
What can linearized neural networks actually say
about generalization?

A General training setup

As mentioned in the main text, all our models are trained using the same scheme which was selected
without any hyperparameter tuning, besides ensuring a good performance on CIFAR2 for the neural
networks. Namely, we train using stochastic gradient descent (SGD) to optimize a binary cross-
entropy loss, with a decaying learning rate starting at 0.05 and momentum set to 0.9. Furthermore,
we use a batch size of 128 and train for a 100 epochs. This is enough to obtain close-to-zero training
losses for the neural networks, and converge to a stable test accuracy in the case of the linearized
models1. In fact, in the experiments involving CIFAR2, we train all models for 200 epochs to allow
further optimization of the linearized models. Nevertheless, even then, the neural networks perform
significantly better than their linear approximations on this dataset.

In terms of models, all our experiments use the same three models: A multilayer perceptron (MLP)
with two hidden layers of 100 neurons each, the standard LeNet5 from [1], and the standard
ResNet18 [2]. We used a single V100 GPU to train all models, resulting in training times which
oscillated between 5 minutes for the MLP, to around 40 minutes for the ResNet18.

B NTK computation details

We now provide a few details regarding the computation of different quantities involving neural
tangent kernels and linearized neural networks. In particular, in our experiments we make extensive
use of the neural_tangents [3] library written in JAX [4], which provides utilities to compute the
empirical NTK or construct linearized neural networks efficiently.

Eigendecompositions As it is common in the kernel literature, in this work, we use the eigenvectors
of the kernel Gram matrix to approximate the eigenfunctions of the NTK. Specifically, unless stated
otherwise, in all our experiments we compute the Gram matrix of the NTK at initialization using
the 60, 000 samples of the CIFAR10 dataset, which include both training and test samples. To that
end we use the empirical_kernel_fn from neural_tangents which allows to compute this
matrix using a batch implementation. Note that this operation is computationally intense, scaling
quadratically with the number of samples, but also quadratically with the number of classes. For
instance, in the single-output setting of our experiments2, it takes up to 32 hours to compute the Gram
matrix of the full CIFAR10 dataset for a ResNet18 using 4 V100 GPUs with 32Gb of RAM each.
The computation for the LeNet and the MLP take only 20 and 3 minutes, respectively, due to their
much smaller sizes.

Linearization Using neural_tangents, training and evaluating a linear approximation of any
neural network is trivial. In fact, the library already comes with a function linearize which allows
to obtain a fully trainable model from any differentiable JAX function. Thus, in our experiments, we
treat all linearized models as standard neural networks and use the same optimization code to train

1Note that the linearized models converge significantly slower than the neural networks.
2Note that the binary cross-entropy loss can be computed using a single output logit.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



them. In the case of the ResNet18 network, which includes batch normalization layers [5], we fix the
batch normalization parameters to their initialization values when performing the linearization. This
effectively deactivates batch normalization for the linear approximations. Note that in [6] they also
compared neural networks with batch normalization to their linear approximations without it.

Alignment Obtaining the full eigendecomposition of the NTK Gram matrix is computationally
intense and only provides an approximation of the true eigenfunctions. However, in some cases
it is possible to compute some of the spectral properties of the NTK in a more direct way, thus
circumventing the need to compute the Gram matrix. This is for example the case for the target
alignment α(f), which using the formula in Lemma 1 can be computed directly using a weighted
average of the Jacobian. This is precisely the way in which we computed α(φj) for different
eigenfunctions {φj}1000j=1 in Sec. 4.2.

Binarization In most of our experiments we do not work directly with the eigenfunctions of
the NTK, but rather with their binarized versions, i.e., sign(φj(x)). Neverheless, we would like
to highlight that this transformation has little effect on the direction of the targets: In such high-
dimensional setting, the binarized and normal eigenvectors have an inner product of approximately
0.78, while the average inner product between random vectors is of the order of 10−4.

2



C Neural anisotropy experiments

C.1 Dataset construction

We used the same linearly separable dataset construction proposed in [7] to test the NADs computed
using Theorem 1. Specifically, for every NAD u we tested, we sampled 10, 000 training samples
from (x, y) ∼ D(u) where

x = ε yu+w with w ∼ N (0, σ(I − uu>)) and y ∼ U{−1, 1}. (1)

As in [7], we used a value of ε = 1 and σ = 1, and tested on another 10, 000 test samples from the
same dataset.

C.2 NAD computation

We provide a few visual examples of the NADs computed for the LeNet and ResNet18 networks
using the singular value decomposition (SVD) of the mixed second derivative. Specifically, in our
preliminary experiments we did not find any significant difference in the NADs computed using the
average over the data or at the origin, and hence opted to perform the SVD over ∇2

x,θfθ0(0) instead
of Ex[∇2

x,θfθ0(0)]. This was also done in [7], and can be seen as a first order approximation of
the expectation. Furthermore, to avoid the non-differentiability problems of the ReLU activations
described in [7] we used GeLU activations [8] in these experiments. A few examples of the NADs
computed using this procedure can be found in Figure 1.

