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ABSTRACT
Recently, stable diffusion (SD) models have typically flourished

in the field of image synthesis and personalized editing, with a
range of photorealistic and unprecedented images being success-
fully generated. As a result, widespread interests have been ignited
to develop and use various SD-based tools for visual content cre-
ations. However, the exposures of AI-created contents on public
platforms could raise both legal and ethical risks. In this regard, the
traditional methods of adding watermarks to the already generated
images (i.e. post-processing) may face a dilemma (e.g., being erased
or modified) in terms of copyright protection and content monitor-
ing, since the powerful image inversion and text-to-image editing
techniques have been widely explored in SD-based methods. In this
work, we propose a Safe and high-traceable Stable Diffusion frame-
work (namely Safe-SD) to adaptively implant the graphical water-
marks (e.g., QR code) into the imperceptible structure-related pixels
during generative diffusion process for supporting text-driven in-
visible watermarking and detection. Different previous high-cost
injection-then-detection training framework, we design a simple
and unified architecture, which makes it possible to simultane-
ously train watermark injection and detection in a single network,
greatly improving the efficiency and convenience of use. Moreover,
to further support text-driven generative watermarking and deeply
explore its robustness and high-traceability, we elaborately design a
𝜆-sampling and 𝜆-encryption algorithm to fine-tune a latent diffuser
wrapped by a VAE for balancing high-fidelity image synthesis and
high-traceable watermark detection. We present our quantitative
and qualitative results on two representative datasets LSUN, COCO
and FFHQ, demonstrating state-of-the-art performance of Safe-SD
and showing it significantly outperforms the previous approaches.

CCS CONCEPTS
• Security and privacy → Digital rights management; • Com-
puting methodologies→ Artificial intelligence.
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1 INTRODUCTION
“In art, what we want is the certainty that one spark of original

genius shall not be extinguished.”
– Mary Cassatt
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Figure 1: The overview of our proposed Safe-SD framework.
In which, different humans indicate the different roles being
simulated in the AIGC environment such as user, originator,
developer, hacker andmonitor.

Recent years has witnessed the remarkable success of diffusion
models [21, 44, 51], due to its impressive generative capabilities.
After surpassing GAN on image synthesis [11], diffusion models
have shown a promising algorithm with dense theoretical founding,
and emerged as the new state-of-the-art among the deep generative
models [18, 22, 29, 38, 43, 47, 50, 52, 53, 57, 64]. Notably, Stable Dif-
fusion [48], as one of the most popular and sought-after generative
models, has sparked the interests of many researchers, and a series
of SD-based works have been proposed and exploited to produce
plenty of AI-created or AI-edited images, such as ControlNet [67],
SDEdit [40], DreamBooth [49], Imagic [27], InstructPix2Pix [3] and
Null-text Inversion [41], which raises profound concerns about
ethical and legal risks for AI-generated content (AIGC) being un-
scrupulously exposed on public platforms and raises new challenges
for copyright protection and content monitoring.

These concerns may be elaborated into the following three as-
pects: (1) Originator Concern. An artistic work or photograph
produced by the original author may be edited or modified at will by
AI today and published to the public platform for commercial profit,
which infringes on the interests of the originator. Take Figure 1 as
an example, when a wonderful hand-crafted watercolor painting is
published online by the originator, another user could download it
without any restrictions and then request the SD-based model to
edit the artwork through an accompanying prompt “please edit a
watercolor picture of...”, whereas ultimately attributes the AI-created
production and its ancillary value to the user and the given prompt,
which may have violated the rights of the originator. If this is an
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commercial advertisement or model shooting, product designs or
industrial drawings, etc., it may cause more serious infringement of
interests. (2) Developer Concern. Which means the potential risks
that SD-based tools open sourced by developers may be abused
by people with bad motives to engage in underground activities,
such as fake news fabrication, political rumors publishing or porno-
graphic propaganda, etc., simply by editing human characteristics
(e.g., replacing faces). (3)Monitor Concern.Which means it’s ex-
tremely difficult for the monitor of online platforms to distinguish
which visual contents are produced by AI and judge whether it
should be safely blocked to ensure their compliance with legal
and ethical standards, since the fidelity and texture of AI-created
images have approached human levels. For example, a generated
picture recently have won an art competition [17], which suggests
humans will soon be unable to discern the subtle differences be-
tween AI-generated content and human-created content. Overall,
the above concerns illustrate the fact that the emergence of power-
ful AI-generative tools and the lack of traceability of their generated
productions may open the door to new threats such as artwork
plagiarism, copyright infringement, political rumors publishing,
and portrait rights infringement and so on.

To cope with the above concerns, we propose a Safe and high-
traceable Stable Diffusion framework with a text prompt trigger
for unified generative watermarking and detection, Safe-SD for
short. Note that since Stable Diffusion [48] is an open source model
with most ecologically complete as well as widely used foundation
models and has been applied to numerous generative tasks, we only
focus on the SD-based models for invisible watermark injection and
extraction, which can be further easily extended to other diffusion
models such as DALL-E2 [47], Imagen [50] and Parti [64] by only re-
placing the weights and bias of the U-Net’s parameters in diffusion
models and adding a lightweight inject-convolution layer from our
Safe-SD. Different from existing methods that post-processing [8],
injection-then-detection [65] or are based solely on decoder fine-
tuning [15], our proposed models have the following new features:

• Designing a unified watermarking and tracing framework,
which makes it possible to simultaneously train watermark
injection and detection in a single network to balance high-
fidelity image synthesis and high-traceable watermark de-
tection, greatly improving the training efficiency and con-
venience of use.

