
7 Appendix
In Appendix 7.1, we discuss algorithmic details for ThriftyDAgger and all comparisons. Then, Ap-
pendix 7.2 discusses implementation and hyperparameter details for all algorithms. In Appendix 7.3,
we provide additional details about the simulation and physical experiment domains, and in Ap-
pendix 7.4, we describe the protocol and detailed results from the conducted user study.

7.1 Algorithm Details
Here we provide a detailed algorithmic description of ThriftyDAgger and all comparisons.

7.1.1 ThriftyDAgger
The full pseudocode for ThriftyDAgger is provided in Algorithm 1. ThriftyDAgger first initializes ⇡r

via Behavior Cloning on offline transitions (Dh from the human supervisor, ⇡h) (line 1-2). Then, ⇡r

collects an initial offline dataset Dr from the resulting ⇡r, initializes Q̂⇡r
�,G by optimizing Equation (5)

on Dr [Dh, and initializes parameters �h,�r, �h, and �r as in Section 4.4 (lines 3-5). We then
collect data for N episodes, each with up to T timesteps. In each timestep of each episode, we
determine whether robot policy ⇡r or human supervisor ⇡h should be in control using the procedure
in Section 4.3 (lines 10-20). Transitions in autonomous mode are aggregated into Dr while transitions
in supervisor mode are aggregated into Dh. Episodes are terminated either when the robot reaches
a valid goal state or has exhausted the time horizon T . At this point, we re-initialize the policy to
autonomous mode and update parameters �h,�r, �h, and �r as in Section 4.4 (lines 21-23). After
each episode, ⇡r is updated via supervised learning on Dh, while Q̂⇡r

�,G is updated on Dr [Dh to
reflect the task success probability of the resulting ⇡r (lines 24-26).

7.1.2 Behavior Cloning
We train policy ⇡r via direct supervised learning with a mean-squared loss to predict reference
control actions given a dataset of (state, action) tuples. Behavior Cloning is trained only on full
expert demonstrations collected offline from ⇡h and is not allowed access to online interventions.
Thus, Behavior Cloning is trained only on dataset Dh (line 1, Algorithm 1) and the policy is frozen
thereafter. In our simulation experiments, Behavior Cloning is given 50% more offline data than
the other algorithms for a more fair comparison, such that the amount of additional offline data is
approximately equal to the average amount of online data provided to the other algorithms.

7.1.3 SafeDAgger
SafeDAgger [19] is an interactive imitation learning algorithm which selects between autonomous
and supervisor mode using a classifier f that discriminates between “safe” states, for which ⇡r’s
proposed action is within some threshold �h of that proposed by supervisor policy ⇡h, and “unsafe”
states, for which this action discrepancy exceeds �h. SafeDAgger learns this classifier using dataset
Dh from Algorithm 1, and updates f online as Dh is expanded through human interventions. During
policy rollouts, if f marks a state as safe, the robot policy is executed (autonomous mode), while if f
marks a state as unsafe, the supervisor is queried for an action. While this approach can be effective
in some domains [19], prior work [18] suggests that this intervention criterion can lead to excessive
context switches between the robot and supervisor, and thus impose significant burden on a human
supervisor. As in ThriftyDAgger and other DAgger [12] variants, SafeDAgger updates ⇡r on an
aggregated dataset of all transitions collected by the supervisor (analogous to Dh in Algorithm 1).

7.1.4 LazyDAgger
LazyDAgger [18] builds on SafeDAgger [19] and trains the same action discrepancy classifier f
to determine whether the robot and supervisor policies will significantly diverge at a given state.
However, LazyDAgger introduces a few modifications to SafeDAgger which lead to lengthier and
more informative interventions in practice. First, LazyDAgger observes that when the supervisor
has control of the system (supervisor mode), querying f for estimated action discrepancy is no
longer necessary since we can simply query the robot policy at any state during supervisor mode
to obtain a true measure of the action discrepancy between the robot and supervisor policies. This
prevents exploiting approximation errors in f when the supervisor is in control. Second, LazyDAgger
introduces an asymmetric switching condition between autonomous and supervisor control, where
switches are executed from autonomous to supervisor mode if f indicates that the predicted action
discrepancy is above �h, but switches are only executed from supervisor mode back to autonomous

