
SUPPLEMENTARY MATERIAL

In this section, we supply the theoretical justifications that
are missing from the main text.

§1. The regularization map is well defined for ⌧ 2 (0, 1):
The regularization problem can be written as

minimize
f2RN

kAf � bk22, A :=

p
1� ⌧L1/2
p
⌧⇤

�
, b :=


0p
⌧y

�
.

Its solutions f̄ are characterized by the normal equation
A⇤Af̄ = A⇤b, i.e., by

�
(1 � ⌧)L + ⌧⇤⇤⇤

�
f̄ = ⌧⇤⇤y. Note

that we always make the assumption ker(L) \ ker(⇤) = {0},
otherwise, fixing f0 2 K and e0 2 E with ⇤f0 + e0 = y,
the existence of h 2 RN \ {0} such that Lh = 0 and ⇤h = 0
implies that ft := f0+th 2 K, et := e0 2 E , and ⇤ft+et = y
for all t 2 R, yielding an infinite local (in turn global) worst-
case error for the recovery of Q = IN . This assumption
ensures that (1 � ⌧)L + ⌧⇤⇤⇤ is positive definite—hence
invertible—for any ⌧ 2 (0, 1), since
⌦�
(1� ⌧)L+ ⌧⇤⇤⇤

�
h, h

↵
= (1� ⌧)kL1/2hk22 + ⌧k⇤hk22 � 0

for all h 2 RN , with equality possible when and only when
h 2 ker(L) \ ker(⇤) = {0}. This shows that f̄ is unique and
given by f̄ =

�
(1 � ⌧)L + ⌧⇤⇤⇤

��1
(⌧⇤⇤y). Finally, if the

graph G is made of K connected components C1, . . . , CK ,
we observe that

ker(L) \ ker(⇤) =

(
h =

KX

k=1

ak1Ck , a 2 RK , h|V`
= 0

)

=

(
KX

k=1

ak1Ck , a 2 RK , ak = 0 when Ck \ V` 6= ;
)
,

so that ker(L) \ ker(⇤) = {0} if and only if Ck \ V` 6= ;
for all k = 1, . . . ,K, which means that at least one vertex is
observed in each connected component.

§2. The limiting case ⌧ ! 0: Writing f⌧ = �⌧ (y), if we
divide the objective function that f⌧ minimizes by ⌧ > 0, we
see that

f⌧ = argmin
f2RN

1� ⌧

⌧
kL1/2fk22 + k⇤f⌧ � yk22.

Intuitively, the limit f0 of f⌧ as ⌧ ! 0 should satisfy
L1/2f0 = 0, otherwise kL1/2f⌧k22 �  for some  > 0
when ⌧ is sufficiently small, and then

�
(1� ⌧)/⌧

�
kL1/2f⌧k22

blows up as ⌧ ! 0, preventing f⌧ to be a minimizer of the
divided objective function. It suggests—and this can be made
precise—that

f0 = argmin
f2RN

k⇤f � yk22 s.to L1/2f = 0.

The constraint L1/2f = 0 is equivalent to f taking the form
f =

PK
k=1 ak1Ck for some a 2 RK , where C1, . . . , CK

denote the connected components of the graph G. Under this
constraint, we then have

⇤f � y = f|V`
� y =

KX

k=1

�
ak1Ck\V` � yCk

�
,

and hence, since the summands have disjoint supports,

k⇤f�yk22 =
KX

k=1

kak1Ck\V` � yCkk22

=
KX

k=1

�
a2k|Ck \ V`|� 2akh1Ck\V` , yCki+ kyCkk22

�
.

This quantity is easily seen to attain its minimal value when
ak = h1Ck\V` , yCki/|Ck \ V`| for each k = 1, . . . ,K. All in
all, this signifies that the component of f0 on each Ck is equal
to the average of yCk—as announced, the case ⌧ ! 0 is not
very interesting!

§3. Proof of Lemma 2: To prove the inequality, consider
h 2 RN with kL1/2hk22  "2 and k⇤hk22  ⌘. Then define
f± = ±h 2 K and e± = ⌥⇤h 2 E , so that

gwceQ(�) � max
±

kQ(f±)��(⇤f± + e±)k2

= max
±

kQ(±h)��(0)k2

� 1

2
kQ(h)��(0)k2 +

1

2
kQ(�h)��(0)k2

� 1

2
k(Q(h)��(0))� (Q(�h)��(0))k2

=
1

2
k2Q(h)k2 = kQ(h)k2.

