Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PROPERTIES OF THE TEST INSTANCES

We have used 22 datasets in our experiments. The properties of these datasets are summarized in
Table [3] The first 17 datasets are for binary classification, whereas the remaining datasets are for
multi-class classification.

Table 3: The properties of the datasets. Here, SAMPLE SIZE, CLASSES and FEATURES stand for the number
of observations, the number of classes and the number of features, respectively. The datasets are from the
following sources: OILSPILL from Kubat et al.|(1998)), PHONEME from an jonline repository, remaining from
Dua & Gratt|(2017).

INSTANCE SAMPLE SIZE CLASSES FEATURES
BANKNOTE 1372 2 4
HEARTS 303 2 13
ILPD 583 2 10
IONOSPHERE 351 2 34
LIVER 345 2 6
PIMA 768 2 8
TIC-TAC-TOE 958 2 9
TRANSFUSION 748 2 4
WDBC 569 2 31
ADULT 32561 2 14
BANK-MKT 11162 2 16
MAGIC 19020 2 10
MUSHROOM 8124 2 22
MUSK 6598 2 166
OILSPILL 937 2 49
PHONEME 5404 2 5
MAMMOGRAPHY 11183 2 6
SEEDS 210 3 7
WINE 178 3 13
GLASS 214 6 9
ECOLI 336 8 7
SENSORLESS 58509 11 48

A.2 PARAMETRIC MODEL

Before we analyze the parametric model, let us first rewrite problem equation [3|in canonical form
using matrix notation. To simplify our exposition, we define

{‘”]HHM[Q e,

where w = [w;lje7, v = [viliez, € = [¢jljeq A = [ay]icz jes. A = [aij]icz,je7 along with
e and 0 denoting vector of ones and zeros, respectively. The auxiliary vector w is used as a slack
variable to obtain a model in canonical form. With this notation, the master problem and its dual
become

min{d"z: Mz = b,z > 0} @)
and

max{bTa : MTa < d}, 8)

respectively. We note that the first set of constraints in equation [3]is also written as an equality.
This is still a valid formulation, since the vector v plays the role of slack variables. Recall that the
second set of constraints in the master problem guarantees coverage of the samples. Without loss
of generality, we have set the right-hand-side of these constraints to one, i.e. ¢ = 1. Therefore,
one may define a hyperparameter § > —1 and consider a set of alternative right-hand-side values
b(0) = b+ 6b with bT = [0T, eT]. Such a change in the right-hand-side value leads to a parametric
linear program. Next, we give an interval of § values so that as long as d remains in this interval, the
optimal basis does not change and there is no need to solve the master problem again.

Suppose that we have solved problem equation[7]and obtained the optimal solutions z* and a*. Let
us denote the indices of the basic and nonbasic variables with B and AV, respectively. By rearranging
the corresponding columns, we can write

Mz" = Mpzg+ Myzy,=b

12

https://datahub.io/machine-learning/phoneme

Under review as a conference paper at ICLR 2022

and
d'z" =dLz; +d) 2z

Hence, we obtain zj; = Mglb, zyy = 0and o* = dBMB_I. Clearly, replacing b with b(4) does
not affect the feasibility of the dual solution. The primal solution, however, becomes

25(0) = Mg'b(6) = Mg'b+ My b= 25 + 025

We observe for z3,(d) = O that
Mipz5(0) = b(5)

dTz5(0) = b(6)Tax

This shows that current basis remains optimal as long as z5(6) > 0. This leads to the following
simple interval for § values:

1,21 <6< — =5
nax (—1- %) min (-5},

where [2}];cg = 2 and [Z]];cp = Zj. During hyperparameter tuning, if § goes out of this interval,
then problem equation I can be solved after replacing b with b(4). Consequently, the same line of
parametric analysis can be applied to find the next interval of values.

A.3 RELATION TO BOOSTING METHODS

The relation between the proposed rule generation algorithm (RUG) and the boosting methods can
be summarized in three parts:

1. In boosting methods, a sequence of weak classifiers are trained in tandem, and each clas-
sifier depends on the classifiers that come before it. To improve accuracy with every new
classifier, the weights of the misclassified points are increased. Moreover, each classifier
in the sequence receives a weight according to its classification performance, while the
weights of the previous classifiers are fixed. In our master problem equation [3] we also
assign weights to the rules and these rules can be considered as weak classifiers. However,
when we apply rule generation, we do not fix the weights of rules. Instead, we obtain the
optimal rule weights by solving a linear program at each iteration. Therefore, rule weights
are determined simultaneously rather than being assigned sequentially.