12

Algorithm 1 ThriftyDAgger
Require: Number of episodes N , time horizon T , supervisor policy ⇡h, desired context switching rate ↵h

1: Collect offline dataset Dh of (s, ah) tuples with ⇡h

2: Initialize ⇡r via Behavior Cloning on Dh

3: Collect offline dataset Dr of (s, ar) tuples with ⇡r

4: Initialize Q̂⇡r
�,G by optimizing Equation (4) on Dr [Dh

5: Optimize �h,�r, �h, �r on Dh # Online tuning based on ↵h (Section 4.4)

6: for i 2 {1, . . . N} do
7: Initialize s0, Mode Autonomous
8: for t 2 {1, . . . T} do
9: ar

t = ⇡r(st)
10: if Mode = Supervisor or Intervene(st, �h,�h) then # Determine control mode (Section 4.3)

11: ah
t = ⇡h(st)

12: Dh Dh [{(st, ah
t)}

13: Execute ah
t

14: if Cede(st, �r,�r) then # Default control mode for next timestep (Section 4.3)

15: Mode Autonomous
16: else
17: Mode Supervisor
18: else
19: Execute ar

t

20: Dr Dr [{(st, at)}
21: if Terminal state reached then
22: Exit Loop, Mode Autonomous
23: Recompute �h,�r, �h # Online tuning based on ↵h (Section 4.4)

24: ⇡r argmin⇡r E(st,ah
t)⇠Dh

[L(⇡r(st),⇡h(st))]
25: Collect Dr offline with robot policy ⇡r

26: Update Q̂⇡r
�,G on Dr [Dh # Update Q-function via Equation (6)

mode if the true action discrepancy is below some value �r < �h. This encourages lengthier
interventions, leading to fewer context switches between autonomous and supervisor modes. Finally,
LazyDAgger injects noise into supervisor actions in order to spread the distribution of states in
which reference controls from the supervisor are available. ThriftyDAgger builds on the asymmetric
switching criterion introduced by LazyDAgger, but introduces a new switching criterion based on the
estimated task success probability, which we found significantly improved performance in practice.

7.1.5 HG-DAgger

Unlike SafeDAgger, LazyDAgger, and ThriftyDAgger, which are robot-gated and autonomously
determine when to solicit intervention requests, HG-DAgger is human-gated, and thus requires that
the supervisor determine the timing and length of interventions. As in ThriftyDAgger, HG-DAgger
updates ⇡r on an aggregated dataset of all transitions collected by the supervisor (analogous to Dh in
Algorithm 1).

7.2 Hyperparameter and Implementation Details

Here we provide a detailed overview of all hyperparameter and implementation details for ThriftyDAg-
ger and all comparisons to facilitate reproduction of all experiments. We also include code in the
supplement, and will release a full open-source codebase after anonymous review.

7.2.1 ThriftyDAgger

Peg Insertion (Simulation): We initially populate Dh with 2,687 offline transitions, which corre-
spond to 30 task demonstrations collected by an expert human supervisor, to initialize the robot policy
⇡r. We represent ⇡r with an ensemble of 5 neural networks, trained on bootstrapped samples of data
from Dh in order to quantify uncertainty for novelty estimation. Each neural network is trained using
the Adam Optimizer (learning rate 1e�3) with 5 training epochs, 500 gradient steps in each training
epoch, and a batch size of 100. All networks consist of 2 hidden layers, each with 256 hidden units
with ReLU activations, and a Tanh output activation.

13

The Q-function used for risk-estimation, Q̂⇡r
�,G , is trained with a batch size of 50, and batches are

balanced such that 10% of all sampled transitions contain a state in the goal set. We train Q̂⇡r
�,G with

the Adam Optimizer, with a learning rate of 1e�3 and discount factor � = 0.9999. In order to train
Q̂⇡r

�,G , we collect 10 test episodes from ⇡r every 2,000 environment steps. We represent Q̂⇡r
�,G with a

2 hidden layer neural net in which each hidden layer has 256 hidden units with ReLU activations and
with a sigmoid output activation. The state and action are concatenated before they are fed into Q̂⇡r

�,G .

