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A EXPERIMENTAL DETAILS

We used Trieste (Berkeley et al., 2022), Tensorflow (Abadi et al., 2015), and GPFLow (Matthews
et al., 2017) to build our work and perform comparisons using MushroomRL (D’Eramo et al., 2021),
MultiagentMuJoCo (de Witt et al., 2020), OpenAI Gym (Brockman et al., 2016), and Multi-agent
Particle environment (Lowe et al., 2017). When comparing with related work, we used neural network
policies of equivalent size. All of our tested policies are < 500 parameters, however the XL models
are constructed using 3 layers of 400 neurons each.

To estimate the Hessian, we used the Hessian-Vector product approximation. We relaxed the discrete
portions of our metamodel policy into differentiable continuous approximation for this phase using the
Sinkhorn-Knopp algorithm for the Role Assignment phase. For role interaction network connectivity,
we used a sigmoid to create differentiable “soft” edges between each role. We pragmatically kept
all detected edges in the Hessian while maintaining computational feasibility. We observed that our
approach could support up to 1500 edges in the dependency graph prior to experiencing computational
intractability. We used the Matern- 52 as the base kernel in all our models.

A.1 ABLATION AND INVESTIGATION

In the ablation, we perform experiments on MultiagentMuJoCo with environments Multiagent
Ant with 6 segments, Multiagent Swimmer with 6 segments, Predator Prey with 3 predators, and
Heterogeneous Predator Prey with 3 predators. In the Predator Prey environment, multiple predators
must work together to capture faster and more agile prey. In Heterogeneous Predator Prey, each
Predator has differing capabilities of speed and acceleration. This modification is challenging as
a policy must not only coordinate between the Predators, but roles based specialization must be
considered given the heterogeneous nature of each predator’s capabilities.

To generate Fig. 7, we examined policy for Multiagent Ant with 6 agents for the role based policy
specialization. The policy modulation plots were generated by examining the PredPrey and Het.
PredPrey environments respectively.

A.2 COMPARISON WITH MARL

For the MARL setting, we compare against MADDPG (Lowe et al., 2017), FACMAC (Peng et al.,
2021), COMIX (Peng et al., 2021), RODE (Wang et al., 2021b) and CDS (Li et al., 2021) using
QPLEX (Wang et al., 2021a) as a base algorithm. We also compare against Comm-MARL approaches
SOG (Shao et al., 2022), and G2ANet (Liu et al., 2020). RODE and QPLEX are limited to discrete
environments, thus we are unable to provide comparisons on continuous action space tasks such
as Multiagent Ant or Multiagent Swimmer. All MARL environments were trained for 2, 000, 000
timesteps. The neural network policies were 3-layers each with 15 neurons per layer, and were greater
than or equal to the size of the compared Metamodel policy. For Actor-Critic approaches, we did not
reduce the size or expressivity of the critic. All used hyperparameters and Algorithmic configurations
were as advised by the authors of the work.

In the MARL setting we use Multiagent Ant, Multiagent Swimmer, Predator-Prey, Heterogeneous
Predator-Prey. Multiagent Ant, and Multiagent Swimmer are MuJoCo locomotion tasks where each
agent controls a segment of an Ant or Swimmer. Predator-Prey (PredPrey N) environment is a
cooperative environment where N of agents work together to chase and capture prey agents. In
Heterogeneous Predator Prey, each Predator has differing capabilities of speed and acceleration.
This modification is challenging as a policy must not only coordinate between the Predators, but
roles based specialization must be considered given the heterogeneous nature of each predator’s
capabilities. We also validated related work on the drone delivery task under which a drone swarm of
N agents (Drone Delivery-N) must complete deliveries of varying distances while avoiding collisions
and conserving fuel. The code of which is available in supplementary materials and will be open
sourced.

We used batching (Picheny et al., 2022) in our comparisons with MARL to allow for a large number
of iterations of BO. We used a batch size of 15 in our comparison experiments. In this setting, all
MuJoCo environments use the default epoch (total number of interactions with the environment for
computing reward) length of 1000, for Predator-Prey environments, epoch length was 25, for Drone
Delivery environment, epoch length was 150.
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A.3 RL AND MARL UNDER MALFORMED REWARD

For single agent RL we compared against SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017),
TD3 (Fujimoto et al., 2018), and DDPG (Lillicrap et al., 2015) as well as an algorithm using intrinsic
motivation (Zheng et al., 2018). In single agent setting, we trained related work for 200, 000 timesteps.
In the MARL setting, we trained for 2, 000, 000 timesteps. In both single-agent setting and multi-agent
setting all policy networks for both HA-GP-UCB and related work was 3 layers of 10 neurons each.
The tested environments were standard OpenAI Gym benchmarks of Ant, Hopper, Swimmer, and
Walker2D.

In the MARL setting we compared against COVDN (Peng et al., 2021), COMIX, FACMAC, and MAD-
DPG. Comparisons were not possible against other approaches as these do not support continuous
action environments and are restricted to discrete action spaces.

For all environments and algorithms, we used the recommended hyperparameter settings as defined
by the authors.