In remains to take the supremum over admissible h to obtain
the announced lower bound.

Next, the transformation of the lower bound for the global
worst-case error relies on a case of validity of the S-procedure
due to Polyak, see Polyak [1998]. We start by writing this
(squared) lower bound as

inf
�2R

� s.to kQ(h)k22  � whenever kL1/2hk22  "2, k⇤hk22  ⌘2.

Using the S-procedure of Polyak, the above constraint is
equivalent to the existence of c, d � 0 such that, for all
h 2 RN ,

kQ(h)k22 � �  c(kL1/2hk22 � "2) + d(k⇤hk22 � ⌘2), (5)

under the proviso that there exist eh 2 RN and ↵,� 2 R such
that kL1/2ehk22 < "2, k⇤ehk22 < ⌘2, and ↵L+ �⇤⇤⇤ � 0. This
proviso is met by taking eh = 0 and (↵,�) = (1 � ⌧, ⌧) for
any ⌧ 2 (0, 1), see §1 above. Now, the constraint (5) can be
written as

h(cL+ d⇤⇤⇤�Q⇤Q)h, hi+ � � c"2 � d⌘2 � 0

for all h 2 RN , which in fact decouples as the two constraints
cL + d⇤⇤⇤ � Q⇤Q ⌫ 0 and � � c"2 � d⌘2 � 0. Under the
latter constraint, the minimal value of � is c"2 + d⌘2 and we
arrive at the desired expression.



§4. Proof of Lemma 3: The two additional lemmas below
are needed.

Lemma 5. If A,B,C are square matrices of similar size and
if C ⌫ 0, then


A 0
0 B

�
⌫

A� C C
C B � C

�
.

Proof. To prove that the difference of these two matrices is
positive semidefinite, we simply write, for any vectors x, y,
⌧

C �C
�C C

� 
x
y

�
,


x
y

��

= hCx, xi � hCy, xi � hCx, yi+ hCy, yi
= hC1/2x,C1/2xi � 2hC1/2x,C1/2yi+ hC1/2y, C1/2yi
= kC1/2x� C1/2yk22,

which is obviously nonnegative.

Lemma 6. If A and B are positive semidefinite matrices of
similar size such that A + B � 0, then C := A(A + B)�1B
is positive semidefinite.

Proof. Writing C as C = A(A + B)�1(A + B � A), i.e.,
C = A � A(A + B)�1A, shows that C is self-adjoint and
reveals that we in fact have to prove that A(A+B)�1A � A.
To see why this is so, we start from A � A + B, so that
M := (A + B)�1/2A(A + B)�1/2 satisfies M � I . This
implies that M2 � M , which reads

(A+B)�1/2A(A+B)�1A(A+B)�1/2� (A+B)�1/2A(A+B)�1/2.

Multiplying on the left and on the right by (A+B)1/2 yields
the desired result.

Focusing now on the proof of Lemma 3, let us consider
c, d � 0 such that

cL+ d⇤⇤⇤ ⌫ Q⇤Q (6)

and let us set ⌧ = d/(c+ d). From (3), we notice that

�⌧⇤ = (cL+ d⇤⇤⇤)�1d⇤⇤⇤,

I ��⌧⇤ = (cL+ d⇤⇤⇤)�1cL.

Multiplying (6) on the right by
⇥
I ��⌧⇤ �⌧⇤

⇤
, which

equals (cL + d⇤⇤⇤)�1
⇥
cL d⇤⇤⇤

⇤
, and on the left by its

adjoint, we arrive at


cL
d⇤⇤⇤

�
(cL+ d⇤⇤⇤)�1

⇥
cL d⇤⇤⇤

⇤

⌫

(I ��⌧⇤)⇤

(�⌧⇤)⇤

�
Q⇤Q

⇥
I ��⌧⇤ �⌧⇤

⇤
. (7)