2. The duality discussion with our linear programs also lends itself to an interesting discussion
about our approach and the margin maximization idea in boosting methods as presented by
Schapire et al.| (1998), (Grove & Schuurmans| (1998)) and Demiriz et al.|(2002). These au-
thors establish that a sample with a large margin is likely to be classified correctly. Thus,
margin maximization is about assigning larger weights to those samples with small mar-
gins. Clearly, the first set of constraints in equation [3| always holds as equalities due to the
nonnegative costs of the variables v;, ¢ € Z. Using complementary slackness conditions in
linear programming, we have the following facts:

. Zjejk a;;w; > 1 implies v; = 0 and 3; = 0.
* 3; > Oonly if ZjEJk a;jw; < 1.
* 0 < B; <1onlyif Zj ¢, Gijw; = 1 (marginal accuracy for sample 7).
Y ek a;;w; < 1implies 8; = 1 (misclassification of sample ¢).
This shows that the optimal dual variable ﬁi(t) becomes positive only if sample ¢ is misclas-

sified, or it is correctly classified but remains on the boundary. So at the next iteration of
rule generation, only those samples that have small margins are considered.

3. [Mason et al.|(2000) relate boosting algorithms to gradient descent. It is well-known that the
dual optimal solution plays the role of gradient vector for the primal problem. This points
out yet another connection between our approach and the boosting methods.

13

Under review as a conference paper at ICLR 2022

Table 4: The performances of CG |Dash et al.| (2020), BRS [Wang et al.[(2017), AM and BCD |Su et al.| (2016),
RIPPER |Cohen| (1995), GLRM |Wei et al.| (2019), RULEFIT |[Friedman et al.| (2008) and RUG-T. Here, ACC.,
and COMP. stand for accuracy and complexity, respectively. Complexity is defined as the summation of the
number of generated rules and the number of conditions in the rules. The figures in columns 2-11 and 12-15
are taken from Dash et al.[(2020) and |Wei et al.| (2019), respectively.

DATASET CG BRS AM BCD RIPPER GLRM RULEFIT RUG-T
Acc. Comp. Acc. Comp. Acc. Cowmp. Acc. Comp. Acc. Cowmp. Acc. Comp. Acc. Comp. Acc. CoMmP.
BANKNOTE 0.991 25 0.991 30.4 0.985 242 0.987 21.3 0.992 28.6 0.999 47.7 0999 11249 0.988 48.7
HEARTS 0.789 11.3 0.789 24 0.729 11.5 0.742 154 0.793 16 0.846 52 0.833 59.4 0.822 19.7
ILPD 0.696 10.9 0.698 4.4 0715 0 0.715 0 0.698 9.5 0.708 1.9 0.717 2106.0 0.705 10.6
IONOSPHERE 0.900 12.3 0.869 12 0.909 16 0.915 14.6 0.880 14.6 0.909 150.7 0.943 1225.6 0.909 24.9
LIVER 0.597 5.2 0.536 15.1 0.557 8.7 0.519 4 0.571 5.4 0.580 34.7 0.586 89.7 0.693 58.6
PIMA 0.741 4.5 0.743 17.4 0.732 2.7 0.734 2.1 0.734 17 0.758 15.5 0.747 32115 0.737 30.9
TIC-TAC-TOE 1.000 32 0.999 32 0.843 249 0.815 12.6 0.982 32.9 0.980 67.1 1.000 1640.7 0.906 70
TRANSFUSION 0.779 5.6 0.766 6 0.762 0 0.762 0 0.789 6.8 0.793 11.9 0.747 3211.5 0.755 26.9
WDBC 0.940 13.9 0.947 16 0.958 11.6 0.958 17.3 0.930 16.8 0.982 228.4 0.968 562.3 0.937 28.8
ADULT 0.835 88 0.817 39.1 0.830 15 0.824 13.2 0.836 133.3 0.859 942 0.870 719.9 0.851 43.8
BANK_MKT 0.900 9.9 0.874 13.2 0.900 6.8 0.897 2.1 0.899 56.4 0.901 83.6 0.887 0.2 0.820 85.6
MAGIC 0.853 93 0.825 97.2 0.807 11.5 0.803 9 0.845 177.3 0.854 196.2 0.875 1656.0 0.834 72.8
MUSHROOM 1.000 17.8 0.997 17.5 0.999 154 0.999 14.6 1.000 17 1.000 18.2 1.000 927.9 1.000 31
MUSK 0.956 123.9 0.933 33.9 0.969 101.3 0.921 244 0.959 143.4 0.984 1079.7 0.978 2000.3 0.925 87.2
AVERAGE 0.856 32.4 0.842 25.6 0.835 17.83 0.828 10.8 0.851 48.2 0.868 1454 0.868 1324.0 0.849 45.7