A.4 COMPARISON WITH HDBO ALGORITHMS

For this comparison, we compared with several related works in HDBO. We compared with
TurBO (Eriksson et al., 2019b), Alebo (Letham et al., 2020), TreeBO (Han et al., 2021),
LineBO (Kirschner et al., 2019), and a recent variant of BO for policy search, GIBO (Müller
et al., 2021).

For computational efficiency, the epoch length for MuJoCo environments was reduced to 500.

A.5 DRONE DELIVERY TASK

The experimental details follow that of comparisons with MARL.

A.6 COMPUTE

All experiments were performed on commodity CPU and GPUs. Each experimental setting took no
more than 2 days to complete on a single GPU.
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A.7 POLICY SIZES

We list the policy sizes of our models in Table 2 and 3.

Of note is in each environment, the compared against policy of RL or MARL is greater than or equal
to in size vs. the policy optimized by HA-GP-UCB.
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Figure 6: Ablation study. Training curves of HA-GP-UCB and its ablated variants on different multi-
agent environments.
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Figure 7: Left: Action distributions of different roles showing diversity in the Multiagent Ant
environment with 6 agents. Right above: Policy modulation with role interaction in PredPrey and
Het. PredPrey environment with 3 agents. Arrows represent change after message passing. Right
below: Mean connectivity and standard deviation in role interaction in Multiagent Ant with 6 agents,
PredPrey with 3 agents, and Het. PredPrey with 3 agents.

B ADDITIONAL EXPERIMENTS

B.1 ABLATION

We present an expanded version of Fig. 3 in Fig. 6 including the ablation for Multiagent Swimmer.
Multiagent Swimmer shows similar behavior as the simpler task Multiagent Ant, with stronger
block-diagonal Hessian structure.
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Figure 8: Comparison with MARL approaches with varying number of agents.

B.2 METAMODEL INVESTIGATION

We examined policy for Multiagent Ant with 6 agents for the role based policy specialization. The
policy modulation plots were generated by examining the PredPrey and Het. PredPrey environments
respectively.

In Fig. 7 we investigate the learned metamodel policies. Our investigation shows that role is used to
specialize agent policies while maintaining a common theme. Role interaction modulates the policy
through graphical model inferences. Finally, role interactions are sparse, however noticeably higher
for complex coordination tasks such as PredPrey.

B.3 COMPARISON WITH MARL

We present an expanded version of Fig. 5 in Fig. 8 including the results for Multiagent-Ant and
Multiagent-Swimmer. We observe that in this relatively uncomplicated task not well-suited for our
approach with dense reward, our metamodel approach shows comparable performance to MARL
approaches and far outperforms HA-GP-UCB (CTDE). This shows the overall value of our metamodel
approach.

B.4 RL AND MARL UNDER MALFORMED REWARD

We present additional experiments under malformed reward for both RL and MARL. We formally
define the Sparse reward scenario. Let v(θ) ≜

∑Γ̂
Γ=1 rΓ where the value of the policy is determined

through Γ̂ interactions with some unknown environment and each interaction is associated with
the reward, rΓ. Typically, RL algorithms observe the reward, rΓ after every interaction with the
environment. We consider a sparse reward scenario where reward feedback is given every S steps:
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r̃SΓ ≜
∑Γ

Γ−S rΓ if Γ ≡ 0 mod S and 0 o.w. In addition to the sparse reward setting described earlier,

we also consider the setting of delayed reward. The delayed reward scenario is defined: r̃DΓ ≜ rΓ−D

if Γ > D and 0 o.w. Thus in the delayed reward scenario, feedback on an action taken is delayed.
This scenario is important as it arises in long term planning tasks where the value of an action is
not immediately clear, but rather is ascertained after significant delays. We present the complete
table comparing related works in RL with HA-GP-UCB in Table 4. As can be seen, similar to the
Sparse reward scenarios, significant degradation can be observed across all tested RL algorithms
with HA-GP-UCB outperforming RL algorithms with moderate to severe amount of sparsity or delay.
This degradation cannot be overcome by increasing the size of the policy, as we verify with the “XL”
models which are orders of magnitude larger with 3 layers of 400 neurons.

We repeat these experimental scenarios in the MARL setting with similar results in Table 5 where
MARL approaches are compared against HA-GP-UCB in the CTDE setting. Thus our validation shows
that in both RL and MARL strong performance requires dense, informative feedback which may not
be present outside of simulator settings. In these settings, our approach of optimizing small compact
policies using HA-GP-UCB outperforms related work in both RL and MARL.
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Figure 9: Comparison with BO algorithms. HA-GP-UCB outperforms on complex multi-agent
coordination tasks.