First, we claim that the left-hand side of (7) takes the form
A� C C
C B � C

�
with A = cL and B = d⇤⇤⇤. To see

this, it suffices to observe, e.g., that A = cL is indeed the sum
of its upper two blocks, which is clear since these blocks are
cL(cL + d⇤⇤⇤)�1cL and cL(cL + d⇤⇤⇤)�1d⇤⇤⇤. Second,
we claim that C can be written as C = A(A+B)�1B, which
is also clear—the relation C = cL(cL + d⇤⇤⇤)�1d⇤⇤⇤ was

just pointed out. Therefore, according to our two additional
lemmas, the left-hand side of (7) does not exceed, in the

positive semidefinite sense,

cL 0
0 d⇤⇤⇤

�
. At this point, we

have shown that

(I ��⌧⇤)⇤

(�⌧⇤)⇤

�
Q⇤Q

⇥
I ��⌧⇤ �⌧⇤

⇤
�

cL 0
0 d⇤⇤⇤

�
,

which is equivalent to

kQ(I ��⌧⇤)f +Q(�⌧⇤)gk22  ckL1/2fk22 + dk⇤gk22
for all f, g 2 RN . The observation map ⇤ is obviously
surjective in the present situation2, so that any e 2 Rn` can be
written as e = ⇤g for some g 2 RN . From here, the desired
result follows.

§5. Near optimality under mild overstimation of " and ⌘:

According to Theorem 1 (and its proof) and using the same
notation, we have

inf
�:Rn`!Rn

gwceQ(�)2 = c["
2 + d[⌘

2

while c[L + d[⇤
⇤⇤ ⌫ Q⇤Q. Now suppose that " and ⌘ are

not exactly known but overestimated by "̄ and ⌘̄. Solving the
semidefinite program (4) with "̄ and ⌘̄ provides a parameter
⌧̄ = d̄/(c̄+ d̄) such that

sup
kL1/2fk2"̄

kek2⌘̄

kQ(f)�Q ��⌧̄ (⇤f + e)k22

= min
�
c"̄2 + d⌘̄2 : cL+ d⇤⇤⇤ ⌫ Q⇤Q

 
.

Since "̄ � " and ⌘̄ � ⌘, we deduce in particular that

sup
kL1/2fk2"

kek2⌘

kQ(f)�Q ��⌧̄ (⇤f + e)k22  c["̄
2 + d[⌘̄

2.

Under the mild overestimations "̄  C" and ⌘̄  C⌘, this
implies that

gwceQ(Q ��⌧̄ )
2  C2

⇥
c["

2 + d[⌘
2
⇤

= C2 inf
�:Rn`!Rn

gwceQ(�)2,

proving that the recovery map Q��⌧̄ is globally near optimal.

§6. No SDPs to optimal estimate a linear functional: If
Q = hq, ·i : RN ! R is a linear functional, then solving
the semidefinite program (4) and composing the resulting
regularization map �⌧[ with Q to obtain a globally optimal
recovery map is quite wasteful. In such a situation, a globally
optimal recovery map can be more directly obtained as ha[, ·i,
where a[ 2 Rn` is a solution to

minimize
a2Rn`

"
sup

kL1/2fk2"

|hq � ⇤⇤a, fi| ⇥ "+ kak2 ⇥ ⌘

#
. (8)

2In general, it is always assumed that ⇤ : RN ! Rm is surjective, as it
does not make sense to collect an observation that can be deduced from the
others.



This laborious-looking optimization program can be turned
into a more manageable one. For instance, if the graph G has
connected components C1, . . . , CK , then the eigenvalues of L
are 0 = �1 = · · · = �K < �K+1  · · ·  �N . Denoting
by (v1, . . . , vN ) an orthonormal basis associated with these
eigenvalues (so that vk = 1Ck/

p
|Ck|, k = 1, . . . ,K), the

problem (8) reduces to

minimize
a2Rn`

"
NX

k=K+1

hq � ⇤⇤a, vki2

�k

#1/2

⇥ "+ kak2 ⇥ ⌘

s.to hq � ⇤⇤a, vki = 0, k = 1, . . . ,K.

Note that the vector ⇤⇤a 2 RN appearing above is just the
vector a 2 Rn` padded with zeros on the unlabeled vertices.

§7. A graph whose Laplacian is a scaled orthogonal

projector: Suppose that G is an unweighted graph (so that
wi,j 2 {0, 1} for all i, j = 1, . . . , N ) made of connected
components C1, . . . , CK which are all complete graphs on an
equal number n of vertices. The adjacency matrix Wk and
graph Laplacian Lk of each Ck are

Wk =

2

6666664

0 1 1 · · · 1
1 0 1 · · · 1

1 1 0
. . .

...
...

...
. . . . . . 1

1 1 · · · 1 0

3

7777775
,

Lk =

2

6666664

n� 1 �1 �1 · · · �1
�1 n� 1 �1 · · · �1

�1 �1 n� 1
. . .