• Enabling to implant the graphical watermarks (e.g., QR
code) into the imperceptible structure-related pixels, which
ties the pixels of watermark to each diffusion step for high-
robustness, unlike post-processing methods, may be easily
erased or modified by image inversion or editing models.

• Supporting text-driven image watermarking and multi-
watermarking scenarios, which can be applied to a wider
range of downstream tasks such as: text-to-image synthesis,
text-based image editing, multi-watermarks injection, etc.

Experiments on three representative datasets LSUN-Churches [63],
COCO [36], FFHQ [25] demonstrate the effectiveness of Safe-SD,
showing that it achieves the state-of-the-art generative results
against previous invisible watermarking methods. Further qual-
itative evaluations exhibit the pixel-wise differences between the
original images and watermarked images, and the robustness study

quantitatively evaluates the anti-attack ability, which further veri-
fies the superiority of Safe-SD in balancing high-resolution image
synthesis and high-traceable watermark detection.

2 RELATEDWORK
Diffusion Models. Recent years has witnessed the remarkable

success of diffusion-based generative models, due to their excellent
performance in the diversity and impressive generative capabilities.
These previous efforts mainly focus in sampling procedure [37, 53],
conditional guidance [11, 43], likelihood maximization [28, 29] and
generalization ability [18, 26] and have enabled state-of-the-art
image synthesis. Stable Diffusion [48] is one of the most widely
used diffusion models, due to its open source and user-friendly
features, it has recently gained great attention and become one of
the leading researches in image generation and manipulation.

Image Watermarking Techniques. To trace copyright and
make AI-generated content detectable, numerous watermarking
techniques have been proposed for deep neutral networks [1, 31, 32,
34, 35, 39, 42], which can basically be classified into two categories:
discriminative models and generative models. In discriminative
models, watermarking techniques are mainly dominated by white-
box or black-box models. The white-box models [4, 7, 13, 33, 55, 56,
59, 61] need access to the models and their parameters (white-box
access) in order to extract the watermarks, while the black-box
models [5, 10, 20, 23, 54, 62, 66, 68] only adopt predefined inputs
as triggers to query the models (black-box access) without car-
ing about their internal details. In generative models, the previous
methods mainly investigate GANs by watermarking all generative
images [9, 14, 45, 70] such as binary strings embedding [14, 65, 70],
textual message encoding [9] and graphic watermark injection [45].
Very recently, some researchers [15, 24, 69] have extended binary
strings embedding technique into diffusion-based architecture for
digital copyright protection, one of the most representative digital
watermark injection methods is Stable Signature [15]. However,
binary digital watermarking suffers from erasuring and overwrit-
ing threats when meeting with DDIM inversion [51], overwriting
attacks [60] and backdoor attacks [6, 19].

Different from them, we explore a more secure and efficient
diffusion-based generative framework Safe-SD, with imperceptible
watermark injection module and textual prompt trigger, which is
designed in a unified watermarking and tracing framework, mak-
ing it possible to simultaneously achieve watermark injection and
detection in a single network, greatly improving the training effi-
ciency and convenience of use formultimedia andAIGC community.
For security, the Safe-SD enables SD-based generative network to
implant the graphical watermarks (e.g., QR code) into the impercep-
tible structure-related pixels and retain high-fidelity image synthe-
sis and high-traceable watermark detection capabilities, which is
hard to be erased or modified as the graphical watermark is tightly
bound to the progressive diffusion process. For robustness, we in-
troduce a fine-tuned latent diffuser with an elaborately designed
𝜆-encryption algorithm for high-traceable watermarking training.
Moreover, we also conduct a hacker attacking study (Sec. 4.5), by
setting up 5 attack tests to evaluate the robustness of proposed
Safe-SD against attacks. Note our Safe-SD methods can be easily
extended to other diffusion-based models such as DALL-E2 [47],

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Stage1: Pre-train graphic watermark injector/extractor 
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Figure 2: The framework of Safe-SD model.

Imagen [50] and Parti [64] by only replacing the weights and bias
of the U-Net’s parameters in diffusion models and adding a light-
weight inject-convolution layer have pretrained in our Safe-SD.

3 METHOD
As depicted in Figure 2, Safe-SD mainly contains two stages: 1)

Pre-training stage for unified watermark injector/extractor (Sec.3.1)
and 2) Fine-tuning stage for latent diffuser with text prompt trig-
ger (Sec.3.2). The former aims to train a modified SD’s first-stage-
model (with a brand new dual variational autoencoder) to obtain
a unified graphic watermark injection and extraction network,
whereas the latter serves as a latent diffuser with an elaborately
designed temporal 𝜆-encryption algorithm for more secure and
high-traceable watermark injection. Moreover, we introduce a novel
prompt triggering mechanism to support text-driven image water-
marking and copyright detection scenes.

