y that maximizes the performance of the U-net on a test
set from the distribution Q).

Now, we train a variety of different model architectures including the U-net, End-to-End VarNet (Sri-
ram et al., [2020), and vision transformers (ViT) for image reconstruction (Lin & Heckel, [2022) on
data from the distribution P, data from the distribution P (which contains Py ), and data from
the distribution P and (). We also sample different models by early stopping and by decreasing the
training set size by four. We plot the performance of the models evaluated on the distribution ) as a
function of their performance evaluated on the distribution Ppes. Details are in Appendixand@}
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Figure 6: Reconstructions given by the Var-
Figure 5: Models trained on images without pathologies can Net of images containing a small-sized (top)
reconstruct pathologies as effectively as models trained on or a large-sized (bottom) pathology, when
images with pathologies. SSIM is calculated only for the trained on images without pathologies (P),
pathology region (A) for small pathologies (left) and for and on images without and with pathologies
large pathologies (right). P+ Q.

From the results in Figure [f] we see that the models are outperformed by the model
trained on P and () when evaluated on (), as expected, since a model trained on P and () is an
ideal robust baseline (as it contains data from Q). The difference of the trained on P and Q-line
and the trained on F-line is a measure of the severity of the distribution shift, as it indicates the
loss in performance when a model trained on Py is evaluated on (). Comparing the difference
between the line for the models and the line for models trained on Fes shows that
out-of-distribution performance is improved by training on a diverse dataset, even when compared
to the distribution P, Which is the most beneficial distribution for performance on Q.

5 RECONSTRUCTION OF PATHOLOGIES USING DATA FROM HEALTHY
SUBJECTS

In this section, we investigate the relevant distribution shift from healthy to non-healthy subjects.
Specifically, we investigate how well models reconstruct images containing a pathology if no
pathologies are contained in the training set. We find that models trained on fastMRI data with-
out pathologies reconstruct fastMRI data with pathologies equally well as the same models trained
on fastMRI data with pathologies.

Experiment. We rely on the fastMRI+ annotations (Zhao et al., 2022) to partition the fastMRI
brain dataset into disjoints sets of images with and without pathologies. The fastMRI+ annota-
tions (Zhao et al., 2022)) are annotations of the fastMRI knee and brain datasets for different types
of pathologies. We extract a set of volumes without pathologies by selecting all scans with the
fastMRI+ label “Normal for age”, and we select images with pathologies by taking all images with
slice-level annotations of a pathology. The training set contains 4.5k images without pathologies
(P) and 2.5k images with pathologies (Q)). We train U-nets, ViTs, and VarNets on P and on P + Q,
and sample different models by varying the training set size by factors of 2, 4 and 8, and by early
stopping. While the training set from distribution P does not contain images with pathologies, P is
a diverse distribution containing data from different scanners and with different image contrasts.

Figure[5]shows the performance of each model evaluated on @ as a function of its performance eval-
uated on P. Reconstructions are evaluated only on the region containing the pathology, where we
further distinguish between small pathologies that make up less than 1% of the total image size and
large pathologies that make more than 1% of the total image size. We see that the models

show essentially the same performance (SSIM) as models trained on P -+ () regardless of pathol-
ogy size. The results indicate that models trained on images without pathologies can reconstruct
pathologies as accurately as models trained on images with pathologies. This is further illustrated
in Figure [6] (and Figure[T7), where we show reconstructions given by the VarNet of images with a
pathology: the model recovers the pathology well even though no pathologies are in the training set.
Figure[I§]in the appendix provides a more nuanced evaluation of the SSIM values for VarNet.
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Figure 7: For a given distribution shift from distribution P to distribution ). The in- and out-of-distribution
performance is plotted as a function of training epochs (1, 5, 15, 30, 45, 60). At the start of training, out-
of-distribution performance increases together with in-distribution performance. Later on, out-of-distribution
performance start to drop while in-distribution performance continues to increase marginally.