Block Stacking (Simulation): This is an additional simulation environment not included in the
main text. Results and a description of the task are in Section 7.3.2. We populate Dh with 1,677
offline transitions, corresponding to 30 task demonstrations, to initialize ⇡r. All other parameters and
implementation details are identical to the peg insertion environment.

Cable Routing (Physical): We initially populate Dh with 1,381 offline transitions, corre-
sponding to 25 task demonstrations collected by an expert human supervisor, to initialize the
robot policy ⇡r. We again represent ⇡r with an ensemble of 5 neural networks, trained on
bootstrapped samples of data from Dh in order to quantify uncertainty for novelty estima-
tion. Each neural network is trained using the Adam Optimizer (learning rate 2.5e�4) with
5 training epochs, 300 gradient steps per training epoch, and a batch size of 64. All net-
works consist of 5 convolutional layers (format: (in channels, out channels, kernel size, stride)):
[(3, 24, 5, 2), (24, 36, 5, 2), (36, 48, 5, 2), (48, 64, 3, 1), (64, 64, 3, 1)] followed by 4 fully connected
layers (format: (in units, out units)): [(64, 100), (100, 50), (50, 10), (10, 2)]. Here we utilize ELU
(exponential linear unit) activations with a Tanh output activation.

The Q-function used for risk-estimation, Q̂⇡r
�,G , is trained with a batch size of 64 as well, and batches

are balanced such that 10% of all sampled transitions contain a state in the goal set. We train Q̂⇡r
�,G

with the Adam Optimizer with a learning rate of 2.5e�4 and discount factor � = 0.9999. In order to
train Q̂⇡r

�,G , we collect 5 test episodes from ⇡r every 500 environment steps. We represent Q̂⇡r
�,G with

a neural network with the same 5 convolutional layers as the policy networks above, but with the fully
connected layers as follows (format: (in units, out units)): [(64+2, 100), (100, 50), (50, 10), (10, 1)].
We concatenate the action with the state embedding resulting from the 5 convolutional layers (hence
the 64 + 2) and feed the resulting concatenated embedding into the 4 fully connected layers above.
We utilize ELU (exponential linear unit) activations with a sigmoid output activation.

7.2.2 Behavior Cloning
Peg Insertion (Simulation): For Behavior Cloning, we initially populate Dh with 4,004 offline
transitions, corresponding to 45 task demonstrations collected by an expert human supervisor, to
initialize the robot policy ⇡r (note that this is more transitions than are provided to ThriftyDAgger).
All other details are the same as ThriftyDAgger for training ⇡r.

Block Stacking (Simulation): We initially populate Dh with 3,532 offline transitions, correspond-
ing to 60 task demonstrations, to initialize ⇡r. Note that Behavior Cloning has access to twice as
many offline demonstrations as the other algorithms.

Cable Routing (Physical): We train ⇡r with the same architecture and procedure as for ThriftyDAg-
ger, but only on the initial offline data.

7.2.3 SafeDAgger
We use the same hyperparameters and architecture for training ⇡r as for ThriftyDAgger. Unlike
ThriftyDAgger, SafeDAgger does not have a mechanism to automatically set intervention thresholds
when provided an intervention budget ↵h. Thus, we must specify a value for the switching threshold
�h. We use �h = 0.008, since this is recommended in [19] as the value which was found to work
well in experiments (in practice, this value marks about 20% of states as “unsafe”).

7.2.4 LazyDAgger
We use the same hyperparameters and architecture for training ⇡r as for ThriftyDAgger. Unlike
ThriftyDAgger, LazyDAgger does not have a mechanism to automatically set intervention thresholds
when provided an intervention budget ↵h. Thus, we must specify a value for both switching thresholds

14

Table 4: Peg Insertion in Simulation Additional Metrics: We report additional statistics for the peg insertion
task: total number of interventions (T Ints), total number of offline and online human actions (T Acts (H)), and
total number of robot actions (T Acts (R))) at training time across all trajectories (successful and unsuccessful).
We report these same metrics at execution time, but T Acts (H) does not include offline human actions, as at
execution time it does not refer to the number of training samples for the robot policy. We also report the success
rate of the mixed control policy at training time (Train Succ.). Results suggest that ThriftyDAgger solicits fewer
interventions than prior algorithms at training time while achieving a comparable success rate and throughput
to HG-DAgger. At execution time, ThriftyDAgger collects lengthier interventions than prior algorithms but
succeeds more often at the task (Table 1).