During inference, the pipeline of our proposed model is: 1)
Safe-SD first accepts a text condition 𝑐 and an image 𝑥 ({“image
synthesis”: 𝑥 = ∅; “image editing”: 𝑥 }) as inputs, and then the
prompt trigger 𝑝 (·) determines which watermark𝑤 should be in-
jected based on the given condition 𝑐 . Meanwhile Safe-SD randomly
allocates a key𝑚 ∈ {0, 1}𝑇 (𝑇 is diffusion steps) into the next step;
2) The encoder E of the first-stage-model first encodes the image
𝑥 and watermark 𝑤 into latent variables 𝑧𝑖 and 𝑧𝑤 respectively
and then feeds them immediately into the second stage; 3) The
latent diffuser first accepts the latent variables 𝑧𝑖 and 𝑧𝑤 , condition
𝑐 and the key𝑚, then performs temporal 𝜆-encryption algorithm
(Algorithm 1) for high-traceable watermark injection or performs
condition-guided invert denoising (Algorithm 2) for high-fidelity
image synthesis; 4) The decoder D𝑖 of the first-stage-model then
serves as a watermarker to generate the above watermarked images
with 𝜆-encryption for safe readout, and another decoderD𝑤 serves
as a detector to decode the injected watermark hidden from the
images for detection, authentication and copyright trace.

3.1 Pre-training watermark injector/extractor
Our first-stage-model is designed to jointly train a watermark

extractor D𝑤 and an image generator D𝑖 with invisible water-
marking when they are equally fed the latent variables 𝑧𝑚 of an
image mixed with watermark features. Since it is fully pre-trained
to balance the two goals of simultaneously generating high-quality

images and clear watermarks, this first-stage-model can adapt to
accept any latent mixture 𝑧∗𝑚 with 𝜆-encryption watermarking in
the second stage, to ultimately complete the dual decodings. Details
of the first-stage-model are introduced below.

Shared graphic encoder. Given an input image 𝑥 and a ran-
domly searched watermark𝑤 , 𝑥,𝑤 ∈ R𝐻×𝑊 ×3. The shared graphic
encoder E first projects the image 𝑥 and watermark𝑤 into latent
variables 𝑧𝑖 and 𝑧𝑤 , i.e.,, 𝑧𝑖 = E(𝑥), 𝑧𝑤 = E(𝑤), 𝑧𝑖 , 𝑧𝑤 ∈ Rℎ×𝑤×𝑑 ,
where ℎ and𝑤 respectively denote scaled height and width (default
scaled factor 𝑓 = 𝐻/ℎ =𝑊 /𝑤 = 8), and 𝑑 is the dimensionality of
the projected latent variables.

Injection convolution layer. Safe-SD first concatenates the
projected image 𝑧𝑖 and watermark 𝑧𝑤 in the channel dimension,
and then obtains the mixture features 𝑧𝑚 ∈ Rℎ×𝑤×𝑑 through a
simple injection convolution layer 𝑓𝑐 (·) : Rℎ×𝑤×2𝑑 → Rℎ×𝑤×𝑑 .
Formally,

𝑧𝑚 = 𝑓𝑐 (𝑧𝑖 , 𝑧𝑤) (1)

Dual goal decoders. To synchronously train a image generator
D𝑖 with invisible watermarking and a watermark extractor D𝑤 ,
we introduce a dual decoding mechanism with two decoder-copies
from SD’s first-stage-model (i.e., vae [12]), and one copy with frozen
parameters 𝜃 𝑓 and the other copy with trainable parameters 𝜃𝑡 .
Note that since decoderD𝑖 plays the role of an image generatorwith
an invisible watermark injection and has been fed to the mixture
variable 𝑧𝑚 , it needs to be assigned to the frozen parameter 𝜃 𝑓 for
watermarking image generation, while decoder D𝑤 only serves as
a watermark extractor (also with the mixed variables 𝑧𝑚 as input),
therefore need to be assigned trainable parameters 𝜃𝑡 for watermark
extraction. Formally,

𝑥 = D𝑖 (𝑧𝑚 ;𝜃 𝑓 ), �̂� = D𝑤 (𝑧𝑚 ;𝜃𝑡 ) (2)

To maximize the accuracy of watermark extraction and enabling
to generate high-resolution images, we set up a weighting-based
loss L𝑠1 to supervise the entire first-stage-model, which can be
formally represented as,

L𝑠1 = | |𝑥 − 𝑥 | |2 + 𝛾 · | |𝑤 − �̂� | |2 + L𝑎𝑑𝑣 (3)

where 𝛾 is the weighting hyperparameter (default 𝛾 equals 1), and
L𝑎𝑑𝑣 denotes the adversarial training loss, which maintains the
same setting as in VQGAN [12].