6 DISTRIBUTIONAL OVERFITTING

We observed that when training for long, while in-distribution performance continues to improve
slightly, out-of-distribution performance can deteriorate. We refer to this as ‘distributional overfit-
ting’. Unlike ‘conventional’ overfitting, where a model’s in-distribution performance declines after
prolonged training, distributional overfitting involves a decline in out-of-distribution performance
while in-distribution performance continues to improve (slightly). A similar observation has been
made in the context of weight-space ensemble fine-tuning of CLIP (Wortsman et al., [2022)).

Figure [/] illustrates distributional overfitting on three distribution shifts. Each plot depicts the in
and out-of-distribution (P and @)) performance of an U-net as a function of trained epochs (1, 5,
15, 30, 45, 60). For example, in the left plot P is fastMRI T2-weighted brain data (fm brain,
T2) and @ is fastMRI knee data (fm knee). We observe as training progresses, the model initially
improves both in-distribution and out-of-distribution performance. However, after epoch 15, out-
of-distribution performance notably deteriorates, despite marginal improvements in in-distribution
performance. This pattern is consistent across distribution shifts from the fastMRI brain/knee dataset
to the M4Raw dataset and the fastMRI prostate dataset.

This finding indicates that early stopping, even before conventional overfitting sets in, can help to
improve model robustness with minimal impact on in-distribution performance.

7 ROBUST MODELS FOR ACCELERATED MRI

The results from the previous sections based on the fastMRI dataset suggest that training a single
model on a diverse dataset consisting of data from several data distributions is beneficial to out-of-
distribution performance without sacrificing in-distribution performance on individual distributions.
We now move beyond the fastMRI dataset and test whether this continues to hold on a large col-
lection of datasets. We train a single large model for 4-fold accelerated 2D MRI reconstruction on
the first 13 of the datasets in Table [T} which include the fastMRI brain and knee datasets, and use
the remaining four datasets for out-of-distribution evaluation. The resulting model, when compared
to models trained only on the fastMRI dataset, shows significant robustness improvements while
maintaining its performance on the fastMRI dataset.

Experiment. We train an U-net, ViT, and the End-to-end VarNet on the first 13 datasets in Tablem
We denote this collection of datasets by Dp. For the fastMRI knee and brain datasets, we exclude
the official fastMRI knee validation set, as the fastMRI knee test set is not publicly available, and
fastMRI brain test set from the training set. For the other datasets, we convert the data to follow
the convention of the fastMRI dataset and omit slices that contain pure noise. The total number
of training slices after the data preparation is 413k. For each model family, we also train a model
on fastMRI knee, and one on fastMRI brain as baselines. To mitigate the risk of distributional
overfitting, we early stop training when the improvement on the fastMRI knee dataset becomes
marginal. We refer to Appendix and D] for further details on the setup of this experiment.

We use the official fastMRI knee validation and fastMRI brain test set to measure in-distribution
performance. We measure out-of-distribution performance on the last four datasets in Table([T] i.e.,
CC-359 sagittal view, Stanford 2D, M4Raw GRE, and NYU data. These datasets constitute a dis-
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Figure 8: Training on a diverse collection of datasets improves robustness under distribution shifts. A model
trained on the diverse set of datasets Dp can significantly outperform models trained on fastMRI data when
evaluated on out-of-distribution data D¢, while maintaining the same performance on fastMRI data.

CC-359, sagittal view NYU dataset

* fm-brain

Stanford 2D

fm-knee fm-brain P Ground truth fm-knee N fm-brain P N Ground truth

Figure 9: Random selection of reconstructions for the out-of-distribution datasets given by the VarNet (top)
and U-net (bottom) trained on fastMRI knee (fm-knee), fastMRI brain (fm-brain), and collection of datasets
Dp. The model trained on Dp provides better details and fewer artifacts.

tribution shift relative to the training data with respect to vendors, anatomic views, anatomies, time-
frame of data collection, anatomical views, MRI sequences, contrasts and combinations thereof and
therefore enable a broad robustness evaluation. As a further reference point we also train models on
the out-of-distribution datasets to quantify the robustness gap.