Algorithm Training Interventions Train Succ. Execution Interventions
T Ints T Acts (H) T Acts (R) T Ints T Acts (H) T Acts (R)

Behavior Cloning N/A 4004 N/A N/A N/A N/A N/A
SafeDAgger 334 4227 8460 48/73 81 396 1781
LazyDAgger 82 3683 9004 37/67 30 290 2422
HG-DAgger 124 4392 8295 83/83 23 342 2071
Ours (-Novelty) 60 5242 7445 62/80 12 157 2649
Ours (-Risk) 87 3623 9064 72/81 30 237 2255
Ours: ThriftyDAgger 84 6840 5847 76/86 27 426 1696

�h and �r. We use �h = 0.015, �r = 0.25�h and use a noise covariance matrix of 0.02N (0, I)
when injecting noise into the supervisor actions. These values were tuned to strike a balance between
supervisor burden and policy performance.

7.2.5 HG-DAgger
All hyperparameters and architectures are identical to those used for Behavior Cloning, without the
extra offline demonstrations. Note that for HG-DAgger, the supervisor determines the timing and
length of interventions.

7.3 Environment Details and Additional Metrics
7.3.1 Peg Insertion in Simulation
We evaluate our algorithm and baselines in the Robosuite environment (https://robosuite.
ai) [48], which builds on MuJoCo [51] to provide a standardized suite of benchmark tasks for robot
learning. Specifically, we consider the “Nut Assembly” task, in which a robot must grab a ring from
a random initial pose and place it over a cylinder at a fixed location. We consider a variant of the
task that considers only 1 ring and 1 target, though the simulator allows 2 rings and 2 targets. The
states are s 2 R51 and actions a 2 R5 (translation in the XY-plane, translation in the Z-axis, rotation
around the Z-axis, and opening or closing the gripper). The simulated robot arm is a UR5e, and
the controller reaches a commanded pose via operational space control with fixed impedance. To
avoid bias due to variable teleoperation speeds and ensure that the Markov property applies, we
abstract 10 timesteps in the simulator into 1 environment step, and in supervisor mode we pause the
simulation until keyboard input is received. This prevents accidentally collecting “no-op” expert
labels and allows the end effector to “settle” instead of letting its momentum carry on to the next
state. In practice it does not make the task more difficult, as control is still fine-grained enough for
precise manipulation. Each episode is terminated upon successful task completion or when 175
actions are executed. Interventions are collected through a keyboard interface. In Table 4, we report
additional metrics for the peg insertion simulation experiment and find that ThriftyDAgger solicits
fewer interventions than prior algorithms at training time while achieving a higher success rate during
training than all algorithms other than HG-DAgger, though it does request more human actions.
The train success rate column also indicates that ThriftyDAgger achieves throughput comparable to
HG-DAgger and higher than other baselines, as ThriftyDAgger has more task successes in the same
amount of time (10,000 timesteps for all algorithms). At execution time, ThriftyDAgger collects
lengthier interventions than prior algorithms, but as a result is able to succeed more often at execution
time as discussed in the main text.

7.3.2 Block Stacking in Simulation
To further evaluate the algorithm and baselines in simulation, we also consider the block stacking
task from Robosuite (see previous section). Here the robot must grasp a cube in a randomized initial
pose and place it on top of a second cube in another randomized pose. See Table 5 for training results

15

https://robosuite.ai
https://robosuite.ai

Figure 3: Left: An example start and goal state for the block stacking environment in Robosuite. The goal
is to place the red block on top of the green one. Initial poses of both blocks are randomized. Right: The da
Vinci Research Kit Master Tool Manipulator (MTM) 7DOF interface used to provide human interventions in the
physical experiments. The human expert views the workspace through the viewer (top) and teleoperates the
robot by moving the right joystick (middle) in free space while pressing the rightmost pedal (bottom).