3
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Algorithm 1 𝜆-sampling based forward diffusion
Input: Latent image 𝑧𝑖 and watermark 𝑧𝑤 , diffusion steps𝑇

Output: 𝜆-watermarking noise 𝑧𝑇𝑚 , key𝑚
1: 𝑡 ∼ 𝜆-𝑑𝑖𝑠 (𝑡 ) = {1, 3, ...,𝑇︸    ︷︷    ︸

𝜆

, 0, ..., 0︸︷︷︸
𝑇 -𝜆

};

2: 𝑡 → 𝜆 (𝑡 ) ;
3: for 𝑡 = 1,2,...,𝑇 do
4: if 𝜆 (𝑡 ) = 0 then
5: 𝑧

(𝑡 )
𝑖

= 𝛼𝑡 · 𝑧 (𝑡−1)𝑖
+
√︃
1 − 𝛼2

𝑡 𝜖, 𝜖 ∼ N(0, 𝑰 ) ;
6: 𝑧

(𝑡 )
𝑖

→ 𝑧
(𝑡 )
𝑚

7: 𝑚𝑡 = 0;
8: else if 𝜆 (𝑡 ) = 𝑡 then
9: 𝑓𝑐 (𝑧 (𝑡−1)𝑖

, 𝑧
(𝑡−1)
𝑤 ) → 𝑧

(𝑡−1)
𝑚 ;

10: 𝑧
(𝑡 )
𝑚 = 𝛼𝑡 · 𝑧 (𝑡−1)𝑚 +

√︃
1 − 𝛼2

𝑡 𝜖, 𝜖 ∼ N(0, 𝑰 ) ;
11: 𝑚𝑡 = 1;
12: end if
13: 𝑧

(𝑡 )
𝑤 = 𝛼𝑡 · 𝑧 (𝑡−1)𝑤 +

√︃
1 − 𝛼2

𝑡 𝜖, 𝜖 ∼ N(0, 𝑰 ) ;
14: end for
15: Iter+ (𝑧 (𝑡 )𝑚 ) → 𝑧𝑇𝑚 ;
16: Compose(𝑚𝑡 ) →𝑚;
17: return {𝑧𝑇𝑚,𝑚}

3.2 Fine-tuning latent 𝜆-encryption diffuser
The second-stage-model mainly serves as a temporal 𝜆-encryption

diffuser with prompt triggering mechanism, which mainly relies
on a temporal injection algorithm by accepting a binary key𝑚 ∈
{0, 1}𝑇 as instruction-code to control whether each diffusion step
requires performing watermark injection, for cryptographic image
synthesis with minor structural changes. Details of the second-stage-
model are as follows.

Prompt trigger. The prompt trigger is designed to achieve non-
sensitive watermark triggering, which accepts a textual editing- or
synthesis-related instruction as input, by following a CLIP embed-
ding layer and a linear prompt trigger layer, to ultimately obtain a
watermark (predefined or user-defined watermark) with the highest
probability for subsequent invisible watermark injection. Moreover,
for stable copyright protection, Safe-SD can also support water-
mark injection based on special instructions, such as when given
the instruction: “Please help me edit this personal photo with my
avatar watermark [U]” and the accompanying avatar “[U]” as a
personalized watermark, Safe-SD can be triggered directly with
this specified watermarking LOGO. Note that in our experiments,
we adopt a public LOGO dataset 1 to represent pre-defined or user-
defined watermarks for the training of the Safe-SD.

Forward diffusion with 𝜆-sampling. To enable the watermark
to be adaptively injected into the image synthesis process with tem-
poral diffusion and to maintain traceability, we propose the forward
diffusion with 𝜆-sampling. We first introduce the definitions of 𝜆-
sampling and 𝜆-distribution below, and then explain how it can be
used for watermark injection based on temporal encryption.

First, for a given sequence (𝑥1, ..., 𝑥𝑁 ), the 𝜆-sampling operation
is defined as: randomly selecting 𝜆 elements from the sequence
with 𝑁 elements for sampling, and at the same time, the unsampled
elements are set to 0. Thereafter the obtained discrete distribution is
1https://github.com/msn199959/Logo-2k-plus-Dataset

Algorithm 2 𝜆-encryption based inversion denoising
Input: Latent image 𝑧𝑖 and watermark 𝑧𝑤 , denoising key𝑚

Output: 𝜆-encrypted mixture 𝑧0𝑚 , latent image 𝑧0
𝑖
and watermark 𝑧0𝑤

1: for t =𝑇 ,𝑇 − 1,...,1 do
2: if𝑚𝑡 = 0 then

3: 𝑧
(𝑡−1)
𝑖

=
√
𝛼𝑡−1 (

𝑧
(𝑡 )
𝑖

−
√
1−𝛼𝑡𝜖 (𝑡 )𝜃

(𝑧 (𝑡 )
𝑖

,𝑐,𝑡 )
√
𝛼𝑡

) +
√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 ·

𝜖𝜃 (𝑧 (𝑡 )𝑖
) + 𝜎𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ) ;

4: else if𝑚𝑡 = 1 then

5: 𝑧
(𝑡−1)
𝑚 =

√
𝛼𝑡−1 (

𝑧
(𝑡 )
𝑚 −

√
1−𝛼𝑡𝜖 (𝑡 )𝜃

(𝑧 (𝑡 )𝑚 ,𝑐,𝑡 )
√
𝛼𝑡

) +
√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 ·

𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )𝑚 ) + 𝜎𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ) ;
6: end if