...
...

...
. . . . . . �1

�1 �1 · · · �1 n� 1

3

7777775
.

Note that Lk has eigenvalue 0 of multiplicity 1 and eigen-
value n of multiplicity n � 1. Therefore, the whole graph
Laplacian

L =

2

66664

L1 0 · · · 0

0 L2
. . .

...
...

. . . . . . 0
0 · · · 0 LK

3

77775

has eigenvalue 0 of multiplicity K and eigenvalue n of
multiplicity (n � 1)K. This means that the renormalized
Laplacian (1/n)L is an orthogonal projector.

§8. Proof of Theorem 4: The argument is divided into
three parts, namely:
a) there is a parameter ⌧\ 2 (0, 1) yielding

kL1/2�⌧\(y)k2 =
"

⌘
k⇤�⌧\(y)� yk2, (9)

and the corresponding reguralizer �⌧\(y) is a solution to

minimize
f2RN

max
n
kL1/2fk22,

"2

⌘2
k⇤f � yk22

o
; (10)

b) the optimization program (10) admits a unique solution f\
(hence equal to �⌧\(y));
c) the solution f\ to (10) does provide a near optimal local
worst-case error.

Justification of a). For any ⌧ 2 [0, 1], let f⌧ denote �⌧ (y).
Recalling that f0 and f1 are interpreted as

f0 = argmin
f2RN

k⇤f � yk2 s.to L1/2f = 0,

f1 = argmin
f2RN

kL1/2fk2 s.to ⇤f = y.

we have

kL1/2f0k2 �
"

⌘
k⇤f0 � yk2 = � "

⌘
k⇤f0 � yk2 < 0,

kL1/2f1k2 �
"

⌘
k⇤f1 � yk2 = kL1/2f1k2 > 0.

The continuity of ⌧ 7! f⌧ = ((1 � ⌧)L + ⌧⇤⇤⇤)�1(⌧⇤⇤y)
guarantees that there exists some ⌧\ 2 (0, 1) satisfying
kL1/2f⌧\k2 � ("/⌘)k⇤f⌧\ � yk2 = 0, as announced in (9).
We additionally point out that this ⌧\ is unique, which is
a consequence of the facts that ⌧ 7! kL1/2f⌧k2 is strictly
increasing and that ⌧ 7! k⇤f⌧ � yk2 is strictly decreasing. To
see the former, say, recall that f⌧ is the unique minimizer of
((1� ⌧)/⌧)kL1/2fk22 + k⇤f � yk22. Therefore, given � < ⌧ ,

✓
1

�
� 1

◆
kL1/2f�k22 + k⇤f� � yk22

<

✓
1

�
� 1

◆
kL1/2f⌧k22 + k⇤f⌧ � yk22

=

✓
1

⌧
� 1

◆
kL1/2f⌧k22 + k⇤f⌧ � yk22

+

✓
1

�
� 1

⌧

◆
kL1/2f⌧k22

<

✓
1

⌧
� 1

◆
kL1/2f�k22 + k⇤f� � yk22

+

✓
1

�
� 1

⌧

◆
kL1/2f⌧k22.

Rearranging this inequality reads
✓
1

�
� 1

⌧

◆
kL1/2f�k22 <

✓
1

�
� 1

⌧

◆
kL1/2f⌧k22,

i.e., kL1/2f�k2 < kL1/2f⌧k2, as expected. To finish, we now
need to show that f⌧\ is a solution to (10). To this end, we
remark on the one hand that the objective function of (10)
evaluated at f⌧\ is

max

⇢
kL1/2f⌧\k22,

"2

⌘2
k⇤f⌧\ � yk22

�
= �2,

where � is the common value of both terms in (9). On the
other hand,

setting ⌧ 0\ =
(⌘2/"2)⌧\

1� ⌧\ + (⌘2/"2)⌧\
2 [0, 1],

so that 1� ⌧ 0\ =
1� ⌧\

1� ⌧\ + (⌘2/"2)⌧\
2 [0, 1],



the objective function of (10) evaluated at any f 2 RN satisfies

max

⇢
kL1/2fk22,

"2

⌘2
k⇤f � yk22

�

� (1� ⌧ 0
\)kL1/2fk22 + ⌧ 0

\
"2

⌘2
k⇤f � yk22

=
1

1� ⌧\ + (⌘2/"2)⌧\

⇣
(1� ⌧\)kL1/2fk22 + ⌧\k⇤f � yk22

⌘

� 1
1� ⌧\ + (⌘2/"2)⌧\

⇣
(1� ⌧\)kL1/2f⌧\k

2
2 + ⌧\k⇤f⌧\ � yk22

⌘

=
1

1� ⌧\ + (⌘2/"2)⌧\

�
(1� ⌧\)�

2 + ⌧\(⌘
2/"2)�2� = �2.

