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A PROOFS OF THE THEOREMS

Whenever the context of an expectation operation is not clear, we disambiguate it by specifying the
variable that the expectation is taken over and its distribution Ex⇠f(x)[x].

A.1 PROOF OF THEOREM 1

Proof. Given that the logarithm function is a strictly increasing function, we can omit it in the
optimization; i.e., �? = argmin� E

⇥
exp(g>�+ `)

⇤
. Because this is an unconstrained optimization,

the optimal solution occurs when the gradient is equal to zero.

E[g exp
�
g>�? + `

�
] = 0,

E[gw?(a,x)] = 0, (7)

where the last equation is due to the equation of the weights in the population optimization problem.

Using the definition for the g vector, Eq. (7) implies that E[w?(a,x)a�(x)] = 0. Thus, we conclude
that in the weighted population (with distribution eF ), the a and �(x) are uncorrelated:

E(a,x)⇠ eF [a�(x)] = 0 (8)

For every set B ⇢ A ⇥ X, we can write:

eF (B) =

Z

B
w?(a,x)dF (a,x). (9)

The Radon-Nikodym theorem implies that w?(a,x) is the Radon-Nikodym derivative:

w?(x, a) =
d eF (x, a)

dF (x, a)
=
ef(x, a)

f(x, a)
(10)

=
ef(x) ef(a) +

n
ef(x, a) � ef(x) ef(a)

o

f(x, a)
, (11)

= wGSW (a,x) +
ef(x, a) � ef(x) ef(a)

f(x, a)
(12)

Thus, using Eq. (8) and Assumptions 1 and 3 we can write

sup
a,x

|w?(a,x) � wGSW (a,x)|  ��K/c.

A.2 THEOREM 2

Proof. Given that the logarithm function is a strictly increasing function, we can omit it in the
optimizations. Thus the sample and population solutions are:

b�n = argmin
�

1

n

nX

i=1

exp(g>
i �+ `i),

�? = argmin
�

E
⇥
exp(g>�+ `)

⇤
.

The estimator is an M-estimator and given our sample-splitting, the proof follows the asymptotic
normality of the estimator (Van der Vaart, 2000, Chapter 5.3).

p
n
⇣
b�n � �?

⌘
d! N (0,V ), (13)

To obtain the value of V1, note that the optimal sample solution occurs at the solution of the following
equation (Z-estimator equation):

nX

i=1

gi exp
⇣
g>
i
b�n

⌘
= 0.
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Thus, the score function is  � = gi exp
�
g>
i �
�
. We denote the matrix of derivatives of the score

function by  ̇� whose elements are defined as  ̇�,kk0 = @ �,k/@�k0 . Using the theorem in (Van der
Vaart, 2000, Chapter 5.3), we can write:

V = E[ ̇�? ]�1E[ �? >
�? ]E[ ̇�? ]�1. (14)

In the above equation we have assumed that E[ ̇�? ] matrix is invertable. An unbiased sample
estimation of V can be obtained by substituting b�n in place of �? and taking empirical expectations.

An application of the delta method on Eq. (13) yields:

p
n

0

@
exp

⇣
g>
i
b�n + `i

⌘

1
n

Pn
i=1 exp

⇣
g>
i
b�n + `i

⌘ �
exp

�
g>
i �

? + `i
�

1
n

Pn
i=1 exp

�
g>
i �

? + `i
�

1

A d! N (0,�2), (15)

p
n

 
bwn(ai,xi) �

exp
�
g>
i �

? + `i
�

E[exp(g>�? + �)]

!
d! N (0,�2), (16)

p
n ( bwn(ai,xi) � w?(ai,xi))

d! N (0,�2), (17)

where Eq. (16) is due to Slutsky’s theorem and Eq. (17) is obtained by substitution of the definition for

w?(ai,xi). The variance is obtained by defining the Softmax function s(�) =
exp(g>

i �+`i)
1
n

Pn
i=1 exp(g>

i �+`i)
.

We denote the gradient of the Softmax function by rs(�). We can write (Van der Vaart, 2000,
Chapter 3):

�2(ai,xi) = rs(�?)> V rs(�?).

Substituting the value of V from (14), we conclude:

�2(ai,xi) = rs(�?)> E[ ̇�? ]�1E[ �? >
�? ]E[ ̇�? ]�1 rs(�?).

Note that the value of the softmax function depends on the value of (ai,xi) at each point.

B NEURAL NETWORK AND TRAINING DETAILS

B.1 DETAILS OF THE `✓ NEURAL NETWORK

The `✓ network is defined as follows:

`✓(z) = cz + dense3( elu( layer_norm( dense2( tanh( dense1( z ) ) ) ) ) )

The linear term cz acts as a skip connection. The input and output dimensions for the dense linear
layers are as follows:

dense1 :1 7! h,

dense2 :h 7! h,

dense3 :h 7! 1,

where h denotes the hidden dimension. Because the softmax function is invariant to the constant
shifts, we do not have any bias terms for dense3 and the skip connection. dense2 also does not
have the bias because of the proceeding layer normalization. The dimension h has been tuned as a
hyperparameter on a validation data and set to 10.

B.2 DETAILS OF THE PROPENSITY SCORE COMPUTATION FOR IPW

We model both f(a) and f(a|x) as univariate normal distributions. This is the correct assumption
in our synthetic data. The marginal distribution f(a) is estimated by simply finding the mean and
standard deviation of the observed treatment values. For the conditional distribution, we write
a|x ⇠ N (µa(x),�2

a|x), where µa(x) is modeled using a feedforward neural network with two layers
and �2

a|x is estimated using the residuals of the neural network predictions. The dimension of the
neural network has been tuned as a hyperparameter on validation data and set to 30.
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B.3 FURTHER TRAINING DETAILS

We used PyTorch to implement E2B. For reproducibility purposes, we provide the final settings used
for training:

• Learning algorithm: Adam with learning rate 0.001, no AMSGrad.
• Batch size: 100
• Max epochs: 400
• Weight decay: 2.5 ⇥ 10�5.
• Validation on a dataset of size 400, every 10 steps.

B.4 DETAIL OF PERMUTATION WEIGHTING

We created a stacked data by stacking {(xi, ai, ai �xi)}ni=1 and {(xi,eai,eai �xi)}ni=1, where ea are
permutations of the original treatments. We trained a random forest classifier to predict whether each
data is from the permuted or the original set. We tried both random forests and neural networks and
obtained better results with the former. We also calibrated the predicted probabilities of the classifier
before computation of the weights.

C DATA AND PREPROCESSING DESCRIPTION
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