A.4 COMPARISON AGAINST RECENT BINARY CLASSIFICATION METHODS FOR
INTERPRETATION

Table @] presents a comparison of RUG against existing studies from the literature. In the table,
“CG” stands for the column generation framework by Dash et al.| (2020), “BRS” is the Bayesian
Rule Set approach by |Wang et al.[(2017), “AM” and “BCD” are alternating minimization and block
coordinate descent algorithms by |Su et al.[(2016)), respectively. “RIPPER’ﬂ is the well-known rule
generation heuristic of (Cohen|(1995)). The last two methods “GLRM” (short for Generalized Linear
Rule Models) and “RULEFIT” are rule ensemble approaches by [Wei et al.| (2019) and [Friedman
et al.|(2008), respectively. Both GLRM and RULEFIT['|results are the outputs reported for numerical
features in the work by Wei et al.| (2019). The acronym “ACC.” stands for the mean accuracy and
“COMP.” denotes the complexity. |Dash et al.| (2020) define complexity as the sum of the number
of rules and the number of conditions for each rule. Although complexity is not directly addressed
in our study, it is calculated for RUG for the sake of completeness. Wei et al.|(2019) uses weighted
number of rules implying the same complexity concept (or a lower bound on the corresponding
complexity values) in their models using numerical features. To make a fair comparison, we have
additionally considered RUG with threshold values (RUG-T), for which the number of subproblem
calls is restricted to five, and the rules satisfying the weight threshold of w; > 0.05, j € J are
selected for testing. The last two columns Table [4] give the mean accuracies and the complexity
values for RUG-T, respectively. Dash et al.| (2020) consider only binary classification. Thus, the
multi-class classification datasets in the previous tables are excluded. Moreover, two datasets from
Dash et al.|(2020)) are excluded since we have failed to access those instances. The average accuracy
of RUG-T is on par with GLRM, RULEFIT and CG where the latter has superior accuracy than BRS,
AM, BCG and RIPPER. It can be observed that rule ensemble methods GLRM and RULEFIT has
superior accuracy. This comes with an expense of intepretability and their complexity is higher than
other methods including RUG-T and CG. GLRM has a complexity of more than three times RUG-T
has. Complexity of the RULEFIT is not very promising and yields the worst outcome indicating
that its interpretability is not good. The average complexity of RUG-T is slightly worse than that of
CG except MUSK dataset. RUG-T exposes a worthwhile example on how to fine-tune parameters
of RUG so that a good balance can be achieved for interpretability. We also observe that RUG is
robust in the sense that reducing the number of RMP calls does not reduce the accuracy drastically.
Besides, applying a threshold to select rules contributes to interpretability without a severe damage
on accuracy. We are unable to compare computational time requirements of GLRM and RULEFIT
as it is not reported in the work by [Wei et al|(2019). Fortunately, RUG-T is significantly faster than
the CG. Indeed, all our algorithms run in less than a minute, while CG is reported to take around 20
minutes for all datasets except MUSHROOM and TIC-TAC-TOE.

3This is the JRip implementation in Weka.
“These two models are respectively named as LRRN and RULEFITN in the original work by [Wei et al.
(2019).

14

Under review as a conference paper at ICLR 2022

A.5 CASE STUDY: FURTHER DETAILS

We next compare the rules extracted by RUG against the rules (leaves) of a DT trained on the same
dataset with the same setting (tree depth of three). Figure3]lists the sets of rules resulting from RUG
and DT in blocks (a) and (b), respectively. DT yields seven rules (leaves) with an accuracy of 0.92.
To make a fair comparison, only the first three rules of RUG is shown where the accuracy of the
RUG reaches 0.93. Rules R; to 3 are in descending order of their weights. As a reminder, these
are the same first three rules shown in Figure[2] Even with fewer number of rules, the accuracy of
RUG is better than DT.

R;: If Marginal Adhesion > 8 then Malignant
R,: If Bare Nuclei < 2 and Uniformity of Cell Shape < 3 then
R;: If Marginal Adhesion > 2 and Uniformity of Cell Size > 5 then Malignant

(a) RUG

D;: If Uniformity of Cell Shape < 3 and Bare Nuclei < 5 and Bare Nuclei < 2 then

D,: If Uniformity of Cell Shape < 3 and Bare Nuclei < 5 and Bare Nuclei > 3 then

D;: If Uniformity of Cell Shape < 3 and Bare Nuclei > 6 and Uniformity of Cell Shape <1 then

D: If Uniformity of Cell Shape < 3 and Bare Nuclei > 6 and Uniformity of Cell Shape > 2 then Malignant
Dg: If Uniformity of Cell Shape >4 and Uniformity of Cell Size < 1 then

Dg: If Uniformity of Cell Shape >4 and Uniformity of Cell Size > 2 and Bland Chromatin < 2 then Malignant
D,: If Uniformity of Cell Shape >4 and Uniformity of Cell Size > 2 and Bland Chromatin > 3 then Malignant

(b) DT

Figure 3: Rules generated by RUG versus the rules (leaves) obtained with DT. RUG rules are shown
in descending order of their weights.