7: 𝑧
(𝑡−1)
𝑤 =

√
𝛼𝑡−1 (

𝑧
(𝑡 )
𝑤 −

√
1−𝛼𝑡𝜖 (𝑡 )𝜃

(𝑧 (𝑡 )𝑤 ,𝑐,𝑡 )
√
𝛼𝑡

) +
√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 ·

𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )𝑤 ) + 𝜎𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ) ;
8: end for
9: Iter− (𝑧 (𝑡 )

𝑖
, 𝑧

(𝑡 )
𝑤 ) → (𝑧0

𝑖
, 𝑧

0,𝑖
𝑤 ) ;

10: Iter− (𝑧 (𝑡 )𝑚 , 𝑧
(𝑡 )
𝑤 ) → (𝑧0𝑚, 𝑧

0,𝑚
𝑤 ) ;

11: 𝑧0,𝑚𝑤 → 𝑧0𝑤 if𝑚0 = 1 else 𝑧0,𝑖𝑤 → 𝑧0𝑤 ;
12: return {𝑧0𝑚 , 𝑧0

𝑖
, 𝑧0𝑤 }.

referred to as the “𝜆-distribution” corresponding to this 𝜆-sampling,
abbreviated as 𝜆-𝑑𝑖𝑠 (·), where,

𝜆-𝑑𝑖𝑠 (𝑖) =
{
𝑥𝑖 if 𝑥𝑖 is sampled,
0 otherwise. (4)

Then, we introduce this 𝜆-sampling based temporal encryption
mechanism, which aims to bind a given watermark𝑤 to a diffusion
synthesis process 𝑞(𝑧 (𝑡 )𝑚 |𝑧 (𝑡−1)

𝑖
, 𝑧

(𝑡−1)
𝑤 ) and simultaneously gener-

ate a binary key𝑚 for traceability, as illustrated in Algorithm 1.
As shown in Figure 3, when 𝜆(𝑡) equals 𝑡 , the Safe-SD is activated
to perform the watermark injection process through a temporal
injection cell (right side of Figure 3), which is consistent with the
first-stage-model to ensure good generalization for watermark in-
jection and can be formally described as,

𝑧
(𝑡−1)
𝑚 = 𝑓𝑐 (𝑧 (𝑡−1)𝑖

, 𝑧
(𝑡−1)
𝑤 ) (5)

𝑧
(𝑡 )
𝑚 = 𝛼𝑡 · 𝑧 (𝑡−1)𝑚 +

√︃
1 − 𝛼2𝑡 𝜖, 𝜖 ∼ N(0, 𝑰 ) (6)

where 𝑓𝑐 (·) denotes an aforementioned learnable injection con-
volution layer proposed by us for mapping the concatenation of
the latent image 𝑧 (𝑡−1)

𝑖
and watermark 𝑧 (𝑡−1)𝑤 into a latent water-

marking mixture 𝑧 (𝑡−1)𝑚 . Whereas, when 𝜆(𝑡) equals 0, the Safe-SD
performs this forward diffusion simply by adding random noise
𝜖 ∼ N(0, 𝑰 ) to the latent vector 𝑧 (𝑡−1)

𝑖
of the image from the previ-

ous step, formally,

𝑧
(𝑡 )
𝑚 = 𝛼𝑡 · 𝑧 (𝑡−1)𝑖

+
√︃
1 − 𝛼2𝑡 𝜖, 𝜖 ∼ N(0, 𝑰 ) (7)

Note Safe-SD uses a binary value of 0 or 1 to record this forward
diffusion process with 𝜆-sampling and then to compose them into a
binary key𝑚 ∈ {0, 1}𝑇 , which will serve as readout to control the
subsequent inverted denoising.

Inverted denoising based 𝜆-encryption. To fine-tune the la-
tent diffuser from second-stage-model to enable the input image,
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Figure 3: The forward diffusion with 𝜆-sampling watermark-
ing.

watermark and their latent mixture to be correctly denoised by an
U-Net network, and to ultimately ensure high-fidelity image synthe-
sis and watermark extraction, we propose this inverted denoising
module based 𝜆-encryption. Consistent with the forward process
mentioned above, this inverted denoising module is controlled by
an if-else-branched Markov chain, which is recorded by the binary
key𝑚 (e.g., 10101101) generated above. Similarly, we first introduce
the 𝜆-encryption mechanism below, and then explain how it can be
used for inverted denoising.

First, for a given sequence (𝑥1, ..., 𝑥𝑁 ) and a key𝑚 ∈ {0, 1}𝑁 ,
this 𝜆-encryption is defined as: at any position where𝑚𝑖 = 1, the
original data 𝑥𝑖 is modified into 𝑥∗

𝑖
by superimposing a perturbation

𝑥Δ onto 𝑥𝑖 (i.e., 𝑥∗𝑖 = 𝑥𝑖 ⊕ 𝑥Δ), while keeping the original data
unchanged at other positions where𝑚𝑖 = 0, to finally obtain the
encrypted sequence. The advantage of this 𝜆-encryption method is
that it maintains the distribution of the original data as much as
possible while achieving controllable encryption.