Table 5: Block Stacking in Simulation Results: We report the number of interventions (Ints), number of
human actions (Acts (H)), and number of robot actions (Acts (R)) during training (over successful trajectories as
in Table 1) and report the success rate of the robot policy after training when no interventions are allowed (Auto
Succ.). We also report the total number of interventions (T Int), total number of actions from the human (offline
and online, in T Acts (H)), total number of actions executed by the robot (T Acts (R)), and the success rate of the
mixed control policy during training (Train Succ.). Results suggest that ThriftyDAgger achieves comparable
performance to HG-DAgger in terms of both autonomous and training success rates while outperforming the
other baselines and ablations. ThriftyDAgger also solicits fewer interventions than prior algorithms, but generally
requires more human actions.

Algorithm Ints Acts (H) Acts (R) Auto Succ. T Ints T Acts (H) T Acts (R) Train Succ.
Behavior Cloning N/A N/A 68.0± 11.4 5/100 N/A 3532 N/A N/A
SafeDAgger 5.00± 3.41 40.5± 14.1 44.3± 25.6 3/100 574 4387 7290 27/68
LazyDAgger 1.81± 1.02 25.8± 17.8 56.6± 28.3 40/100 85 2940 8737 36/75
HG-DAgger 1.62± 0.91 22.5± 16.5 54.6± 14.2 56/100 201 4535 7142 124/125
Ours (-Novelty) 0.65± 0.70 43.7± 13.3 28.6± 28.5 8/100 37 3599 8078 23/69
Ours (-Risk) 1.89± 0.72 12.9± 7.7 72.4± 25.5 31/100 109 2518 9159 47/79
Ours: ThriftyDAgger 1.33± 0.76 35.4± 15.8 37.2± 27.5 52/100 153 5873 5804 111/120

and Figure 3 for an illustration of the experimental setup. Due to the randomized place position,
small placement region, and geometric symmetries, the task is more difficult than peg insertion,
as evidenced by the lower autonomous success rate for all algorithms. However, we still see that
ThriftyDAgger achieves comparable performance to HG-DAgger in terms of autonomous success rate,
success rate during training, and throughput, while outperforming the other baselines and ablations.
ThriftyDAgger also solicits fewer interventions than prior algorithms, but generally requires more
human actions as these interventions tend to be lengthier. This makes ThriftyDAgger well-suited to
situations in which the cost of context switches (latency) may be high.

7.3.3 Physical Cable Routing
Finally, we evaluate our algorithm on a visuomotor cable routing task with a da Vinci Research Kit
surgical robot. We take RGB images of the scene with a Zivid One Plus camera inclined at about
45 degrees to the vertical. These images are cropped into a square and downsampled to 64 ⇥ 64
before they are passed to the neural network policy. The cable state is initialized to approximately
the same shape (see Figure 2) with the cable initialized in the robot’s gripper. The workspace is
approximately 10 cm ⇥ 10 cm, and each component of the robot action (�x,�y) is at most 1 cm in
magnitude. To avoid collision with the 4 obstacles, we implement a “logical obstacle” as 1-cm radius
balls around the center of each obstacle. Actions that enter one of these regions are projected to the
boundary of the circle. Each episode is terminated upon successful task completion or 100 actions
executed. Interventions are collected through a 7DOF teleoperation interface (Figure 3) that matches

16

Table 6: Physical Cable Routing Additional Metrics: We report additional statistics for the peg insertion
task: total number of interventions (T Ints), total number of offline and online human actions (T Acts (H)), and
total number of robot actions (T Acts (R))) at training time across all trajectories. We report these same metrics
at execution time, but T Acts (H) does not include offline human actions, as at execution time it does not refer to
the number of training samples for the robot policy. We also report the success rate of the mixed control policy
at training time (Train Succ.). Results suggest that ThriftyDAgger needs fewer interventions than HG-DAgger
while achieving a similar training success rate. At execution time, we find that ThriftyDAgger solicits the same
number of interventions as HG-DAgger, but requires fewer human and robot actions.

