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ABSTRACT

Neuron identification is a popular tool in mechanistic interpretability, aiming to
uncover the human-interpretable concepts represented by individual neurons in
deep networks. While algorithms such as Network Dissection and CLIP-Dissect
achieve great empirical success, a rigorous theoretical foundation remains absent,
which is crucial to enable trustworthy and reliable explanations. In this work, we
observe that neuron identification can be viewed as the inverse process of machine
learning, which allows us to derive guarantees for neuron explanations. Based
on this insight, we present the first theoretical analysis of two fundamental chal-
lenges: (1) Faithfulness: whether the identified concept faithfully represents the
neuron’s underlying function and (2) Stability: whether the identification results
are consistent across probing datasets. We derive generalization bounds for widely
used similarity metrics (e.g. accuracy, AUROC, IoU) to guarantee faithfulness,
and propose a bootstrap ensemble procedure that quantifies stability along with
BE (Bootstrap Explanation) method to generate concept prediction sets with guar-
anteed coverage probability. Experiments on both synthetic and real data validate
our theoretical results and demonstrate the practicality of our method, providing
an important step toward trustworthy neuron identification.

1 INTRODUCTION

Despite the rapid development and application of deep neural networks, their lack of interpretabil-
ity raises growing concerns (Samek et al., 2017; Zhang et al., 2021). A popular strategy to “open
the black-box” is to analyze internal representations at the level of individual neurons and associate
them with human-interpretable concepts. This process is known as neuron identification in the
field of mechanistic interpretability, which yields neuron explanations (Bau et al., 2017; Oikarinen
& Weng, 2023). Over the past few years, many neuron identification methods have been proposed.
For example, Bau et al. (2017) use curated concept datasets to identify the corresponding concept,
while Oikarinen & Weng (2023) leverage multimodal models to automatically generate neuron ex-
planations. A growing body of methods has been developed to identify concepts corresponding to
neurons (Srinivas et al., 2025; Huang et al., 2023; Gurnee et al., 2023; Mu & Andreas, 2020; La Rosa
et al., 2023; Zimmermann et al., 2023; Bykov et al., 2023; Kopf et al., 2024; Shaham et al., 2024).

Despite rapid empirical progress, systematic comparison and rigorous theoretical understanding of
neuron identification remain limited. Recently, Oikarinen et al. (2025) unified the evaluation of
neuron identification methods within a single mathematical framework to enable fair comparisons.
However, deeper theoretical foundations are still lacking, which undermines the trustworthiness
and reliability of neuron explanations. Consider a chest-X-ray model that predicts pneumonia and
attributes its decision to a neuron purportedly representing lung opacity, when in fact the neuron
responds to hospital-specific markings. Such unfaithful explanations can mislead clinicians, lead to
harmful treatment decisions, and ultimately erode trust.

These concerns motivate a closer examination of the core obstacles to trustworthy neuron explana-
tions. In particular, we identify two central challenges in current neuron identification methods:

1. Faithfulness. Does the identified concept truly capture the neuron’s underlying function?

2. Stability. Is the identified concept consistent across different probing datasets?
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Both challenges are closely connected with probing datasets, which are an essential component of
neuron identification methods that determines the stimuli used to measure neuron activity. However,
their influence is often overlooked and not rigorously examined. To address these challenges, we
provide a theoretical analysis grounded in a key observation: neuron identification can be (roughly)
viewed as an inverse process of learning. This perspective highlights structural parallels between
neuron identification process and traditional machine learning, enabling us to adapt tools from sta-
tistical learning theory to formally analyze the effect of probing datasets and bound the performance
of neuron identification methods.

Our contributions are summarized as follows:

1. New insights for neuron identification. We are the first to show that neuron identification can
be viewed as an inverse process of learning, revealing structural parallels with traditional machine
learning. This insight is non-trivial: it enables us to import and adapt tools from statistical learning
theory to rigorously analyze key questions in neuron identification that prior work could not address,
including the impact of probing datasets.

2. Rigorous guarantees for explanation faithfulness. We establish the first theoretical guarantees
for the faithfulness of neuron explanations, answering the critical question of when a concept iden-
tified by a neuron-identification algorithm can be trusted. Our analysis is derived under a general
framework, making the results applicable to most existing neuron identification methods. Simula-
tion studies demonstrate that our theory allows quantitative analysis of how factors such as probing
dataset size, concept frequency, and similarity metrics affect performance.