Then, we introduce a 𝜆-encryption based inverted denoising strat-
egy, which treats the latent watermark 𝑧𝑤 as a perturbation when
𝑚 = 1, and 𝑧𝑤 is subsequently superimposed on the latent variable
𝑧𝑖 of the image (i.e., 𝑧∗𝑚 = 𝑧𝑖 ⊕ 𝑧𝑤 ) by an injection convolution layer
𝑓𝑐 (·) to ultimately obtain a watermarked image (i.e., encrypted
vector) in latent space, as shown in Figure 3(b). Formally,

𝑧
(𝑡 )
𝑚 = 𝑧

(𝑡−1)
𝑖

⊕ 𝑧
(𝑡−1)
𝑤 = 𝑓𝑐 (𝑧 (𝑡−1)𝑖

, 𝑧
(𝑡−1)
𝑤 ) (8)

Furthermore, as illustrated in Algorithm 2, when 𝑚 = 0, the la-
tent variable 𝑧𝑖 of the original image is directly sent to U-Net for
denoising without adding any disturbance. As shown in Figure 4,
when denoising the perturbed image 𝑧 (𝑡 )𝑚 , the watermark 𝑧

(𝑡 )
𝑤 is

simultaneously fed into U-Net for balancing image generation and
watermark extraction. Note that this does not require using U-Net
twice but simply by first concatenating them and then feeding them
together into a shared U-Net network 𝜖𝜃 (·) for denoising as,

(𝑧 (𝑡−1)𝑚 , 𝑧
(𝑡−1)
𝑤 ) = S𝑑𝑑𝑖𝑚

(
𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )𝑚 , 𝑧
(𝑡 )
𝑤 |𝑐, 𝑡)

)
(9)

where S𝑑𝑑𝑖𝑚 (·) denotes the DDIM [51] sampling strategy executed
during inference, which is sampled from the predicted 𝜖 (𝑡 )

𝜃
to ob-

tain the final 𝑧 (𝑡−1)𝑚 and 𝑧
(𝑡−1)
𝑤 (through a tensor split operation

torch.chunk()). Similarly, when an unperturbed image 𝑧
(𝑡 )
𝑖

as
input, the watermark 𝑧 (𝑡 )𝑤 is also sent to U-Net for denoising as,

(𝑧 (𝑡−1)
𝑖

, 𝑧
(𝑡−1)
𝑤 ) = S𝑑𝑑𝑖𝑚

(
𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )
𝑖

, 𝑧
(𝑡 )
𝑤 |𝑐, 𝑡)

)
(10)

(a) The inverted denoising process. (b) The conditional denoising diffuser.     

Figure 4: The inverted denoising based 𝜆-encryption predic-
tion.

Fine-tuning objectives. To fine-tune this latent diffuser with
𝜆-sampling and 𝜆-encryption to adapt to the dual goal decoders
from the first-stage-model, we set up a stepwise denoising loss,

L𝑠2 = | | 𝜖 − 𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )𝑚 , 𝑧
(𝑡 )
𝑤 )︸                  ︷︷                  ︸

𝑚𝑡=1

| |22 + || 𝜖 − 𝜖
(𝑡 )
𝜃

(𝑧 (𝑡 )
𝑖

, 𝑧
(𝑡 )
𝑤 )︸                  ︷︷                  ︸

𝑚𝑡=0

| |22 (11)

where 𝜖 ∼ N(0, 𝑰 ) denotes standard Gaussian noise, which is con-
sistent with Stable Diffusion [48]. Moreover, the classifier-free guid-
ance technique [22] is also used in the training of Safe-SD.

4 EXPERIMENTS
4.1 Experimental Setting

Datasets.We follow [12] to pre-train the first-stage-model of our
Safe-SD on LSUN-Churches [63], COCO [36], FFHQ 2 [25] and Logo-
2K [58] datasets with image resolution 256×256, and further follow
Dreambooth [49] to fine-tune the latent diffuser of the second-stage-
model for 𝜆−encrypted watermark injection. For the training of
the text-conditional diffusion models, we follow [49] to leverage a
textual prompt (e.g., “a photo of a church with watermark [V] (or
[U])” ) as the guidance condition and adopt the graphical LOGOs
from Logo-2K as pre-defined watermarks to finetune our Safe-SD
model in our experiments. Specifically, 126, 227 images on training
set of LSUN-Churches, 63, 000 images on training set of FFHQ and
167, 140 watermarks on Logo-2K are utilized to train the models.
During testing, 1, 000 images and 1, 000 watermarks are randomly
composed to perform the quantitatively experimental evaluations.

Implementation details. We follow SD [48] to resize all the
images to a resolution of 256×256, and the batch size is set to 4. The
scaling factor 𝑓 is set to 8 and the guidance factor of the classifier-
free is set to 7.5. During inference, the pre-trained CLIP embedding
layer [46] is leveraged tomatch the suitablewatermarks for adaptive
prompt triggering strategy and DDIM [51] sampling is executed
for final image synthesis. All the experiments are performed for 20
epochs on 2 NVIDIA RTX3090 GPUs with PyTorch framework and
the optimization and schedule setups are consistent with [48].