The results in Figure|§| show that for all architectures considered, the model trained on the collection
of datasets, Dp significantly outperforms the models trained on fastMRI data when evaluated on
out-of-distribution data, without compromising performance on fastMRI data. For example, on the
CC-359 sagittal view dataset, the VarNet trained on Dp almost closes closes the distribution shift
performance gap (i.e., the gap to the model trained on the out-of-distribution data). This robustness
gain is illustrated in Figure [ with examples images: the out-of-distribution images reconstructed by
the model trained on the diverse dataset Dp have higher quality and fewer artifacts.

The results in this section reinforce our earlier findings, affirming that large and diverse MRI training
sets can significantly enhance robustness without compromising in-distribution performance.

8 CONCLUSION AND LIMITATIONS

While our research shows that diverse training sets significantly enhance robustness for deep learn-
ing models for accelerated MRI, training a model on a diverse dataset often doesn’t close the distri-
bution shift performance gap, i.e., the gap between the model and the same idealized model trained
on the out-of-distribution data (see Figure F_fl and EI) Nevertheless, as datasets grow in size and
diversity, training networks on larger and even more diverse data might progressively narrow the
distribution shift performance gap. However, in practice it might be difficult or expensive to collect
diverse and large datasets. Besides demonstrating the effect of diverse training data, our work shows
that care must be taken when training models for long as this can yield to a less robust model due
to distributional overfitting. This finding also emphasizes the importance of evaluating on out-of-
distribution data.
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REPRODUCIBILITY STATEMENT

All datasets used in this work are referenced and publicly available. A comprehensive description of
the data preparation process is provided in Appendix [C] while details pertaining to model training
can be found in Appendix D} For the implementation of our experiments, we heavily rely on the code
provided by the fastMRI GitHub repository https://github.com/facebookresearch/
fastMRI/tree/mainl Our code will be made available to the public.
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Figure 10: Illustration of the forward map for single-coil accelerated MRI. From left to right: The unknown
ground-truth image first goes through a 2D-DFT. The Fourier spectrum (k-space) is then undersampled accord-
ing to the acceleration factor by masking out frequency lines. Applying a 2D-IDFT to the masked k-space gives
a coarse reconstruction which is often used as an input to a deep neural network.
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A ILLUSTRATION OF THE FORWARD MAP FOR ACCELERATED MRI

Figure |'11i| illustrates the forward map @) for single-coil accelerated MRI, i.e., C = 1 and S is
identity. The unknown ground-truth image first goes through a 2D-DFT. The Fourier spectrum (k-
space) is then undersampled according to the acceleration factor by masking out frequency lines.
Applying a 2D-IDFT to the masked k-space gives a coarse reconstruction which is often used as an
input to a deep neural network such as the U-net.

B /;-REGULARIZED LEAST SQUARES REQUIRES DIFFERENT
HYPERPARAMETERS ON DIFFERENT DISTRIBUTIONS

The standard non-deep learning approach for accelerated MR1 is ¢ -regularized least-squares
2007). While ¢;-regularized least-squares is not considered data-driven, the regularization
hyperparameter it typically chosen in a data-driven manner. For different distributions like different
anatomies or contrasts, the regularization parameter takes on different values and thus the method
needs to be tuned separately for different distributions. This can be seen for example from Table 4

of [Zbontar et al|(2019).