We also observe that RUG extracts more interpretable rules than DT. A drawback of DT rules (D;-
D7) is their interdependent structure. For example D3 is constructed as the complement of the
statement “Bare Nuclei < 5” in D; and D,. However, D3 has two observations; one originally
labeled as malignant and the other as benign. This implies a false negative classification of a patient
in one out of two cases (50%). Similar structure can be observed for DT rules D5 to D7, where
they are created as the complement of “Uniformity of Cell Shape < 3” in rules D; to D4. Such
an unbalanced structure is not observed for the rules extracted by RUG. More importantly, a false
negative classification can be compensated in two ways by RUG: First, multiple rules covering a
sample gives more chance to correct classification of the sample. In case there are two or more
rules that do not agree, the rule weights can compromise the final class of a sample and correctly
classify it based on the loss function’s structure. An example of such a case can be illustrated using
the false negative classification of the sample with Ds. Using RUG, the patient data is covered by
four rules; Ry, Ry and R;5 with weights 0.43, 0.29 and 0.14 as malignant, and R;3 with weight
0.14 as benign. Using the labels assigned by the rules and their weights, this sample is classified as
malignant. This implies that, RUG has detected the tumor and made the correct diagnosis for the
patient. Second way comes from the flexibility of the LP model behind RUG. The rules that yield
false negative classifications can be explicitly penalized in the objective function. That is, each rule
yielding a false negative classification of a sample can be assigned a high cost coefficient (penalty),
and consequently, model equation |3 can be enforced to choose another rule. As an example, Ri3
can be penalized for this case and left outside the solution to promote correct classification.

15

Under review as a conference paper at ICLR 2022

A.6 PRELIMINARY COMPUTATIONAL EXPERIMENTS ON LARGE INSTANCES

We have performed a series of experiments to show the scalability of our approaches on large scale
instances. To that end, we have used “Forest CoverType”, a multi-class large size dataset from the
UCI repository. The dataset has 581012 samples with 54 features and consists of seven classes. We
have considered the 10 numerical features, and a subset of the samples (e.g. first 50000 samples
in the dataset) for prediction. In Table [5] the first column presents the number of samples used
for each instance. We have kept all the parameters the same as described for our computational
experiments except maximum tree depth which is set to three in all algorithms. We observe that on
average RUG has the highest accuracy with the least number of rules. Thus, RUG outperforms other
algorithms in terms of both accuracy and interpretability. Surprisingly, we also observe that RUX
provides superior results than both of its variants based on RF and ADA. This becomes more visible
for ADA versus RUX-ADA comparison. Average training time of the algorithms are 408.08, 128.23
and 141.45 seconds for RUX-RF, RUX-ADA and RUG, respectively. Note that, since RUX includes
training times of its source algorithm, e.g. RF and ADA, RUG has lower computational requirement
than RF. In fact, ADA’s training time steadily increases with increasing number of samples from
50k to 300k. RUG’s training time is lower than ADA for instances having 200k, 250k, and 300k
samples. This implies the scalability of the RUG for larger instances. Lastly, the prediction times are
also much shorter for RUG. In average, RUX-RF, RUX-ADA, and RUG have 382.99, 219.76,and
28.47 seconds of prediction time, respectively. This implies that RF and ADA have more than 13
and seven times longer prediction time than RUG.

Table 5: The performances of Random Forest (RF), AdaBoost (ADA) as well as Rule Extraction applied to
RF and ADA - denoted as RUX-RF and RUX-ADA -, and RUG. In the table, SAMPLES, ACC., and # RULES
stand for number of samples used from the “Forest CoverType” dataset from the UCI repository, accuracy and
number of rules, respectively.

SAMPLES RF ADA RUX-RF RUX-ADA RUG
Acc. #RULES Acc. #RULES Acc. #RULES Acc. #RULES Acc. #RULES
50000 0.704 800 0.570 400 0.748 147 0.720 143 0.729 22
100000 0.750 800 0.656 400 0.770 172 0.760 102 0.764 12
150000 0.771 800 0.680 400 0.792 167 0.757 150 0.796 13
200000 0.739 800 0.586 400 0.749 218 0.717 85 0.764 13
250000 0.750 800 0.642 400 0.723 172 0.676 102 0.754 13
300000 0.732 800 0.688 400 0.700 189 0.707 92 0.731 11
AVERAGE 0.741 800 0.637 400 0.747 177.5 0.723 112.333 0.756 14

16

	Introduction
	Rule Extraction
	Rule Generation
	Computational Study
	Numerical Experiments
	Case Study

	Conclusion
	Appendix
	Properties of the Test Instances
	Parametric Model
	Relation to Boosting Methods
	Comparison against Recent Binary Classification Methods for Interpretation
	Case Study: Further Details
	Preliminary Computational Experiments on Large Instances