3. Quantifying stability of explanations. We present the first formal analysis of probing datasets,
an essential yet previously overlooked component that determines the stimuli used to measure neu-
ron activity. Using a bootstrap ensemble over probing datasets, we quantify the stability of neuron
explanations and design a procedure to construct a set of possible concepts for each neuron, with
statistical guarantees on the probability of covering the true concept.

The remainder of this paper is organized as follows: Sec. 2 formalizes the notion of neuron iden-
tification. Sec. 3 provides a rigorous analysis of the faithfulness of neuron explanations with high
probability guarantees. Sec. 4 quantifies the stability of neuron identification algorithms and estab-
lishes statistical guarantees.

2 FORMALIZING NEURON IDENTIFICATION

In this section, we introduce the formal definition of neuron identification and the notations used in
Sec. 3 and 4. Although we use the term “neuron” identification for simplicity, the framework also
accommodates larger functional units within the network. Examples include a linear combination of
neurons (i.e., a direction in representation space), a feature in a Sparse Autoencoder (Cunningham
et al., 2023), a direction derived by TCAV (Kim et al., 2018), or a linear probe (Alain & Bengio,
2016). Below, we formally define neuron representation and concept:

Neuron representation f(x) : X → R: A neuron representation is a function mapping an input
x ∈ X to an activation value. Here, X denotes the input space (e.g. images 1). For example, a
neuron in an MLP maps the input to a scalar value. For general neural networks, the output may
not be a single real number, e.g. for convolutional neural networks (CNN) f(x) is a 2-D feature
map. For simplicity in similarity calculation, existing works often conduct pooling (avg, max) to
aggregate the feature into a single real value.

Concept label c(x): In the literature of neuron identification (Bau et al., 2017; Oikarinen & Weng,
2023), a concept is usually defined as a human-understandable text description. For example, “cat”
or “shiny blue feather”. Although intuitive, this definition is not a formal mathematical definition.
In this work, we define concepts as a function: a concept c(x) : X → [0, 1] is a function that takes
images as input, and outputs the probability of the concept. This definition is consistent with the
previous works: for example, Bau et al. (2017); Bykov et al. (2024) use human annotations which
output 1 if the concept is present, otherwise 0. Oikarinen & Weng (2024) use SigLIP (Zhai et al.,
2023) to automatically estimate the probability that concept c appears.

1The input could also be audio (Wu et al., 2024) or text (Huang et al., 2023; Gurnee et al., 2023). In this
work we focus on vision models.
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To search for a concept that describes the neuron representation, different methods use different
measures (e.g. IoU (Bau et al., 2017), WPMI (Oikarinen & Weng, 2023), AUC (Bykov et al., 2024)
and F1-score (Gurnee et al., 2023)). Interestingly, these different methods can all be described
by a general similarity function sim(f, c), which is a functional measuring the similarity between
concept c(x) and neuron representation f(x). With the similarity function, the neuron identification
problem can be formulated as:

ĉ(x) = argmax
c(x)∈C

sim(f(x), c(x)) (1)

where C is the concept set (a function space under our concept definition). In our formal definition,
sim(f, c) is a functional that takes two functions f and c as input, e.g. accuracy, correlation, IoU,
etc. In practice, most works replace the function f(x) and c(x) with their realization f(xi) and
c(xi) on a probing dataset Dprobe as an empirical approximation, where xi is sampled i.i.d. from the
underlying distribution. For example, the similarity function of accuracy is defined as the probability
that two functions have the same value: sim(f, c) = P(f(x) = c(x)). When utilizing a probing
dataset Dprobe, we can get an unbiased empirical estimation ˆsim(f, c;Dprobe) for sim(f, c):

ˆsim(f, c;Dprobe) =
1

|Dprobe|

|Dprobe|∑
i=1

1(f(xi) = c(xi)). (2)

Under this approximation, the neuron identification can be formulated as the following optimization
problem:

[Neuron identification] ĉ = arg maxc∈C
ˆsim(f, c;Dprobe)

where ˆsim(f, c;Dprobe) = ˆsim(f(xi), c(xi)), xi ∈ Dprobe.
(3)

Eq. 3 shows that Dprobe plays a critical role in this approximation, yet a rigorous analysis of its effect
is still lacking. We address this gap in this work in Sec. 3.2 and 4.