To demonstrate this, we performed wavelet-based ¢;-regularized least-squares on the single-coil
knee version of the fastMRI dataset (Zbontar et all, 2019) using 100 images from distribution
P: PD Knee Skyra, 3.0T and 100 from distribution @): PDFS Knee Aera, 1.5T. Using a reg-
ularization weight A = 0.01 on distribution P gives a SSIM of 0.792, while A = 0.001
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yields subpar SSIM of 0.788. Contrary, on distribution @), A = 0.01 only yields 0.602, while
A = 0.001 yields SSIM 0.609. Thus, using the same model (i.e., the same regularization param-
eter for both distributions) is suboptimal for ¢;-regularized. least squares. We used the BART
https://mrirecon.github.io/bart/|for the implementation of this experiment.

C DATA PREPARATION

C.1 TRAINING SETS AND TEST SETS FOR EXPERIMENTS USING SUBSETS OF THE FASTMRI
KNEE OR BRAIN DATASET

For the experiments in Sections [3 ] [6] we construct training and test set as follows: For each of
the distributions in Figure[I] we randomly sample volumes from the fastMRI training set for training
and validation set for testing, such that the total number of slices amounts to around 2048 and
128, respectively. Training sets of combination of distributions are then constructed by aggregating
the training data from the individual distributions. For example, if we consider distribution P to
contain all the 6 knee distributions from Figure [I] then the corresponding training set has 6x2048
training images. Likewise, if we consider () for example to contain all T2-weighted brain images the
corresponding training set has 5x2048 training images. We note for Section |4} the models trained
on P and @ are in fact trained on all the 16 distributions from Figure [l This means that these
models are always trained on P and @), regardless of how we choose P and Q).

C.2 PREPARATION OF DATASETS THAT ARE NOT FASTMRI KNEE OR FASTMRI BRAIN

We convert all the dataset listed in Table[T]to follow the fastMRI convention, where the anatomies in
images are vertically flipped, targets are RSS reconstructions, and the k-space is oriented such that
the horizontal axis corresponds to the phase-encoding direction and the vertical axis corresponds to
the read-out direction.

If predefined train and test splits are not already provided with a dataset, we randomly select 85% of
the volumes as training set and the remaining volumes as test set. For 3D MRI volumes, we synthe-
size 2D k-spaces by taking the 1D IFFT in the 3D k-space along either X, y or z dimension to create
2D volumes of different anatomical views (axial, sagittal and coronal). However, for the SKM-TEA
dataset, we only consider the sagittal view. Depending on the dataset, the first and last 15-70 slices
of the synthesized 2D volumes are omitted as we mostly observe pure noise measurements:

o CC-359, sagittal view: First 15 and last 15 slices are omitted.

o CC-359, axial view: First 50 slices are omitted.

o CC-359, coronal view: First 25 and 15 slices are omitted.

e Stanford 3D, axial view: First 5 and last 5 slices are omitted.

e Stanford 3D, coronal view: First 40 and last 40 slices are omitted.
e Stanford 3D, sagittal view: First 30 and last 30 slices are omitted.
e 7T database, axial view: First 70 and last 70 slices are omitted.

e 7T database, coronal view: First 30 and last 30 slices are omitted.
e 7T database, sagittal view: First 30 and last 30 slices are omitted.

For the other datasets that are not mentioned above, all slices are used. Moreover, each of the
volumes of the SKM-TEA dataset originally contained two echos due to the qDESS sequence. We
separated the two echos and counted them as separate volumes.

fastMRI prostate T2. Originally, each volume of the fastMRI prostate T2 dataset contains three
averages (Tibrewala et al.|[2023)): two averages sampling the odd k-space lines and one average sam-
pling the even k-space lines. Then, for each average the authors estimate the missing k-space lines
with GRAPPA (Griswold et al.}|2002) and perform SENSE (Pruessmann et al., 1999) reconstruction.
The final ground truth image is then obtained by taking the mean across the three averages (see code
in author’s GitHub Repository). However, we convert the data as follows: we take the raw k-space
and average the two averages corresponding to the odd k-space lines and then fill the missing even
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Before brightness and contrast normalization After brightness and contrast normalization