B.5 COMPARISON WITH HDBO ALGORITHMS

We compare with several related work in High-dimensional BO including TurBO (Eriksson et al.,
2019b), AleBO (Letham et al., 2020), LineBO (Kirschner et al., 2019), TreeBO (Han et al., 2021),
and GIBO (Müller et al., 2021). This is presented in Fig. 9. We experienced out-of-memory issues
with AleBO after approximately 100 iterations, hence the AleBO plots are truncated. We compare
against these algorithms at optimizing our metamodel policy for solving various multi-agent policy
search tasks. We validated on Multiagent Ant with 6 agents, PredPrey with 3 agents, Het. PredPrey
with 3 agents, Drone Delivery with 3 agents, and also Het. PredPrey with 6 agents. We observe that
these competing works offer competitive performance for simpler tasks such as Multiagent Ant and
PredPrey with 3 agents. However for more complex tasks that require role based interaction and
coordination, our approach outperforms related work. This is evidenced in Het. PredPrey 3, Het.
PredPrey 6 as well as the Drone Delivery task with 3 agents.

Thus our validation shows that for simpler task, competing related works are able to optimize
for simple policies of low underlying dimensionality. However, for more complex tasks which
require sophisticated interaction using both Role and Role Interaction, related work is less capable of
optimizing for strong policies due to the complexity of the high-dimensional BO task. In contrast, our
work offers the capability of finding stronger policies for these complex tasks and scenarios.
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C ON THE APPLICABILITY OF OUR ASSUMPTIONS TO RBF AND MATERN
KERNEL

We show that our assumption is satisfied by the RBF Kernel when Θ = [0, 1]D, and is quasi-satisfied
by the Matern− 5

2 kernel. We also show that in the setting where Θ = [0, r]D for some bounded r,
our assumptions are quasi-satisfied as although these kernels may take on small negative values, these
values decay exponentially with respect to the distance. These Lemmas show that our assumptions
are reasonable.

Lemma 1. Let k (θ, θ′) ≜ exp(−d2

2 ) be the RBF kernel with d ≜ ||θ − θ′||, then

k∂i∂j(θ, θ′) = k (θ, θ′)
(
1− (θi − θ′

i
)2
)(

1− (θj − θ′
j
)2
)
.

Proof. As shown in (Rasmussen & Williams, 2006) Section 9.4, the derivative of a Gaussian Process
is also a Gaussian Process. Let GP (0, k (θ, θ′)) be the GP from which f is sampled. This implies:

∂f

∂θa
∼ GP

(
0,

∂2k (θ, θ′)

∂θa∂θ′a

)
.

Applying this rule once more for the Hessian, we have:

∂2f

∂θbθa
∼ GP

(
0,

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a

)
.

Given the above identities, we compute the partial derivatives for the RBF kernel:

∂2k (θ, θ′)

∂θa∂θ′a
= exp

(
−||θ − θ′||2

2

)(
1− (θa − θ′

a
)2
)
.

Deriving once more we have:

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a
= exp

(
−||θ − θ′||2

2

)(
1− (θa − θ′

a
)2
) (

1− (θb − θ′
b
)2
)
.

This completes the proof noting that k (θ, θ′) ≜ exp(−d2

2 ) with d ≜ ||θ − θ′||.

Corollary 1. Let k (θ, θ′) ≜ exp(−d2

2 ), and θ, θ′ ∈ [0, 1]D, then k∂i∂j(θ, θ′) ≥ 0.

Proof. The above is straightforward to see as exp (·) ≥ 0 and with θ, θ′ ∈ [0, 1]D we have(
1− (θa − θ′

a
)2
)
≥ 0

(
1− (θb − θ′

b
)2
)
≥ 0.

Corollary 2. Let k (θ, θ′) ≜ exp(−d2

2 ), and θ, θ′ ∈ [0, r]d, then k∂i∂j(θ, θ′) ≥ c exp(−d2) for some
constant c dependent on r.

Proof. The above is straightforward given the above Lemma. We note that although the RBF kernel
may take on negative values in the domain Θ = [0, r]d, this values experience strong tail decay
showing the quasi-satisfaction of our assumptions.

The above Lemma and Corollary shows that our assumptions are satisfied by the RBF Kernel when
Θ = [0, 1]D, and quasi satisfied when Θ = [0, r]D after choosing a suitable ph and σ2

h. We show
how these assumptions are quasi-satisfied by the Matern- 52 kernel.
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Lemma 2. Let k (θ, θ′) ≜ (1+
√
5d+ 5

3d
2) exp(−

√
5d) be the Matern- 52 kernel with d ≜ ||θ− θ′||,

then with di ≜ θi − θ′
i we have

k∂i∂j(θ, θ′) = exp(−
√
5d)

(
5
√
5

3
− 25

3d
d2i −

25

3d
d2j +

25
√
5

3d2
d2i d

2
j +

25

3d3
d3i d

3
j

)
.

Proof. Following the proof of Lemma 1, we state the partial derivatives of the Matern- 52 kernel:

∂2k (θ, θ′)

∂θa∂θ′a
= exp

(
−
√
5||θ − θ′||

)(5

3
+

5
√
5

3
||θ − θ′|| − 25

3
(θa − θ′

a
)2

)
.