Why do we choose similarity-based definition? Similarity provides a broad and unifying notion
of a neuron’s concept: many existing definitions can be expressed as special cases of similarity with
appropriate functions. For example, a common practical criterion is that a neuron represents concept
c if its activation can successfully classify concept c. This criterion can be formulated as a similarity
function using standard classification metrics such as F1-score (Huang et al., 2023), AUC (Kopf
et al., 2024), recall (Zhou et al., 2014) and accuracy (Koh et al., 2020).

3 THEORETICAL GUARANTEES FOR EXPLANATION FAITHFULNESS

In this section, we address a key question in neuron identification: When can we trust a neuron
explanation produced by a neuron-identification algorithm? We begin with an important observa-
tion: neuron identification can be viewed as an inverse process of machine learning in Sec. 3.1.
This perspective enables us to derive formal guarantees for explanation faithfulness in Sec. 3.2 and,
building on these results, to quantify the stability of neuron explanations in Sec. 4.

3.1 ANALOGY BETWEEN NEURON IDENTIFICATION AND MACHINE LEARNING

From the formulation in Eq. 3, we observe that the neuron identification problem closely parallels su-
pervised learning problem. Given a standard classification task and a neural network model h ∈ H ,
where H denotes the hypothesis space containing all possible neural network models, the problem
can be formalized as minimizing the loss L, which is typically approximated by the empirical loss
L̂ on a training dataset Dtrain as follows:

[Machine learning] ĥ = argmin
h∈H

L̂(h;Dtrain)

where L̂(h;Dtrain) = L̂(h(xi), y(xi)), xi ∈ Dtrain,
(4)

and y(x) denotes the label function and h(x) is the neural network. Comparing Eq. 4 and Eq. 3, we
see that these two problems share a similar structure: Both are optimization problems with objectives

3
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Figure 1: Analogous relationship between neuron identification and machine learning. Neuron
identification searches for a concept matching a neuron, while machine learning searches for a model
matching human labels. Thus, neuron identification can be viewed as inverse of learning process.

of similar form. The left panel of Fig. 1 compares the procedures of these two domains, while
the right panel lists their detailed correspondences. As illustrated in Fig. 1, neuron identification
can be roughly viewed as the inverse process of machine learning: during learning, we search for
neural network (parameters) h(x) that approximates a target human concept y(x) (e.g. ImageNet
classes), whereas neuron identification instead searches for concept c(x) (or a simple combination
of concepts) that best matches a specific neuron representation f(x).

Importantly, this observation enables us to leverage and adapt tools from machine learning theory
while extending them to the unique setting of neuron identification. In the following, we first de-
velop formal guarantees for the faithfulness of neuron explanations in Sec 3.2, and then extend this
perspective to perform uncertainty quantification and assess stability in Sec. 4.

3.2 THEORETICAL GUARANTEES FOR NEURON EXPLANATIONS

In this section, we address the faithfulness challenge: Does the identified concept truly capture the
neuron’s underlying function? Using the framework introduced in Sec. 2, this question reduces to
asking whether the identified concept truly achieves high similarity sim(f, c) to neuron represen-
tation. Building on the analogy between neuron identification and machine learning established in
Sec. 3.1, we develop a new generalization framework tailored to the neuron identification setting.
Although inspired by classical learning theory (Shalev-Shwartz & Ben-David, 2014), our analysis
provides the first formal guarantees on the concept-neuron similarity sim(f, c). We first define the
generalization gap g for neuron identification as:

g(Dprobe, C, f) ≜ sup
c∈C

[ ˆsim(f, c;Dprobe)− sim(f, c)]. (5)

We show that this gap g(Dprobe, C, f) can be bounded in Thm. 3.1 under two mild assumptions:
(i) the concept set C is finite, and (ii) the probing dataset Dprobe is sampled i.i.d. These conditions
are met by most existing neuron identification methods, e.g., Bau et al. (2017); Oikarinen & Weng
(2023); Bykov et al. (2024).
Theorem 3.1. With probability at least 1− δ,

sup
c∈C
| ˆsim(f, c;Dprobe)− sim(f, c)| ≤ r(f,Dprobe,

δ

|C|
), (6)

where r(f,Dprobe, δ) describes the convergence rate of similarity function ˆsim(f, c;Dprobe) and sat-
isfies

P
[∣∣∣ ˆsim(f, c;Dprobe)− sim(f, c)

∣∣∣ ≥ r(f,Dprobe, δ)
]
≤ δ. (7)

In Eq. 6, the confidence parameter δ is adjusted using a union bound, replacing δ with δ
|C| .