This justifies that f⌧\ is a solution to (10).
Justification of b). Here, we aim at showing that (10) admits

a unique minimizer. Let bf and µ2 denote a minimizer and the
minimal value of (10), respectively. We first claim that

kL1/2 bfk2 =
"

⌘
k⇤ bf � yk2 = µ. (11)

Indeed, suppose e.g. that kL1/2 bfk2 < ("/⌘)k⇤ bf � yk2 = µ.
Pick an h 2 RN such that h⇤ bf�y,⇤hi 6= 0 (which exists, for
otherwise ⇤⇤(⇤ bf�y) = 0, hence ⇤ bf�y = ⇤⇤⇤(⇤ bf�y) = 0,
and so µ = 0, in which case kL1/2 bfk2 < µ cannot occur).
Then, considering bft := bf+th for a small enough t in absolute
value, we see that

"

⌘
k⇤ bft � yk2 =

"

⌘

⇣
k⇤ bf � yk2 + th⇤ bf � y,⇤hi+ o(t)

⌘

can be made smaller that µ, while kL1/2 bftk2 can remain
smaller than µ. This contradicts the defining property of bf
and establishes (11).

Now let bf and ef be two minimizers of (10). Applying (11)
to bf , ef , and ( bf + ef)/2, which is also a minimizer of (10),
yields

����
1
2
L1/2 bf +

1
2
L1/2 ef

����
2

=
��L1/2 bf

��
2
=

��L1/2 ef
��
2
= µ,

����
1
2
⇤( ef � y) +

1
2
⇤( bf � y)

����
2

=
��⇤ bf � y

��
2
=

��⇤ ef � y
��
2
=

⌘
"
µ,

which forces L1/2 bf = L1/2 ef and ⇤ bf = ⇤ ef , implying that
i.e. bf � ef 2 ker(L1/2) \ ker(⇤) = ker(L) \ ker(⇤) = {0},
i.e., that bf = ef is a unique minimizer.

Justification of c). Since the original signal f 2 RN that we
try to recover satisfies kL1/2fk2  " and k⇤f � yk2  ⌘, it
is clear that the minimizer bf of (10) satisfies kL1/2 bfk2  "
and k⇤ bf � yk2  ⌘, too. In other words, it is model- and
data-consistent, which always leads to near optimality of the
local worst case error with a factor 2. Indeed, considering the
set {Q(f) : f 2 K, e 2 E , ⇤f + e = y}, let f? denote its
Chebyshev center (in our situation, it exists and is unique,
see Garkavi [1962]). Then, for any f 2 K and e 2 E with
⇤f + e = y, we have

kQ(f)�Q( bf)k2  kQ(f)�Q(f?)k2 + kQ( bf)�Q(f?)k2
 lwceQ(y, f

?) + lwceQ(y, f
?)

= 2 inf
z2RN

lwceQ(y, z).

Taking the supremun over the admissable f 2 K and e 2 E
gives lwceQ(y, bf)  2 infz2RN lwceQ(y, z), as desired.

§9. Implementation details and additional experiments:

We consider the following well-known graph datasets: adjnoun
(112 nodes, 425 edges) [Newman, 2006], Netscience (379
nodes, 914 edges) [Girvan and Newman, 2002], polbooks (105
nodes, 441 edges) [Krebs], lesmis (77 nodes, 254 edges) [],
and dolphins (62 nodes, 159 edges) [Lusseau et al., 2003].
All of these can be downloaded from the Suitesparse Matrix
Collection [Davis and Hu, 2011]. When generating synthetic
signals, we follow an approach similar to Equation (15)
in [Dong et al., 2019]. Let L = �D�T be an eigendecom-
position of the graph Laplacian, let D† be the pseudoinverse
of D, and let c ⇠ N (0, D†) be a Gaussian vector. The ground
truth labels are then given by f = �c. The main difference
with [Dong et al., 2019] is that f is not assumed to be
corrupted simply by Gaussian noise, but we consider different
additive noise vectors satisfying kek2  ⌘. In the main text, the
plots were shown for a noise vector that is generated by taking
a uniform random noise vector and subtracting the mean, and
before scaling to ensure that kek2  ⌘. Here, to illustrate
results of a more deterministic flavor, we show results for noise
of magnitude proportional to the node degree (Figure 4) and
to the inverse degree (Figure 5).