Differentiating one more we have

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a
= exp

(
−
√
5||θ − θ′||

)
(
5
√
5

3
− 25

3d
(θa − θ′

a
)2 − 25

3d
(θb−θ′

b
)2 +

25
√
5

3d2
(θa − θ′

a
)2(θb − θ′

b
)2

+
25

3d3
(θa − θ′

a
)3(θb − θ′

b
)3

)
.

This completes the proof noting that di ≜ θi − θ′
i and d ≜ ||θ − θ′||.

Corollary 3. Let k (θ, θ′) ≜ (1+
√
5d+ 5

3d
2) exp(−

√
5d) and θ, θ′ ∈ [0, 1]D. Then k∂i∂j(θ, θ′) ≥

exp(−
√
5d)
(

5
√
5

3 − 25
3d − 25

3d − 25
3d3

)
.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ 1.

Corollary 4. Let k (θ, θ′) ≜ (1 +
√
5d+ 5

3d
2) exp(−

√
5d) and θ, θ′ ∈ [0, r]d. Then k∂i∂j(θ, θ′) ≥

c exp(−d) for some c dependent on r.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ r.

Although the above corollary shows that the Matern- 52 kernel may take on negative values, we note
that these values experience strong tail decay due to the presence of the exp

(
−
√
5d
)

term. Thus,
the negative values are likely to be extremely small, thus quasi-satisfying our assumptions. In our
experiments, we observed no shortcoming in using the Matern- 52 kernel in HA-GP-UCB.
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D PROOF OF PROPOSITION 1

We restate Proposition 1 for clarity.
Proposition 1. Let Gd = (Vd, Ed) represent an additive dependency structure with respect to v(θ),
then the following holds true: ∀a, b ∂2v

∂θa∂θb ̸= 0 =⇒ (Θa,Θb) ∈ Ed which is a consequence of v
formed through addition of independent sub-functions v(i), at least one of which must contain θa, θb

as parameters for ∂2v
∂θa∂θb ̸= 0 which implies their connectivity within Ed.

Proof. The above follows from the linearity of addition, which naturally implies a lack of curvature.
In the multivariate case, this corresponds to zero or non-zero entries in the Hessian.

To be precise, we prove the contrapositive:

(Θa,Θb) /∈ Ed =⇒ ∂2v

∂θa∂θb
= 0.

Let a, b be arbitrary dimensions with (Θa,Θb) /∈ Ed. As a consequence of the definition of the
dependency graph, ∄Θ(i) s.t. {Θa,Θb} ⊆ Θ(i). That is, no subfunction v(i) takes both θa and θb as
arguments.

By the linearity of the partial derivative, we see that:

∂2

∂θa∂θb
v(θ) =

∂2

∂θa∂θb

M∑
i=1

v(i)(θ(i)) =

M∑
i=1

∂2

∂θa∂θb
v(i)(θ(i)) = 0

where the last equality follows from no subfunction v(i) taking both θa and θb as arguments.
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E PROOF OF THEOREM 1

Our proof of Theorem 1 relies in being able to determine whether an edge does or does not exist
in the dependency graph. To be able to do this, we examine the Hessian. As we have shown in
Proposition 1, examining the Hessian answers this question. The challenge of Theorem 1 is detecting
this dependency under noisy observations of the Hessian, as well as in domains where the variance of
the second partial derivative is often zero, i.e., k∂i∂j(θ, θ′) = 0 with high probability. To overcome
this challenge, we sample the Hessian multiple times to both find portions of the domain where
k∂i∂j(θ, θ′) ≥ σ2

h, and also reduce the effect of the noise on learning the dependency structure. To
proceed with the analysis, we first prove a helper lemma showing that if we can construct two Normal
variables of sufficiently different variances, then it’s possible to accurately determine which Normal
variable has low, and high variance by taking a singular sample from each. This helper lemma will be
used later to help determine edges in the dependency graph. As we shall soon show, If an edge exists,
we are able to construct a Normal variable with high variance. Correspondingly, if an edge does not
exist, we are able to construct a Normal variable with low variance.

Lemma 3. Let Xl ∼ N (0, σ2
l ) and Xh ∼ N (0, σ2

h) be two random univariate gaussian variables.

For any δ ∈ (0, 1), ∃ ch s.t. |Xl| ≤ ch ≤ |Xh| with probability 1 − δ when σ2
h

σ2
l
> 8

δ2 log
2
δ and

precisely when σhδ
2 > ch > σl

√
2 log 2

δ .

Proof. First we note that |Xl| and |Xh| are Half-Normal random variables, with cumulative dis-
tribution function of Fl(x) = erf x

σl

√
2

and Fh(x) = erf x
σh

√
2

respectively. Thus to show that

|Xl| ≤ σl

√
2 log 2

δ and |Xh| ≥ σhδ
2 with high probability, we utilize well known bounds on the

erf and erfc function. The proofs of the below can be found in several places, e.g., Chu (1955) and
Ermolova & Häggman (2004) respectively.

erf x ≤
√
1− exp−2x2 ; erfcx ≤ exp−x2.