Corollary 3.2. With probability at least 1− δ,

sim(f, ĉ) ≥ sim(f, c∗)− 2r(f,Dprobe,
δ

|C|
), (8)
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where ĉ is selected concept using Eq. 3 and c∗ = argmaxc∈C [sim(f, c)] is the optimal concept.

Discussion. Thm. 3.1 adapts classical generalization theory to the neuron identification set-
ting, where the objective of interest is sim and ˆsim. This provides the first theoretical result on
the sim(f, c), which is enabled by our key insight in Sec. 3.1. The convergence rate function
r(f,Dprobe, δ) characterizes how fast the estimator ˆsim converges. In Sec. 3.2.1, we will derive
convergence rates for several popular similarity functions, showing that for many commonly used
similarity estimators r(f,Dprobe, δ) = O(

√
− log δ
|Dprobe| ). On the other hand, Corollary 3.2 suggests that

by maximizing similarity on the probing dataset, the identified concept ĉ is approximately optimal,
within a gap determined by the convergence rate of the similarity function and the size of the concept
set C. This result guarantees that the concept identified with the probing dataset truly achieves high
similarity to the target neuron representation.

3.2.1 CONVERGENCE RESULTS FOR POPULAR SIMILARITY METRICS

From Thm. 3.1 and Corollary 3.2, we see that the convergence rate is a key factor controlling
the generalization gap. Therefore, in this section, we derive and examine the convergence rate
of common similarity metrics. Table 1 summarizes several common similarity scores and their
convergence rate r:

1. Accuracy: This similarity function is used in (Koh et al., 2020), and the convergence rate
of accuracy can be estimated via the Hoeffding’s inequality.

2. AUROC: This similarity function is used in (Bykov et al., 2023), and the convergence rate
is related to concept frequency ρ(c) and can be derived using Thm. 2 in Agarwal et al.
(2004). Fig. 3a plots the convergence rate rAUROC under different ρ and shows that when
both ρ and |Dprobe| are small, the convergence rate rAUROC blows up, indicating imbalanced
probing datasets may cause larger generalization error and reduce explanation faithfulness.

3. Recall, precision, IoU: These similarity functions are used in (Zhou et al., 2014), (Srinivas
et al., 2025), (Bau et al., 2017) respectively. To derive their convergence rates, we view
these metrics as conditional versions of accuracy: for example, precision can be regarded as
computed only on examples where f(x) = 1. Thus, the convergence rate is similar to rAcc,
differing only in that the effective sample size changes from |Dprobe| to (F11 + F10). The
same reasoning applies to Recall and IoU. In practice, users can collect additional data until
the effective sample size reaches desired level. Further details are provided in Appendix D.

Summary. So far, we have derived the generalization gap g for several popular similarity metrics.
These results enable practitioners to select an appropriate metric based on available probing data
and the properties of the concepts. For example, our experiments in Sec. 3.3 show that AUROC
converges quickly when concept frequency is high, but much slower when the frequency is low;

sim Metric sim(f, c) ˆsim(f, c) r(f,Dprobe, δ)

Accuracy P(f(x) = c(x))

∑
x∈Dprobe

1(f(x)=c(x))

|Dprobe|

√
log( 2

δ )

2|Dprobe|

AUROC P(f(x) < f(y) |
c(x) = 0, c(y) = 1)

∑
{x|c(x)=0}

∑
{y|c(y)=1} 1[f(x)<f(y)]

|{x|c(x)=0}||{x|c(x)=1}|

√
log( 2

δ )

2ρ(c)(1−ρ(c))|Dprobe|

IoU W11

W01+W11+W10

F11

F01+F11+F10

√
log( 2

δ )

2(F11+F10+F01)

Recall W11

W01+W11

F11

F01+F11

√
log( 2

δ )

2(F11+F01)

Precision W11

W10+W11

F11

F10+F11

√
log( 2

δ )

2(F11+F10)

Table 1: Similarity metrics sim(f, c), estimation ˆsim(f, c) and their corresponding convergence
speed r(f,Dprobe, δ). For simplicity, denote Wij = P(f(x) = i, c(x) = j), i, j ∈ {0, 1}, Fij =
{|f(x)=i,c(x)=j|x∈Dprobe}|

|Dprobe| . For AUROC, ρ(c) is the portion of positive examples in the probing dataset
Dprobe (i.e. the frequency of concept).
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in such cases, switching to other similarity metric can reduce the generalization gap and improve
performance.