Algorithm Training Interventions Train Succ. Execution Interventions
T Ints T Acts (H) T Acts (R) T Ints T Acts (H) T Acts (R)

Behavior Cloning N/A 1381 N/A N/A N/A N/A N/A
HG-DAgger 31 1682 1199 20/20 6 41 1109
Ours: ThriftyDAgger 27 1728 1153 19/21 6 23 919

Figure 4: User Study Survey Results: We illustrate the user study interface for the human-gated and robot-gated
algorithms (left) and users’ survey responses regarding their mental load and frustration (right) for each algorithm.
Results suggest that users report similar levels of mental load and frustration for ThriftyDAgger and LazyDAgger,
but significantly higher levels of both metrics for HG-DAgger and SafeDAgger. We hypothesize that the sparing
and sustained interventions solicited by ThriftyDAgger and LazyDAgger lead to greater user satisfaction
and comfort compared to algorithms which force the user to constantly monitor the system (HG-DAgger) or
frequently context switch between teleoperation and the distractor task.

the pose of the robot arm, with rotation of the end effector disabled. Teleoperated actions are mapped
to the robot’s action space by projecting pose deltas to the 2D plane at 1 second intervals. The human
teleoperates the robot at a frequency that roughly corresponds to taking actions with the maximum
magnitude (1 cm / sec). In Table 6, we report additional metrics for the physical cable routing
experiment and find that ThriftyDAgger solicits a number of interventions similar to HG-DAgger
while achieving a similar success rate during training. This again indicates that ThriftyDAgger is
able to learn intervention criteria competitive with human judgment. At execution time, we find that
ThriftyDAgger solicits the same number of interventions as HG-DAgger, but requires fewer human
and robot actions than HG-DAgger.

7.4 User Study Details
Here we detail the protocol for conducting user studies with ThriftyDAgger and comparisons and
discuss qualitative results based on participants’ answers to survey questions measuring their mental
load and levels of frustration when using each of the algorithms.

7.4.1 User Study Interface
Figure 4 (left) illustrates the interface used for the user study. The user study is performed with the
same peg insertion environment used for simulation experiments, but with 3 robots performing the
task in parallel. The base policy is initialized from 30 demos, as in the other simulation experiments.
To speed up the task execution for the user study, each action has twice the magnitude as in the peg
insertion experiments. Since this results in shorter trajectories that are easier for Behavior Cloning to
accomplish, we also inject a small amount of Gaussian noise (covariance matrix = 0.02N (0, I)).

In the human-gated study with HG-DAgger, participants are shown videos of all 3 robots attempting
to perform the task in a side pane (Figure 4, top right of left pane) and are instructed to monitor all of
the robots and intervene when they deem it appropriate. In all robot-gated studies, participants are
instructed to play the Concentration game until they hear a chime, at which point they are instructed
to switch screens to the teleoperation interface. The Concentration game (also called Memory) is

17

Table 7: Wall Clock Time: We compare the total amount of wall clock time and total amount of human wall
clock time averaged over the 10 subjects in the user study. Human Wall Clock Time refers to the amount of time
the human spent actively teleoperating a robot, while Total Wall Clock Time measures the amount of time taken
by the total experiment. ThriftyDAgger requires the lowest amount of human time, and the total amount of time
is relatively consistent. Note that HG-DAgger takes more Total Wall Clock Time as it takes longer to simulate
the “bird’s eye view” of all 3 robots, and that autonomous robots can still make task progress independently
while a human is operating a robot.

Algorithm Human Wall Clock Time (s) Total Wall Clock Time (s)
SafeDAgger 448.0± 48.1 613.0± 33.1
LazyDAgger 415.3± 90.3 609.6± 49.5
HG-DAgger 532.6± 105.2 792.8± 68.7
Ours: ThriftyDAgger 365.4± 88.1 625.5± 52.3

illustrated on the left of the left pane in Figure 4: the objective is to find pairs of cards (all of which are
initially face-down) which have matching pictures on their front side. Examples of a non-matching
pair and a matching pair are illustrated in Figure 4.

All robots which require interventions are placed in a FIFO queue, with participants serving interven-
tion requests sequentially until no robot requires intervention. Thus, the participant may be required
to provide interventions for multiple robots in succession if multiple robots are currently in the queue.
When no robot requires assistance, the teleoperation interface turns black and reports that no robot
currently needs help, at which point participants are instructed to return to the Concentration game.