Given the above, we show that p(ch ≤ |Xl|) ≤ δ
2 and p(ch ≥ |Xh|) ≤ δ

2 and utilizing the union
bound completes the proof.

ch > σl

√
2 log

2

δ
=⇒ c2h > 2σ2

l log
2

δ
=⇒ c2h

2σ2
l

> − log
δ

2
=⇒ − c2h

2σ2
l

< log
δ

2

=⇒ exp− c2h
2σ2

l

≤ δ

2
=⇒ erfc

ch√
2σl

<
δ

2
=⇒ 1− erf

ch√
2σl

≥ 1− δ

2
=⇒ Fl(ch) ≥ 1− δ

2

=⇒ p (ch ≤ |Xl|) <
δ

2
.

Following a similar line of reasoning we have:

ch <
σhδ

2
=⇒ c2h

σ2
h

<
δ2

4
=⇒ −c2h

σ2
h

> −δ2

4
=⇒ −c2h

σ2
h

> log 1− ϵ2

4
=⇒ exp− c2h

σ2
h

> 1− δ2

4

=⇒ 1− exp− c2h
σ2
h

<
δ2

4
=⇒

√
1− exp−

c2h
σ2
h

<
δ

2
=⇒ erf

ch

σh

√
2
<

δ

2
=⇒ Fh(ch) <

δ

2

=⇒ p(ch ≥ |Xh|) <
δ

2
.

Finally, to complete the proof, we show that the interval (σl

√
2 log 2

δ ,
σhδ
2 ) is not the empty set when

σ2
h

σ2
l
> 8

δ2 log
2
δ .
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σ2
h

σ2
l

>
8

δ2
log

2

δ
=⇒ σh

σl
>

2
√
2

δ

√
log

2

δ
=⇒ σhδ

2
> σl

√
2 log

2

δ
.

We are now ready to prove Theorem 1.
Theorem 1. Suppose10 there exists σ2

h, ph s.t. ∀i, j Pθ∼U(Θ)

[
k∂i∂j(θ, θ) ≥ σ2

h

]
≥ ph and ∀i, j, θ, θ′

k∂i∂j(θ, θ′) ≥ 0. Then for any δ1, δ2 ∈ (0, 1) after t ≥ T0 steps of HA-GP-UCB we have:⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1−δ1−δ2 when T0 = C1 > 8D2

δ21
log 2D2

δ1

σ2
n

σ2
h
+ D2

phδ2
, ch ≜ T0σn

√
2 log 2D2

δ1
.

Proof. We prove the above for a single pair of variables, i.e., k∂i∂j and utilize the union bound to
complete the proof. The first challenge to overcome is to sufficiently sample enough points in the
domain such that we are able to find enough points θ ∈ Θ where k∂i∂j(θ, θ) ≥ σ2

h. To achieve this
we sample T0 different θ in the domain. After sampling T0 points if there exists an edge between Θa,
and Θb, then with probability 1− δ2

D2 we have sampled T0 − D2

phδ2
points where k∂i∂j(θ, θ) ≥ σ2

h.
To show the above we use bounds on the cumulative distribution of the Binomial theorem. A well
known bound is given T0 trials, with ph probability of success, the probability of having fewer than s
successes is upper bounded as follows:

ph
T0 − s

.

Given the above, we use δ2 and derive:

ph

T0 − (T0 − D2

phδ2
)
≤ δ2

D2
.

Given the above, with at least (T0 − D2

phδ2
) points where k∂i∂j(·, ·) ≥ σ2

h, as well as our assumption
k∂i∂j(θ, θ) ≥ 0, we apply Bienaymé’s identity which we restate for convenience:

Var

[
C1∑
ℓ=1

ht,ℓ

]
=

C1∑
ℓ=1

C1∑
ℓ′=1

Cov (ht,ℓ, ht,ℓ′) .

Noting each of the (T0 − D2

phδ2
) successes is sampled C1 = T0 times with Cov (ht,ℓ, ht,ℓ′) ≥ σ2

h

for each of the successes and Cov (ht,ℓ, ht,ℓ′) ≥ 0 for all samples by our assumption. Applying
Bienaymé’s identity and the sum of (correlated) Normal variables is also a normal variable, we have
Var

[∑C1

t=1

∑C1

ℓ=1 ht,ℓ

]
≥ (T0− D2

pδ2
)T 2

0 σ
2
h. Compare this quantity with the variance if no edge exists

between Θa, and Θb, where the variance results from i.i.d. noise: Var
[∑T0

t=1

∑T0

ℓ=1 ht,ℓ

]
= T 2

0 σ
2
n.

Comparing these two quantities, with an appropriately picked ch determines the edge between Θa and

Θb using Lemma 3. By Lemma 3, letting ch ≜ T0σn

√
2 log 2D2

δ1
ensures that p(hi,j < ch) <

δ1
D2 if

edge Ei,j
d exists, and p(hi,j > ch) <

δ1
D2 if edge Ei,j

d does not exist. Applying the union bound over
D2 pairs of variables completes the proof with

⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1− δ1 − δ2.

