A Proofs from Section 2.3

Proof of Lemma 2.4. Consider the optimal fractional assignment X* for Z; for a machine ¢, let
the load on this machine be A. Now using the same assignment for the random sample Zs gives
an expected load of y := JA on machine i, and the probability that this load deviates from the
expectation by 7 := max(epu, k) is at most
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Suppose e > k where k = O(e~* logm), this quantity is at most

2 1/3 < 26"/ < 1/poly(m).
ELse k > epu, and so the probability is at most

2¢~°F < 1/poly(m).
This proves the lemma. O

B Proofs from Section 2.5

Proof of Lemma 2.6. By induction on ¢; for ¢ = 0 the value D!, = 0 and the claims are vacuously
true. Hence we consider iteration ¢ > 1 that generates 6; from 6;_1, and look at two cases.

Case 1: D! = D!~!. Since the algorithm did not update the weight for machine i in iteration t, we
must have had X!~1 < (1 4 ¢)* - Z. By the estimation guarantee, X!~! > (1 + )~ 'X!~! and
Z < (1+¢)y.s0 Xt~1 < (1 + £)5+. Since all weights are non-increasing and change by at most
a (1 + ¢) factor, the new load X! < (1 + ¢) X! ~!—at worst, the weight for machine v may remain
the same whereas weights for other machines may decrease. Thus X! < (1 +&)7. This proves the
second claim.

For the first claim, if D! > 0 then D!{~! = D! means we can use the induction hypothesis to infer
X1 > (1+e)y. Moreover, Xt > X! (11 since 0! = 0!~ and all other weights are non-increasing.
So we have X! > (1+¢e)y.

Case 2: D! = D!~' + 1. Since the algorithm updated the weight, X:~! > (1 + £)* Z. From
the estimation guarantee, we have Z > (1 + )~ !v, and in particular, Z > (1 + £)~'k. This
gives X!=1 > (1 + £)3k. The estimation guarantee now means that max(X:~!, k) = X!, since
otherwise we would have )Afﬁ_l < (1 4 e)k. Moreover, the estimation guarantee says Xﬁ‘l >
X!=1(1 4 €)%, so combining the above facts we get X!~! > (1 + ¢)2v. Since the weight 6/
decreases by a factor of at most (1 + ¢), while other weights are non-increasing, we have Xf) >
(1 + &)~, which proves the first claim.

For the second claim, if D!, < t, then D!~! < t—1. By the induction hypothesis, X!~1 < (1+¢)7y
Furthermore, X! < X!~! (since we decreased the weight for machine v by (1 + €), and at worst

the weights of all the other machines can decrease by the same amount, so X! < (1 + &)7y as
desired. O

Proof of Lemma 2.7. Since D! > s > 0 for all v € A, we have X! > (1 + &) by Lemma 2.6.
Thus, it follows that

S XE>(1+e)Al -y
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Let x!,, denotes the load that job e puts on machine v using weights 6*; that is,
t
‘riv = 9 . 1(v€e)-
Zuee 9u

This implies that the load X, = >~ z!,. We can now rewrite the LHS as

YXL =Dl kY 5)

vEA vEAeCB vEAeZB
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For a fixed job/edge e > v with e € B, it follows that there exists an machine w € e with D!, <
s — a. Since D! > s, we have

0! 0! (1+e)°® £
t' = - v < ReCA < —‘--"— 1 o = - .
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Each of m machines has load at most FOpt(Z), so there are at most m FOpt(Z) edges. In particular,
deg(v) < mFOpt(Z) for all machines v, and so it follows that

SN S, < Z - FOpt(Z ; |A| - FOpt(Z). 6)
veEAe¢B veA
Subtracting (6) from (5),
> Y at, = (1+3) 141 FOpU(D). ™
veEAeCB

Finally, we have

Y D al,=l{e€ E|eC B} <|B| FOpt(Z),

vEB eCB

where the second inequality uses that the optimal value is the density of the densest sub-hypergraph.
Combining this with (7), we get

[BI-FOPHT) = 3° D at, = > Y at, = (1+75) 14]- FOpH(D),

veBeCB veEAeCB

which yields our desired claim when divided by FOpt(Z). O

If d is an upper bound on the degree of any machine, i.e., the maximum number of jobs that go

to any machine, then the same argument shows that it suffices to set « = w, or the
weaker bound of o = Eﬁi/;) .

C A Concentration Bound

Theorem C.1 (Concentration Bound). Let X1, Xo, ..., X,, be independent random variables taking

values in [0,1]. Let X := " | X;, p = E[X]and U > p. For every § > 0, we have

)
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PriX > (1+6)U] < Pr[X >pu+6U] < <( ) < ¢~ (B°0)/(240)
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and )
PriX < pu—oU) <e Y2

D Proofs for Related Machines

In the related machines setting, recall that each machine v has a speed s, > 1, and the load of a
machine is the total volume ) _ x., assigned to it, divided by the speed. So the goal is to minimize
max, (), Tey/Sy). Again, each job can only be assigned to a subset of machines. Keeping the
same notation, the machines form a set V' of vertices, and the jobs are hyperedges denoting which
machines they can be assigned to.

Lemma D.1 (Proportional Assignment for Related Machines). There exist weights 8 € R™ such
that the scaled proportional allocation

Ley = Sy * 279 : 1(1)66)
uce U

gives a near-optimal fractional load.
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Proof. Consider the convex program

max ). (Tey 10g(Tev/50) — Tew)

ZUeEIev =1 VYee
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Tey >0

Now the KKT condition for this implies that
log(xe'u/s'u) - _/\U + e + Vey-

Now using complementary slackness gives us for each v € e,

e

Zuee eiAu .

Ley = Sy °

Setting 0, = exp(—A,) completes the proof.

Another intuitive way of seeing is to imagine splitting each machine of speed s, into s, - M unit-
speed copies for some very large M. (This factor of M is handle divisibility issues, where s,, values
are not integers.) The optimal fractional assignment for this old related machines instance and this
new unit-speed instance correspond to each other, up to scaling by a factor of M (and the small
additional loss due to divisibility issues, which we put aside for now). Given an optimal weight
vector for this unit-speed setting, all the copies of the same original machine can be assumed to have
the same weight (by symmetry), and hence the total amount of job e going on copies of machine v
becomes the expression above. O

Bounding Width. Given any related machines instance Z, for each job e define a new job

¢ :={v €elsy > (e/m) maxs,}.
vee

Let Z’ be the instance with just these new jobs; by definition €< ** < (m /) forall ¢’ € T'.

min, e,/ Sy
Lemma D.2. FOpt(Z) < FOpt(Z') < (1 +€) FOpt(Z).

Proof. Since we constrain each job to go on a subset of its original set of machines, the optimal load
can only increase. But by how much? Fix any fractional assignment X for Z. Consider any machine
v and consider any job e for which this is the fastest machine in e. (Break ties arbitrarily.) Let ¢/
be the new version of e as above: let §, = Zuee\e, Teq be the volume of e going to machines that
are not allowed any more in ¢’: move all this volume to v. Le., set z/,,, = x., + 0 for this fastest
machine, x/,,, = ¢, forall u € €', u # v. Now the total load for v increases by at most

(1/s,) - Z Se.
erv=arg maXyece{su}

This sum is at most the total volume of jobs assigned to machines that are slower than v by a factor
m/e. There are m such machines, and each has load at most FOpt(Z), so the total increase in the
load for v is at most (¢/m) - m - FOpt(Z), as claimed. O
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