Figure 1: First 10 NADs computed using Theorem 1 of a randomly initialized LeNet and a ResNet18.
As in [7], we show both the spatial domain (light images) and the magnitude of the Fourier domain
(dark images) for each NAD.

3



D Differed proofs

D.1 Proof of Lemma 1

We give here the proof of Lemma 1 which gives a tractable bound on the kernel norm of a function
f ∈ H based on its alignment with the kernel. We restate the theorem to ease readability.

Lemma. Let α(f) = Ex,x′∼D [f(x)Θ(x,x′)f(x′)] denote the alignment of the target f ∈ H with
the kernel Θ. Then ‖f‖2Θ ≥ ‖f‖42/α(f). Moreover, for the NTK, α(f) = ‖Ex [f(x)∇θfθ0(x)]‖

2
2.

Proof. Given the Mercer’s decomposition of Θ, i.e., Θ(x,x′) =
∑∞

j=1 λjφj(x)φj(x
′), the align-

ment of f with Θ can also be written

α(f) = Ex,x′∼D

 ∞∑
j=1

λjφj(x)φj(x
′)f(x)f(x′)

 =

∞∑
j=1

λj (Ex∼D [φj(x)f(x)])
2
. (2)

Now, recall that for a positive definite kernel, the kernel norm of a function admits the expression

‖f‖2Θ =

∞∑
j=1

1

λj
(Ex∼D [φj(x)f(x)])

2
. (3)

The two quantities can be related using Cauchy-Schwarz to obtain√√√√ ∞∑
j=1

1

λj
(Ex∼D [φj(x)f(x)])

2

√√√√ ∞∑
j=1

λj (Ex∼D [φj(x)f(x)])
2 ≥

∞∑
j=1

(Ex∼D [φj(x)f(x)])
2

(4)

‖f‖Θ
√
α(f) ≥ ‖f‖22. (5)

On the other hand, in the case of the NTK

α(f) = Ex,x′∼D
[
f(x)f(x′)∇>θ fθ0(x)∇θfθ0(x′)

]
= Ex∼D

[
f(x)∇>θ fθ0(x)

]
Ex′∼D [f(x′)∇θfθ0(x′)] = ‖Ex [f(x)∇θfθ0(x)]‖

2
2 . (6)

D.2 Proof of Theorem 1

We give here the proof of Theorem 1 which gives a closed form expression of the alignment of a
linear predictor with the NTK. We restate the theorem to ease readability.

Theorem. Let u ∈ Sd−1 be a unitary vector that parameterizes a linear predictor gu(x) = u>x,
and let x ∼ N (0, I). The alignment of gu with Θ is given by

α(gu) =
∥∥Ex [∇2

x,θfθ0(x)
]
u
∥∥2
2
, (7)

where∇2
x,θfθ0(x) ∈ Rn×d denotes the derivative of fθ with respect to the weights and the input.

Proof. Plugging the definition of a linear predictor on the expression of the alignment for the NTK
(see Lemma 1) we get

α(f) =
∥∥Ex [∇θfθ0(x)x>u]∥∥22 , (8)

which using Stein’s lemma becomes

α(f) =
∥∥Ex [∇2

θ,xfθ0(x)u
]∥∥2

2
. (9)

4



E Additional results

We now provide the results of some experiments which complement the findings in the main text.

E.1 Learning NTK eigenfunctions

In Section 3.2, we saw that neural networks and their linear approximations share the way in which
they rank the complexity of learning different NTK eigenfunctions. However, this experiments were
performed using a single training setup, and a single data distribution. For this reason, we now
provide two complementary sets of experiments which highlight the generality of the previous results.

On the one hand, we repeated the experiment in Section 3.2. using a different training strategy,
replacing SGD with the popular Adam [9] optimization algorithm. As we can see in Figure 2 the
main findings of Section 3.2. also transfer to this different training setup. In particular, we see that
the performance of all models progressively decays with increasing eigenfunction index, and that the
linearized models have a clear linear advantage over the non-linear neural networks.

0 250 500 750

Eigenfunction index

70.0%

80.0%

90.0%

100.0%
Accuracy MLP

0 250 500 750

Eigenfunction index

80.0%

90.0%

100.0%

Accuracy LeNet

0 250 500 750

Eigenfunction index

60.0%

80.0%

100.0%

Accuracy ResNet18

Neural network Linearized model Accuracy of NN on binary CIFAR10

Figure 2: Validation accuracy of different neural network architectures and their linearizations when
trained on binarized eigenfunctions of the NTK at initialization, i.e., x 7→ sign(φj(x)) using Adam.
As a baseline, we also provide the accuracies on CIFAR2.

On the other hand, we also repeated the same experiments changing the underlying data distribution,
and instead of using the CIFAR10 samples, we used the MNIST [1] digits. The results in Figure 3
show again the same tendency.3 However, we now see, that for the LeNet, the accuracy curves of the
neural network and the linearized model cross around φ500, highlighting that the existence of a linear
or non-linear advantage greatly depends on the target task.