10RBF kernel satisfies these assumptions when Θ = [0, 1]D .
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F PROOF OF THEOREM 2

Our proof of Theorem 2 is presented under the same setting and assumptions as the work of Srinivas
et al. (2010).

To prove Theorem 2, we rely on several helper lemmas. The high-level sketch of the proof is to
use the properties of Erdős-Rényi graph to bound both the size of the maximal clique as well as the
number of maximal cliques with high probability. Once these two quantities are bounded, we are able
to analyze the mutual information of the kernel constructed by summing the kernels corresponding to
the maximal cliques of the sampled Erdős-Rényi graph as indicated in Assumption 1. Finally, once
this mutual information is bounded, we use similar analysis as Srinivas et al. (2010) to complete the
regret bound.

We begin by bounding the size of the maximal cliques.
Lemma 4. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability pg: Gd ∼
G(D, pg), then ∀δ ∈ (0, 1) the largest clique of Gd is bounded above by

|Max-Clique(Gd)| ≤ 2 log 1
pg
|Vd|+ 2

√
log 1

pg

|Vd|
δ

+ 1

with probability at least 1− δ.

Proof. The above relies on well known upper bounds on the maximal clique size on a graph sampled
from an Erdős-Rényi model. As shown in (Bollobás & Erdös, 1976) and (Matula, 1976) the expected
number of Cliques of size k, E [Ck] is given by:

E [Ck] =

(
|Vd|
k

)
1

pg

−(k2)
≤ |Vd|k

1

pg

− k(k−1)
2

=
1

pg

k
2

(
2 log 1

pg

|Vd|−k+1

)
.

In the sequel, we omit the base of the log: 1
pg

for clarity. To bound the size of the maximal clique, we

find a suitable k such that E [Ck] ≤ δ
n and utilize the union bound over [Ci]i=k,...,n where we have

|[Ci]i=k,...,n| ≤ n. Finally, we utilize Markov’s inequality to complete the proof.

Let k = 2 log |Vd|+ 2

√
log

|Vd|
δ

+ 1.

We utilize the above bound on E [Ck].

=⇒ k

2

(
2 log 1

pg
|Vd| − k + 1

)
=(

log|Vd|+
√
log

n

δ

)(
2 log|Vd| − 2 log|Vd| − 2

√
log

n

δ
+ 1 + 1

)
≤ − log|Vd| − log

n

δ
+ 1 ≤ log

δ

n

=⇒ E [Ck] ≤
1

pg

log δ
n

=
δ

n
.

The proof is complete by noting that by Markov inequality, p(Ck ≥ 1) ≤ E [Ck] and taking the union
bound over at most n members of [Ci]i=k,...,n.
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Next, we bound the total number of maximal cliques:
Lemma 5. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability p: Gd ∼
G(D, pg), then ∀δ ∈ (0, 1) the number of total maximal cliques in Gd is bounded above by

1

δ

√
|Vd|

log 1
pg

|Vd|+5

with probability at least 1− δ.

Proof. We prove the above by bounding maxk Ck with high probability and noting that the number
of maximal cliques is bounded by

∑
k Ck ≤ nmaxk Ck with high probability. To bound maxCk,

we first consider maxk E [Ck].

max
k

E [Ck] = max
k

1

pg

k
2

(
2 log 1

pg

|Vd|−k+1

)
=

1

pg

maxk
k
2

(
2 log 1

pg

|Vd|−k+1

)
.

Taking the partial derivative of k
2

(
2 log 1

pg
|Vd| − k + 1

)
with respect to k we determine the maxi-

mum:

argmaxk
k

2

(
2 log 1

pg
|Vd| − k + 1

)
= log 1

pg
|Vd|+ 1.

Thus we are able to bound:

log 1
pg

|Vd|+ 1

2

(
2 log 1

pg
|Vd| − log 1

pg
|Vd| − 1 + 1

)
=

log 1
pg

|Vd|+ 1

2

(
log 1

pg
|Vd|

)
=

1

2
log21

pg

|Vd|+
1

2
log 1

pg
|Vd|

Which yields the bound:

E [Ck] ≤
1

pg

1
2 log

2
1
pg

|Vd|+ 1
2 log 1

pg

|Vd|
=

√
|Vd|

log 1
pg

|Vd|+1
.

To complete the proof, we utilize Markov’s inequality with p

(
Ck ≥ |Vd|

δ

√
|Vd|

log 1
pg

|Vd|+1
)

≤ δ
|Vd|

and utilize the union bound over n choices of k:

∑
k

Ck ≤
∑
k

|Vd|
δ

√
|Vd|

log 1
pg

|Vd|+1
=

1

δ

√
|Vd|

log 1
pg

|Vd|+5

with probability 1− δ.