VarNet, 0.909 SSIM U-net, SSIM VarNet, SSIM  U-net, 0.964 SSIM Ground-truth

Figure 11: A subtle mismatch in terms of brightness and contrast between reconstruction and ground-truth
can lead to a drastic loss in SSIM. Normalizing mean and variance of the reconstructions increases SSIM
(without affecting the content) can result in a more faithful ranking of models. Top row and bottom row depict
the same images, only differing in the color-map. All models were trained on the fastMRI knee dataset and
applied to an example from the Stanford 2D dataset. Without normalization, the VarNet reconstruction has a
slightly darker background compared to the other reconstructions (better seen in the bottom row). This leads
to significantly lower SSIM, which is also lower than the U-net reconstruction, even though more details are
recovered. After normalization, the VarNet obtains higher SSIM than the U-net which is consistent with the
qualitative assessment of the reconstructions.

Before size adjustment After size adjustment Ground Truth

Figure 12: Mitigation of the artificial distribution shift due to mismatch in image size between training and test
time. The End-to-end VarNet is trained on fastMRI knee dataset and applied to the Stanford 3D sagittal view
dataset.

k-space lines with the average corresponding to the even k-space lines. This k-space serves as our
raw k-space data. We then take this k-space data and apply a 2D-IFFT and finally perform a RSS
reconstruction and use this image as ground truth.

D MODELS, TRAINING, AND EVALUATION

We consider U-nets with 4 pooling layers and 32 channels in the first pooling layer. The implemen-
tation of the model is taken from the fastMRI GitHub repository. Our configuration of the vision
transformer (ViT) for image reconstruction is the same as ‘ViT-S’ from |Lin & Heckel| (2022)), and
the code is taken from the paper’s GitHub repository. For the model input, we first fill missing
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k-space values with zeros, then apply 2D-IFFT, followed by a root-sum-of-squares (RSS) recon-
structions to combine all the coil images into one single image, and lastly normalize it to zero-mean
and unit-variance. The mean and variance are added and multiplied back to the model output, re-
spectively. This is a standard prepossessing step, as can be seen in the code of fastMRI’s GitHub
repository. The models are trained end-to-end with the objective to maximize SSIM between output
and ground-truth.

Our configuration of the End-to-end VarNet (Sriram et al., 2020) contains 8 cascades, each contain-
ing an U-net with 4 pooling layers and 12 channels in the first pooling layer. The sensitivity-map
U-net has 4 pooling layers and 9 channels in the first pooling later. The code for the model is taken
from fastMRI’s GitHub repository.

For any model and any choice of distributions P or @), the model is trained for a total of 60 epochs
and use the Adam optimizer with §; = 0.9 and f2 = 0.999. The mini-batch size is set to 1.
We use linear learning-rate warm-up until a learning-rate of le-3 is reached and linearly decay the
learning rate to 4e-5. The warm up period amounts to 1% of the total number of gradient steps.
Gradients are clipped at a global ¢5-norm of 1. During training, we randomly sample a different
undersampling mask for each mini-batch independently. During evaluation, we generate for each
volume the undersampling mask randomly which is then fixed and used for all slices within the
volume.

The learning-rate for each model is tuned based on a grid search on the values
{0.0013,0.001,0.0007,0.0004} and training on a random subset (2k slices) of the fastMRI dataset.
We found negligible differences between learning rates 0.0013, 0.001, and 0.0007 when ensuring a
sufficient number of epochs, and therefore keep the learning rate to 0.001 for simplicity. We also did
the same grid search on fastMRI subsets for PD-weighted knee and PDFS-weighted knee and made
the same observation.