7.4.2 NASA TLX Survey Results
After each participant is subjected to all 4 conditions (SafeDAgger, LazyDAgger, ThriftyDAgger,
and HG-DAgger) in a randomized order, we give each participant a NASA TLX survey asking them
to rate their mental demand and frustration for each of the conditions on a scale of 1 (very low) -
5 (very high). Results (Figure 4 right pane) suggest that ThriftyDAgger and LazyDAgger impose
less mental demand and make participants feel less frustrated than HG-DAgger and SafeDAgger.
During experiments, we found that participants found it cumbersome to keep track of all of the robots
simultaneously in HG-DAgger, while the frequent context switches in SafeDAgger made participants
frustrated since they were often unable to make much progress in the Concentration Game and felt
that the robot repeatedly asked for interventions in very similar states.

7.4.3 Wall Clock Time
We report additional metrics on the wall clock time of each condition in Table 7. Since all experiments
are run for the same 350 time steps, total wall clock time is relatively consistent. However, HG-
DAgger takes longer, as it takes more compute to render all three robot views at once. ThriftyDAgger
takes less total human time than the baselines, allowing the human to make more progress on
independent tasks. Note that other robots in autonomous mode can still make task progress during
human intervention. Note also that HG-DAgger requires human attention for the Total Wall Clock
Time, as the human must supervise all the robots even if he or she is not actively teleoperating one
(as recorded by Human Wall Clock Time).

7.4.4 Detailed Protocol
For the user study, we recruited 10 participants aged 18-37, including members without any knowledge
or experience in robotics or AI. All participants are first assigned a randomly selected user ID. Then,
participants are instructed to play a 12-card game of Concentration (also known as Memory) (https:
//www.helpfulgames.com/subjects/brain-training/memory.html) in order to learn how
to play. Then, users are given practice with both the robot-gated and human-gated teleoperation
interfaces. To do this, the operator of the study (one of the authors) performs one episode of the task
in the robot-gated interface and briefly explains how to control the human-gated interface. Then,
participants are instructed to perform one practice episode in the robot-gated teleoperation interface
and spend a few minutes exploring the human-gated interface until they are confident in the usage of
both interfaces and in how to teleoperate the robots. In the robot-gated experiments, participants are
instructed to play Concentration when no robot asks for help, but to immediately switch to helping the
robot whenever a robot asks for help. In the human-gated experiment with HG-DAgger, participants
are instructed to continuously monitor all of the robots and perform interventions which they believe
will maximize the number of successful episodes. During the robot-gated study, participants play

18

https://www.helpfulgames.com/subjects/brain-training/memory.html
https://www.helpfulgames.com/subjects/brain-training/memory.html

the 24-card version of Concentration between robot interventions. If a participant completes the
game, new games of Concentration are created until a time budget of robot interactions is hit. Then
for each condition, the participant is scored based on (1) the number of times the robot successfully
completed the task and (2) the number of total matching pairs the participant found across all games
of Concentration.

19

	Introduction
	Related Work
	Problem Statement
	ThriftyDAgger
	Novelty Estimation
	Risk Estimation
	Regulating Switches in Control Modes
	Computing Risk and Novelty Thresholds from Data
	ThriftyDAgger Overview

	Experiments
	Evaluation Metrics
	Comparisons
	Peg Insertion in Simulation
	User Study: Controlling A Fleet of Three Robots in Simulation
	Physical Experiment: Visuomotor Cable Routing

	Discussion and Future Work
	Appendix
	Algorithm Details
	ThriftyDAgger
	Behavior Cloning
	SafeDAgger
	LazyDAgger
	HG-DAgger

	Hyperparameter and Implementation Details
	ThriftyDAgger
	Behavior Cloning
	SafeDAgger
	LazyDAgger
	HG-DAgger

	Environment Details and Additional Metrics
	Peg Insertion in Simulation
	Block Stacking in Simulation
	Physical Cable Routing

	User Study Details
	User Study Interface
	NASA TLX Survey Results
	Wall Clock Time
	Detailed Protocol