Now that we have bounded both the number of cliques, as well as the sizes of the maximal cliques
with high probability, we now consider the mutual information of the kernel constructed by summing
the kernels corresponding to the maximal cliques of the dependency graph.
Lemma 6. Define I(yA; v) ≜ H(yA) − H(yA | v) as the mutual information between yA and v

with H(N (µ,Σ)) ≜ 1
2 log|2πeΣ| as the entropy function. Define γk

T ≥ maxA⊂Θ:|A|=T I(yA; v)
when v ∼ GP (0, k (θ, θ′)). Let [ki]i=1,...,M be arbitrary kernels defined on the domain Θ with upper
bounds on mutual information [γki

T ]i=1,...,M , then the following holds true:

γ
∑

i ki

T ≤ M2 max [γki

T ]i=1,...,M .
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To prove the above, we first state Weyl’s inequality for convenience:
Lemma 7. Let H,P ∈ Rn×n be two Hermitian matrices and consider the matrix M = H + P . Let
µi, νi, ρi, i = 1, . . . , n be the eigenvalues of M, H, and P respectively in decreasing order. Then, for
all i ≥ r + s− 1 we have

µi ≤ νr + ρs.

The above has an immediate Corollary as noted by Rolland et al. (2018):

Corollary 5. Let Ki ∈ Rn×n be Hermitian matrices for i = 1, . . . ,M with K ≜
∑M

i Ki. Let
[λKi

ℓ ]ℓ=1,...,n denote the eigenvalues of Ki in decreasing order. Then for all ℓ ∈ N0 such that
ℓM + 1 ≤ n we have

λK
ℓM+1 ≤

M∑
i=1

λKi

ℓ+1.

We are now ready to prove Lemma 6 using Weyl’s inequality and its corollary as a key tool.

Proof. Given the definition of I(yA; v) ≜ 1
2 log|I + σ−2Kk

A| (Srinivas et al., 2010) we bound
the eigenvalues of MI + σ−2

∑M
i Kki

A using the eigenvalues of [I + σ−2Kki

A ]i=1,...,M where
k ≜

∑M
i=1 ki. Using the above Corollary we see that:

λMI+σ−2K
ℓ ≤

M∑
i=1

λI+σ−2Ki

⌈ ℓ
M ⌉ .

Given the above, we see that M2 max[γki

T ]i=1,...,M ≥ 1
2 log|I + σ−2Kk

A| as
∑M

i Mγki

T ≥
1
2 log|MI+ σ−2

∑M
i Kki

A |.

Finally, we require an additional helper lemma to bound the supremum and infimum of a function
sampled from a GP. This helper lemma helps bound the regret during the first phase of HA-GP-UCB
where we randomly sample the Hessian over the domain.

Lemma 8. Let k (θ, θ′) be four times differentiable on the continuous domain Θ ≜ [0, r]D for some
bounded r (i.e., compact and convex) with f ∼ GP (0, k (θ, θ′)) then for all δ ∈ (0, 1) the following
holds true:

sup
θ∈[0,r]D

f ≤ cb
√
D log δ−1 = O

(√
D log δ−1

)
.

inf
θ∈[0,r]D

f ≥ −cb
√

D log δ−1 = Ω
(
−
√
D log δ−1

)
.

for some constant cb dependent on δ and r, with probability 1− δ.

Proof. We refer readers to Srinivas et al. (2010) Lemma 5.8 for the proof of the above.

We are now ready to prove Theorem 2.
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1. Let γk

T (d) : N → R be
a monotonically increasing upper bound function on the mutual information of kernel k taking d
arguments. The cumulative regret of HA-GP-UCB is bounded with high probability as follows:

RT = Õ
(
D4.5log2D+

√
TβTDO(logD)γk

T (O(logD))
)
. (4)

31



Under review as a conference paper at ICLR 2024

We restate the above theorem with more precision:
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1 and for some constants a, b,

P

[
sup
θ∈Θ

∣∣∣∣ ∂v∂θi
∣∣∣∣ > L

]
≤ ae−(L/b)2 , i = 1, . . . , D.

Let γk
T (d) : N → R be a monotonically increasing upper bound function on the mutual information

of kernel k taking d arguments. Let k (θ, θ′) be four times differentiable on the continuous domain
Θ ≜ [0, r]d for some bounded r (i.e., compact and convex). For any δ1, δ2, δ3, δ4, δ5, δ6 ∈ (0, 1). Let,
t̃ ≜ t− T0C1 and let

βt = 2 log(t̃22π2/3δ26) + 2D log(t̃2Dbr
√

log(4Da/δ6))

The cumulative regret of HA-GP-UCB is bounded:

P

[
RT ≤ 2C2

1cb

√
D log δ−1

5 +
√
C2TβT γT + 2 ∀T ≥ 1

]
≥ 1− δ1 − δ2 − δ3 − δ4 − δ5 − δ6

when C1 = 8D2

δ21
log 2D2

δ1

σ2
n

σ2
h
+ D2

phδ2
+ 1, C2 = 8/ log(1 + σ−2), and

γT = 1
δ24
Dlog1/pg

D+5γk
T

(
2 log1/pg

D + 2
√

log1/pg
D/δ3 + 1

)
where cb is some constant depen-

dent on δ5.