In Section [/ the U-net has 124M parameter with 4 pooling layers and 128 channels in the first
pooling layer. The maximal learning rate is set to 4e-4. The ViT has 127M parameters, where we
used a patch-size of 10, an embedding dimension of 1024, 16 attention heads, and a depth of 10.
The maximal learning rate is set to 2e-4. The VarNet is the same as described above. The learning-
rate scheduler, with the same hyperparameters as mentioned earlier, is set for 40 epochs but we
early stopped the models at epoch 24. The VarNet is trained for 40 epochs, as we use the same
configuration as in the earlier experiments and have observed that training longer than 40 epochs
gives marginal improvement. For U-net and ViT we use a mini-batch size of 8. For VarNet, we use
a mini-batch size of 4. Since slice dimensions can vary across different volumes, the images within
a mini-batch are chosen randomly from the same volume without replacement. Training was carried
out on two NVIDIA RTX A6000 GPUs. Training the U-net took 384 GPU hours, the ViT took 480
GPU hours, and the VarNet took 960 GPU hours.

D.1 OUT-OF-DISTRIBUTION EVALUATION

When evaluating our models from Section [/| on individual slices of the Stanford 2D dataset, we
observed an anomaly: the VarNet occasionally yielded lower SSIM scores than the U-net, despite
producing reconstructions of superior quality and accuracy. Upon investigation, we found that, under
distribution shifts, the models sometimes struggled to precisely capture the brightness and contrast of
an image. Even minor variations in these aspects can significantly impact the SSIM score. Given that
radiologists routinely adjust the brightness and contrast of MRI images during inspection through
a process known as ‘windowing’ (Ishida et al.l |1984), we normalize the model output and target to
have the same mean and variance during evaluation. This normalization reduces the SSIM score’s
sensitivity to variations in brightness and contrast, enabling it to better reflect structural differences,
see FigurdI 1| for an illustration. Although Figure [TT|primarily highlights the issue with VarNet, we
note that U-net and ViT are also equally affected. We applied this normalization across all models
in our evaluation in Section[7]

D.2 RESOLUTION MISMATCH WITH VARNET ON OUT-OF-DISTRIBUTION EVALUATION

While the U-net and ViT are trained on center-cropped zero-filled reconstructions, the VarNet is
trained on the entire k-space and therefore on the full-sized image, for example, the average im-
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Figure 13: The and bars are the ViT (Top) and U-net (Middle) trained exclusively on

data from 7 (Dp) and () (7)), respectively, and the teal bars are the models trained on both sets
Dp UDg. As areference point, the black bars are the performance of models trained on random
samples of Dp U Dq of half the size. The number below each bar is the total number of training
images. It can be seen that we are in the high-data regime where increasing the dataset further gives
minor improvements. For all distributions, the joint model trained on P and @ performs as well
on P and @ as the models trained individually for each of those distributions. Similar results can
observed when decreasing the size of the U-net by a factor of 10 (757k parameters, Bottom).
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Figure 14: Also for smaller sized datasets, a single model is better than separate models. We report
the mean =+ two standard deviations from five runs with the U-net, each with a different random
seed for sampling training data and model initialization. Note that when training on datasets with
more than 3k images, there is next to no variation.

age size of fastMRI knee dataset is 640 x 360. Now, for example, when training the VarNet on the
fastMRI knee dataset and evaluating it on the Stanford 3D dataset, which contains images of approx-
imately half the size, we additionally introduce an ‘artificial’ distribution-shift by having a mismatch
between image size during training and evaluation. To mitigate this artificial distribution-shift we
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Figure 15: Models trained only on images without patholo-
gies and models trained on images with pathologies have sim-
ilar global SSIM. Different models are sampled by varying the
training set size by factors of 2, 4 and 8, and by early stopping.

implement the following steps during inference: Given the undersampled k-space and mask, we first
repeat the undersampled k-space one time in an interleaved fashion in horizontal and another time
in vertical direction, and apply the same process to the undersampling mask. This input is fed to
the VarNet and the output is center-cropped to the original image size. As can be seen in Figure 12}
these processing steps heavily reduce artifacts. We apply this in Section[7]to the VarNets trained on
the fastMRI datasets when evaluated on the Stanford 2D, CC-359 sagittal view, and M4Raw GRE
dataset.