0 250 500 750

Eigenfunction index

90.0%

100.0%

Accuracy MLP

0 250 500 750

Eigenfunction index

80.0%

100.0%

Accuracy LeNet

Neural network Linearized model

Figure 3: Validation accuracy of different neural network architectures and their linearizations when
trained on binarized eigenfunctions of the NTK at initialization, i.e., x 7→ sign(φj(x)) computed
over MNIST data.

3Note that the MNIST dataset has more samples than CIFAR10 (i.e., 70, 000 samples), and hence, due to the
quadratic complexity of the Gram matrix computation and budgetary reasons, we decided to not perform this
experiment on ResNet18.

5



E.1.1 Convergence speed of other networks

We also provide the collection of training metrics of the MLP (see Figure 4) and the LeNet (see
Figure 5) trained on the different eigenfunctions of Θ0. Again, as was the case for the ResNet18, we
see that training is “harder” for the eigenfunctions corresponding to the smaller eigenvalues, as the
time to reach a low training loss, and the distance to the weight initialization grow with eigenfunction
index.

0 250 500 750 1000

Eigenfunction index

0

25

50

75

Epoch Convergence time

0 250 500 750 1000

Eigenfunction index

20

40

`2 dist. Params `2 dist.

0 250 500 750 1000

Eigenfunction index

0.2

0.4

0.6

cos. dist. Params cosine dist.

Figure 4: Correlation of different training metrics with the index of the eigenfunction the network
is trained on. Plots show the number of training iterations taken by the network to achieve a 0.01
training loss, and the `2 and cosine distances between initialization and final parameters for a MLP
trained on the binarized eigenfunctions of the NTK at initialization.

0 250 500 750 1000

Eigenfunction index

0

20

40

Epoch Convergence time

0 250 500 750 1000

Eigenfunction index

0.0

2.5

5.0

7.5

`2 dist. Params `2 dist.

0 250 500 750 1000

Eigenfunction index

0.0

0.2

0.4

0.6

cos. dist. Params cosine dist.

Figure 5: Correlation of different training metrics with the index of the eigenfunction the network
is trained on. Plots show the number of training iterations taken by the network to achieve a 0.01
training loss, and the `2 and cosine distances between initialization and final parameters for a LeNet
trained on the binarized eigenfunctions of the NTK at initialization.

E.2 Energy concentration of CIFAR2 labels

We have seen that training a network on a task greatly increases the energy concentration of the
training labels with the final kernel. In the main text, however, we only provided the results for
the evolution of the energy concentration, i.e., ‖Φty‖2/‖y‖2, for the LeNet trained on CIFAR2.
Table 1 shows the complete results for the other networks, clearly showing an increase in the energy
concentration at the end of training.

Table 1: Energy concentration on topK = 50 eigenvectors of the NTK Gram matrices at initialization
Θ0 and in the last epoch of training Θ200 computed on 12, 000 training samples. We also provide
the test accuracy on CIFAR2 for comparison.

MLP LeNet ResNet18

Energy conc. (init) 26.0% 25.8% 22.7%
Energy conc. (end) 63.6% 83.0% 96.7%

Test accuracy 67.6% 75.0% 81.4%

E.3 Increase of alignment when learning NTK eigenfunction

Finally, we provide the final alignment plots of the networks trained to predict different eigenfunctions
than the one showed in the main text. As we can see in Figure 6 and Figure 7 the relative alignment

6



of the training eigenfunction spikes at the end of training, demonstrating the single-axis rotation of
the empirical NTK during training.

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ20

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ100

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ800

Figure 6: Alignment of the eigenfunctions of the NTK of a randomly initialized MLP with the NTK
computed after training to predict different initialization eigenfunctions.

0 500 1000
Eigenfunction index

107

109

α100 (φi) Train on φ20

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ100

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ800

Figure 7: Alignment of the eigenfunctions of the NTK of a randomly initialized LeNet with the NTK
computed after training to predict different initialization eigenfunctions.

References
[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, no. 11, 1998.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, 2016.

[3] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz, “Neural
tangents: Fast and easy infinite neural networks in python,” in International Conference on
Learning Representations (ICLR), 2020.

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018.

[5] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift,” in Proceedings of the 32nd International Conference on Machine
Learning (ICML), pp. 448–456, July 2015.

[6] S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and S. Ganguli, “Deep learning
versus kernel learning: an empirical study of loss landscape geometry and the time evolution of
the neural tangent kernel,” in Advances in Neural Information Processing Systems (NeurIPS),
2020.

[7] G. Ortiz-Jimenez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Neural Anisotropy
Directions,” in Advances in Neural Information Processing Systems 34 (NeurIPS), 2020.

[8] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers with gaussian
error linear units,” arxiv:1606.08415, 2016.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations (ICLR), 2015.

7


	General training setup
	NTK computation details
	Neural anisotropy experiments
	Dataset construction
	NAD computation

	Differed proofs
	Proof of Lemma 1
	Proof of Theorem 1

	Additional results
	Learning NTK eigenfunctions
	Convergence speed of other networks

	Energy concentration of CIFAR2 labels
	Increase of alignment when learning NTK eigenfunction