4.2 Image generation quality for watermarking
Qualitative Evaluation. To evaluate the image generation qual-

ity and the fidelity with watermarking, we first conduct the quali-
tative experiments by visualizing the pixel-level differences (×10)
between original image andwatermarked image (marked asW/.Wa-
termark), which are presented in Figure 5. Specifically, in Figure 5,
2https://github.com/NVlabs/ffhq-dataset
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Figure 5: Evaluation the image quality by visualizing the pixel-level differences (×10) between original image and watermarked
image (marked as W/. Watermark). Top: natural images from COCO [36]. Mid: facial images from FFHQ [25]. Bottom: text-
generated images.

Methods Type PSNR ↑ FID ↓ LPIPS ↓ CLIP ↑
SSL Watermark [2022] string 31.60 19.63 0.261 84.03
Baluja et.al. [2019] graphics 30.41 20.39 0.317 83.63
FNNS [2021] string 32.71 19.03 0.243 85.99
HiDDeN [2018] string 32.99 19.49 0.244 85.43
Stable Signature [2023] string 31.09 19.47 0.263 87.90
Safe-SD (Ours) graphics 33.17 18.89 0.232 88.15

Table 1: The comparison results on LSUN-Churches dataset.

we respectively test Safe-SD on natural images from COCO [36]
(Top), facial images from FFHQ [25] (Mid), and text-generated im-
ages (Bottom). From Figure 5, we can observe that: 1) All water-
marked images by our Safe-SD maintain high-fidelity. Partic-
ularly, even for challenging facial images, the watermarked results
still can finely preserve the details of hair. Moreover, combined with
the results of Figure 6 (additionally presenting the detected water-
marks), we can notice that our Safe-SD can simultaneously balance
the quality of the detected watermarks and thewatermarked images.
It is worth noting that compared to previous digital watermarking
methods [15, 69], our Safe-SD has higher fault tolerance. For ex-
ample, when some several pixels are incorrectly predicted, it will
not lead to incorrect detection and authentication in our method,
but in the digital watermarking method, the incorrect prediction of
every binary bit (e.g., “0101”→“0111”) may seriously affect the final
identification result. 2) There are still subtle textured differ-
ences in enlarged pixel-level, but that’s almost imperceptible
and well ensures traceability. According to the enlarged (×10)
pixel-wise results, it can be observed that the generative differences
mainly come from visual contents with dense texture, such as hair
and eyes in facial images, but note that it is almost impossible to

Methods Type PSNR ↑ FID ↓ LPIPS ↓ CLIP ↑
HiDDeN [2018] string 32.19 19.58 0.217 93.32
Baluja et.al. [2019] graphics 29.17 20.85 0.403 91.93
FNNS [2021] string 31.96 19.56 0.220 92.00
SSL Watermark [2022] string 30.47 19.91 0.262 91.51
Stable Signature [2023] string 30.88 20.33 0.231 93.01
Safe-SD (Ours) graphics 32.73 19.36 0.215 93.99

Table 2: The comparison results on FFHQ dataset [25].

discern by the human eyes. That also reveals that the informa-
tion hidden in the image cannot disappear, but can only be moved
to an imperceptible location to ensure traceability. 3) Safe-SD is
suitable for a wide variety of images and well supports text-
driven generative watermarking. As shown in Figure 5, the
experiments are conducted on a wide variety of images, such as
the natural images from COCO [36], facial images from FFHQ [25],
and text-generated images (bottom), showing all the generated im-
ages watermarked by our Safe-SD maintain high-fidelity, which
demonstrates the powerful generalization ability of our Safe-SD.
Besides, Figure 6 presents more qualitative comparison results with
previous graphical watermarking method [2], which further verifies
the superiority of our model in balancing high-resolution image
synthesis and high-traceable watermark detection.

Quantitative Evaluation. Following [15], we further quantita-
tively evaluate our approach in PSNR, FID, LPIPS and CLIP-Score
metrics on LSUN-Churches and FFHQ datasets, which is shown
in Table 1 and Table 2. From the results in the two tables, we can
observe that our model Safe-SD achieves the state-of-the-art per-
formance on all four metrics and obtains the best generative re-
sults, even with more challenging graphical watermarking, i.e.,
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Figure 7: The effect of the 𝜆. Two groups of instances are
presented to explore the influence of the frequency and time
period of 𝜆-encryption. Note the solid ball denotes the cur-
rent 𝜆-𝑑𝑖𝑠 (𝑡) is not 0.
directly interfering with pixels, compared to string-based meth-
ods [15, 16, 30, 70]. In particular, our model outperforms Stable
Signature, a recent generative work, by 6.69%, 2.98%, 11.79% and
0.28% in four metrics on the LSUN-Churches dataset, and exceeds
by 5.99%, 4.77%, 6.93% and 1.05% on the FFHQ dataset, which further
verifies the superiority and effectiveness of Safe-SD.