Proof. The proof is a consequence of the helper lemmas and theorems we have proved. First we
consider Phase 1 of HA-GP-UCB where t ≤ T0. By Theorem 1, at most T0C1 = C2

1 queries will be
made during Phase 1, and Lemma 8 indicates the maximum regret for any query. Consulting the
respective Theorem and Lemma, we are able to bound the cumulative regret during Phase 1 by:

2C2
1cb

√
D log δ−1

5 = O(D4.5 log2 D).

Considering Phase 2, we utilize Lemma 4, Lemma 5, Lemma 6 to bound the mutual information of
the sampled kernel with high probability. The number of cliques is given by:

1

δ4

√
Dlog1/pg

D+5 = DO(logD).

The size of the largest clique is given by:

2 log1/pg
D + 2

√
log1/pg

D/δ3 + 1 = O(logD).

Following Lemma 6, we may bound the mutual information by:

O(DO(logD)γk
T (O(logD)).

The proof is complete by leveraging the connection between mutual information and cumulative regret
as shown by Srinivas et al. (2010) where Õ is the same as O with the log factors suppressed.
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G ON THE SURROGATE HESSIAN, Hπ

In Section 4.5 we remarked that although we cannot observe Hv , we can observe a surrogate hessian,
Hπ which is related to Hv by the chain rule. We justify our choice here with showing how Hπ

is an important sub-component of Hv (Skorski, 2019). Although the reasoning we give is in one
dimension, an analogous argument can be made in arbitrary dimensions using the chain rule for
vector-valued functions yielding the Hessian tensor (Magalhães, 2020). We have v : Θ → R is a
function of the policy π and can be expressed as a composition of functions:

v : Θ → R = v̂ (π (θ)) .

In the above we use π (θ) as shorthand for π (sα,aα; θ) with v̂ representing some unknown function.
Using the definition of the Hessian we have:

Hv ≜

[
∂2v

∂θa∂θb

]
a,b=1,...,D

=

[
∂2

∂θa∂θb
v̂ (π (θ))

]
a,b=1,...,D

Where the above identity follows from the definition of v in Eq. equation G. We can now apply chain
rule to express:

∂2

∂θa∂θb
v̂ (π (θ)) =

[
Hv̂(π(θ))

∂π

∂θa
(θ)

]
· ∂π

∂θb
(θ)︸ ︷︷ ︸

r(θ)

+
∂2π

∂θa∂θb
(θ)︸ ︷︷ ︸

Hπ(θ)

· ∇v̂(π(θ))︸ ︷︷ ︸
g(θ)

As we see in the above as a consequence of the chain rule, ∂2π
∂θa∂θb forms an important sub-component

∂2v
∂θa∂θb . Given the above, we can simplify the above in the following manner:

Hv = r +Hπ ◦ g

where r, g, and Hπ arise from the corresponding highlighted terms in Eq. equation G with r
representing some unknown remainder term and ◦ representing the Hadamard product. Given the
above, it is straightforward to see how Hπ serves as a surrogate hessian for Hv . Indeed if r ̸= −Hπ◦g
and g has no zero entries then Hπ ̸= 0 =⇒ Hv ̸= 0. In our use case, we are most concerned with
non-zero entries in the Hessian, Hv, and the surrogate Hessian, Hπ is well served for determining
Hv ̸= 0 due to the above.

Since π (θ) is shorthand for π (sα,aα; θ), to approximate Hπ we average Hπ(sα,aα;θ) over state
action pairs, (sα,aα) formed through interaction of the policy with the unknown task environment.

A possible avenue of overcoming this limitation is considering Hessian estimation through zero’th or-
der queries. Several works along this direction have recently appeared using Finite Differences (Cheng
et al., 2021), as well as Gaussian Processes (Müller et al., 2021). We consider removing this depen-
dency on the surrogate Hessian for future work.
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H DRONE DELIVERY TASK

Drones fly from delivery point to delivery point where completing a delivery gives a large amount
of reward, but running out of fuel and collisions give a small amount of negative reward. After
completing a delivery, the delivery point is randomly removed within the environment. A collision
gives a small amount of negative reward and momentarily stops the drone. Completing a delivery
refills the drone fuel and allows it to continue to make more deliveries. The amount of reward given
increases quadratically with the distance of the delivery to highly reward long distance deliveries
which require long term planning. To compound this requirement for long term planning, fuel
consumption also dramatically increases at high velocities to encourage long-term fuel efficiency
planning. In this complex scenario requiring long term planning, RL approaches can easily fall into
local minima of completing short distance, low reward deliveries and fail to sufficiently explore
(under sparse reward) policies which complete long distance deliveries with careful planning.

Implementation code of this task can be found in supplementary materials.
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Figure 10: Comparison with MARL approaches with varying number of agents.
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Figure 11: Comparison with MARL approaches on the drone delivery task.

I REPLOT WITH TIMESTEPS

We replot the relevant figures in Fig. 10 and Fig. 11 while maintaining total environment interactions
as the singular independent variable. We note that there is no significant change to our conclusions as
a consequence of this replotting. We also highlight that although total environment interactions is
considered the important independent variable in RL and MARL, in BO typically the total evaluated
policies is considered the more important independent variable as each evaluation is assumed to be
costly.
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