E ADDITIONAL RESULTS

E.1 SINGLE MODEL VS. SEPARATE MODEL FOR OTHER MODEL TYPES

In Section[3] we show that training a single VarNet on two distribution gives the same performance a
separate VarNet trained on the individual distributions. In Figure[I3] we see that this result holds true
also for the U-net and ViT. Figure [14]shows the same experiment for the U-net on smaller datasets.

E.2 ADDITIONAL EVALUATIONS OF MODELS TRAINED ON HEALTHY SUBJECTS

Figure [I8] presents the reconstruction performance evaluated for individual images in the test set,
focusing on small pathologies. The evaluation specifically targeted the pathology regions. Results
are provided for VarNet trained solely on images without pathologies (P) and VarNet trained on
images with and without pathologies (P + (). The results are presented for models where both
models exhibited similar mean SSIM values for test images without pathology (approximately 0.957
SSIM) and also similar SSIM values for test images with small pathologies (approximately 0.948
SSIM).

While both models demonstrate high reconstruction performance for the majority of samples, indi-
cated by high SSIM scores, a notable divergence can be observed in the low SSIM regime. In this
regime, where certain samples are generally difficult to reconstruct (as even the model trained on
P + @ struggles), the variance between the two models increases. This means that for certain sam-
ples, the model trained on P + @ outperforms significantly, whereas for other samples, the model
trained solely on P exhibits superior performance.

In Figure[T7]we provide more reconstruction examples for small pathologies, obtained by the models
from Section

Moreover, in Section[5} we evaluate the model locally on the pathology region and observe models
trained on image without pathologies perform the same as models trained on image with pathologies.
In Figure [T5] we show the results when SSIM is calculated across the entire image and not just for
the pathology region.
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Figure 16: Fine-tuning deteriorates robustness. The fine-tuned model Pg,, obtained by fine-tuning the model
trained on Dp, which we denote by P, on one of the distributions 1, @2, Q3 or (4, exhibits worse perfor-
mance than model P on out-of-distribution datasets.

E.3 FINETUNING DETERIORATES ROBUSTNESS

Our results show that training a model on a diverse dataset enhances its robustness towards natural
distribution-shifts. In this section we show that fine-tuning an already diversely trained model on a
new dataset reduces its overall robustness. For this experiment, we take the models from Section
that were trained on Dp and fine-tune them on one of the four out-of-distribution datasets Dg;. We
denote the model fine-tuned on Q; by Pq;. As depicted in Figure [T6] the fine-tuned model Pg;
exhibits improved performance on the specific data ();, as expected. However, it notably underper-
forms on all other datasets in comparison to the model trained on Dp (i.e., prior to fine-tuning).
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Trained on P on P+ Q Ground truth

Figure 17: Random selection of reconstructions of small pathologies, given by the VarNet when trained on
images without pathologies (P), and on images without and with pathologies (P + Q).
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Figure 18: Reconstruction performance for each small pathology reconstructed with a VarNet trained only on
data without pathologies (i.e., P) relative to the performance of a VarNet trained on data with and without
pathologies (P and @). The SSIM is measured only within the region containing the pathology. Results
are presented for the VarNet trained only on images without pathologies (P) and VarNet trained on images
without and with pathologies (P + (). The VarNet trained on P and the VarNet trained on P and Q) have
very similar mean SSIM (0.957) on test images without pathology and similar SSIM (0.948) on test image
with small pathologies. It can be seen that the majority of pathologies are reconstructed similarly well by both
models (in terms of SSIM); however, in the regime where SSIM is low for either models (i.e., a regime where
the patholgoies are inherently difficult to reconstruct) some images are reconstructed better by one model and
others are reconstructed better by the other model.
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