Keeping the same parameters as those used in the main
text, we test several optimal recovery methods on different
graphs and with different error models. Figures 3-5 support
our conclusions that a mild overestimation of ⌘ does not
lead to bad prediction error and that the prediction errors
attached to the locally/globally optimal recovery maps are
close to the smallest prediction error possible for any choice
of regularization parameter. This confirms that these methods
provide a suitable way to choose regularization parameters.

It is worth pointing out that the globally optimal recovery
map is linear since the regularization parameter does not
depend on the observation vector y. In contrast, the locally
near optimal recovery map is nonlinear since the unique
parameter ⌧\ satisfying

kL1/2�⌧ (y)k2 =
"

⌘
k⇤�⌧ (y)� yk2

does depend on the observation vector y. When implementing
globally optimal recovery maps, we compute the globally
optimal regularization parameter ⌧[ for each n` once and make
a prediction when receiving different observation vectors y.
For locally optimal recovery maps, we have to recompute
the locally near optimal parameter ⌧\ when receiving new
observation vectors y. Therefore, it is recommended to opt
for the globally optimal recovery map in order to reduce
computational complexity, see e.g. Figures 3(a), 4(a), and 5(a)
where the locally near optimal recovery map is not executed.
However, dealing with large graphs may result in semidefinite
programs that cannot be run, so it can be better to implement
the locally near optimal recovery map by using the bisection
method to find the near optimal parameter ⌧\.
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Fig. 3. Prediction errors vs. number of labeled nodes on two different graphs
with additive noise generated uniformly: (a) Netscience (b) lesmis.

5 25 45 65 85 105 125 145 165 185

Number of labeled nodes

1.5

2

2.5

3

3.5

4

4.5

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error vs. number of labeled nodes

Naive baseline ( =0)
Global OR (true )
Global OR (overestimated )
Best regularization

(a)

5 10 15 20 25 30 35 40 45 50

Number of labeled nodes

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error vs. number of labeled nodes

Naive baseline ( =0)
Global OR (true )
Global OR (overestimated )
Local OR (true )
Local OR (overestimated )
Best regularization

(b)

Fig. 4. Prediction errors vs. number of labeled nodes on two different graphs
with additive noise proportional to degree: (a) Netscience (b) polbooks.
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Fig. 5. Prediction errors vs. number of labeled nodes on two different graphs
with additive noise proportional to the inverse of degree: (a) Netscience
(b) dolphins.

§10. Numerical computation of the upper bound: Given
y 2 Rn` , the square of the local worst-case error lwceQ(y, z)
for the estimation of Q by z 2 Rn is

sup
f2RN

kQ(f)� zk22 s.to kL1/2fk22  ✏2, k⇤f � yk22  ⌘2.

Introducing a slack variable �, we write the above optimization
program as

inf
�

� s.to kQ(f)� zk22  �

whenever kL1/2fk22  ✏2, k⇤f � yk22  ⌘2.

The constraint is a consequence of (but is not equivalent to)
the existence of c, d � 0 such that

kQ(f)� zk22 � �  c(kL1/2fk22 � ✏2) + d(k⇤f � yk22 � ⌘2)

for all f 2 RN . The latter can be also reformulated as the
condition that, for all f 2 RN ,

h(cL+ d⇤⇤⇤�Q⇤Q)f, fi � 2 hQ⇤z � ⇤⇤y, fi
+ � � kzk22 � c✏2 + d(kyk22 � ⌘2) � 0,

or, more succinctly, that

cL+ d⇤⇤⇤�Q⇤Q Q⇤z � d⇤⇤y
(Q⇤z � d⇤⇤y)⇤ � � kzk22 � c✏2 + d(kyk22 � ⌘2)

�
⌫ 0. (12)

We conclude from the above considerations that the squared
local worst-case error is upper-bounded by the optimal value
of a semidefinite program, namely

lwceQ(y, z)
2  inf

�
c,d�0

� s.to (12).