4.3 Explore on 𝜆-encryption watermarking
The frequency of 𝜆-encryption. To deeply explore the perfor-

mance of 𝜆-encryption in image watermarking in our approach, we
perform a study on the impact of watermarking frequency 𝜆 on im-
age synthesis quality, as shown in Figure 7. It can be observed that
with the increase of 𝜆 (i.e., from 5 to 15), the performance of gener-
ated images may be affected due to the interference of watermark

information, so we need to balance the frequency of watermark
injection and the image’s fidelity and finally choose 𝜆 = 10 (50 steps
in total) as the appropriate watermarking frequency.

The time period of 𝜆-encryption. To further explore the in-
fluence of different injection time of watermark on image synthesis
quality, we also perform a study on the watermarking time period 𝑡 ,
as shown in Figure 7. From Figure 7, we can observe that the earlier
the injection occurs, the less high-frequency information in the
image is retained in the final generative results. Particularly, when
𝜆 = 15 and the watermarking time period is in the early stage (refer
to the first column of each case in Figure 7(c)), it will cause image
distortion, which indicates that the watermarking unit (Figure 3)
should be activated set as often as possible during the middle to
end time period of latent diffusion, for better balancing watermark
injection and generative effects.

4.4 Analysis on hyper-parameter 𝛾
To further trading off the high-fidelity image synthesis and high-

traceable watermark injection, we perform this study on hyper-
parameter 𝛾 (refer to Formula 3), as illustrated in Figure 8. From
Figure 8(a), we can observe that: 1)When the loss of image recon-
struction and the loss of watermark decoding have the same weight
(i.e., 𝛾 = 1), both of them can steadily decrease until the model
converges; 2) When reducing 𝛾 to make the model focus on image
synthesis (i.e., 𝛾 = 0.1), the loss curves of both have a significant
decline in the early stage, but after that the watermark decoding
becomes difficult to converge. Correspondingly, the decoded LOGO
has become obviously blurred at this time; 3)When 𝛾 further de-
creases (i.e., 𝛾 = 0.01), similar conclusion is further verified. Based
on the above discussion, we finally choose 𝛾 = 1 to balance image
synthesis and watermark decoding.

4.5 The robustness of watermarking
Anti-attack test. We conduct the anti-attack test to evaluate

the robustness of our graphical watermarking against a variety
7
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Figure 8: The effect of the hyper-parameter 𝛾 . The generated images, watermarks and the curve of loss value are shown to
qualitatively and quantitatively assess the effect of 𝛾 .

PSNR ↑ FID ↓ LPIPS ↓ CLIP-Score ↑
None (Ours) 33.17 18.89 0.232 88.15
Rotate 90 32.96 18.94 0.228 87.72
Resize 0.7 32.18 19.11 0.242 87.03
Brightness 2.0 30.53 19.77 0.257 86.09
Crop 10% 31.01 19.30 0.250 85.01
Combined 29.24 20.18 0.275 83.49

Table 3: Robustness studies on LSUN-Churches dataset.

of attacks, as shown in Table 3. Specifically, we follow Stable Sig-
nature [15] to set up 5 attack tests: 1) Rotate 90, 2) Resize 0.7, 3)
Brightness 2.0, 4) Crop 10%, 5) Combined. From Table 3, we can
observe that our approach is robust to the various attacks. For ex-
amples, the PSNR metric under the most challenging combined
attack is still higher than 29%, and the LPIPS metric is still lower
than 0.28%, which demonstrate the excellent robustness of our Safe-
SD. Moreover, the CLIP-Scores under all attacks are still higher than
83%, which demonstrate most of the semantic information is still
retained in the watermarked images. Moreover, it can be observed
that the brightness has relatively maximal impact on generation
quality (e.g., PSNR, FID, LPIPS), and even if the image is cropped to
10% of the original image, it still retains a high watermark recogni-
tion rate, which verifies the effectiveness of Safe-SD.

Multi-watermarking test. Figure 9 shows the test results of
multiple watermarking. From Figure 9, we can notice that when
multiple watermarks are injected at the same time, our Safe-SD still
could maintain the high-quality image characteristics. Meanwhile,
the two injected watermarks in Figure 9 can still be clearly extracted,
demonstrating the superiority of our model in multi-watermarking
scenarios.

5 CONCLUSION
In this paper, we have presented Safe-SD, a safe and high-traceable

Stable Diffusion framework with text prompt trigger for unified

Original Image
Injected Watermarks

Images with 
Watermarks

Detected 
Watermark1

Detected 
Watermark2

Figure 9: Multiple watermarking evaluations.

generative watermarking and detection. Specifically, we design
a simple and unified architecture, which makes it possible to si-
multaneously train watermark injection and detection in a single
network, greatly improving the efficiency and convenience of use.
Moreover, to further support text-driven generative watermarking,
we elaborately design a 𝜆-sampling and 𝜆-encryption algorithm to
fine-tune a latent diffuser wrapped by a VAE for balancing high-
fidelity image synthesis and high-traceable watermark detection.
Besides, we introduce a novel prompt triggering mechanism to
enable adaptive watermark injection for facilitating copyright pro-
tection. Note the proposed approach can be easily extended to other
diffusion models and can adapt to various downstream tasks. Exper-
iments on the representative LSUN-Churches, COCO, and FFHQ
datasets demonstrate the effectiveness and superior performance of
our Safe-SD model in both quantitative and qualitative evaluations.
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