3.3 SIMULATION STUDIES

To verify the theory developed in Sec. 3.2 and to compare different similarity metrics, we conduct
simulations on a synthetic dataset that contains ground-truth similarity values and allows us to simu-
late a variety of settings. Specifically, we use binary concept c(x) ∈ {0, 1} for simplicity. Neuron ac-
tivations f(x) are binarized by setting top-5% activations to 1 and remaining to 0. The joint distribu-
tion of f, c is controlled by the probability matrix M : Mij = P(f(x) = i, c(x) = j), i, j ∈ {0, 1}.
We conduct two experiments: (1) a single-concept study to compare convergence speeds and (2) a
multi-concept simulation to verify Thm. 3.1.

Experiment 1: Convergence speed. In Thm. 3.1, the key factor that controls the gap is the
convergence rate r. To investigate this, we generate synthetic data and compare different similarity
functions. For the concept, we study the following two settings:

• Setting 1: M =
c = 0 c = 1

f = 0
f = 1

(
0.93 0.02
0.02 0.03

)
This case simulates a regular concept.

• Setting 2: M =
c = 0 c = 1

f = 0
f = 1

(
0.9499 0.0001
0.0491 0.0009

)
This simulates a rare concept (frequency is 0.001), which often occurs when the concept is
fine-grained.

We simulate with Nexp = 1000 randomly sampled datasets and plot how the 95% quantile of error
changes with the number of samples, as shown in Fig. 2. From the simulation results, we can see
that

1. Accuracy has the fastest convergence in both cases. On regular concept, IoU, recall and
precision are similar. AUROC converges faster than them.

2. For rare concept, the convergence pattern differs: AUROC and recall are much worse than
precision and IoU. This matches our analysis in Sec. 3.2, where we showed that AUROC
converges much more slowly when the concept frequency is low.

(a) Setting 1 (b) Setting 2

Figure 2: 95% quantile of error of 5 similarity metrics under two settings: (a) balanced concept
frequency; (b) low concept frequency (0.001). Accuracy converges fastest in both settings.

6
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(a) Convergence rate rAUROC with respect to prob-
ing dataset size |Dprobe| under different concept fre-
quency ρ(c).

(b) Simulation of the generalization gap predicted
by Thm. 3.1 versus probing dataset size, showing
an empirical convergence rate of O(1/

√
n).

Figure 3: Theoretical and simulation results on generalization gap.

Experiment 2: Gap simulation In this experiment, we further verify Thm. 3.1 via synthetic data.
Different from Experiment 1 which simulates single concept, this test requires a concept set C. We
generate the synthetic data with the following steps:

1. Generate neuron representation. Binarized neuron representation f(x) is generated by
setting the top-5% of activations to 1 and the rest to 0, i.e. M10 +M11 = 0.05.

2. Generate concepts. We generate |C| = 1000 concepts as the candidate set. For each
concept ci, we first generate its frequency P(ci(x) = 1) = M01 +M11 from a log-uniform
distribution in the interval (10−4, 10−1). Then, we sample M11 = P(f(x) = 1, ci(x) = 1)
uniformly from (0,min[P(f(x) = 1),P(ci(x) = 1)]) to ensure validity. Given M11,
the remaining part of M can then be inferred from concept frequency and activation bi-
narization. Given the probabilities, we compute corresponding conditional probability
(P(ci(x) | f(x)) and sample ci(x) accordingly.

3. Experiment and simulation. We repeat the above steps Nexp = 1000 times. We use the
sampled neuron representation f(x) and concept activation ci(x) to calculate similarity
and select top-ranked concept ĉ. Then, we compute the ground-truth similarity with the
real probability matrix M and calculate the error as the difference between similarity of
selected concept and max similarity in the candidate set (maxc∈C [sim(f, c)]− sim(f, ĉ)).
We take the 95% quantile of error among all experiments to approximate the bound under
success probability 1− δ = 95%.

In Fig. 3b, we plot the simulated gap against the size of the probing dataset |Dprobe|. We observe
that: (1) All curves have similar slope to the reference O(

√
1/n) curve, suggesting an asymptotic

convergence rate ofO(
√
1/n), which is consistent with our theoretical analysis. (2) For the constant

term, accuracy has the fastest convergence and AUROC is the second. This matches our simulation
of r in Experiment 1, Setting 1, supporting our conclusion.

In summary, the simulation experiments empirically validate the correctness of our theory and show
its potential to help users choose appropriate similarity metric under different settings.

4 QUANTIFYING STABILITY IN NEURON EXPLANATIONS

In this section, we address the second key challenge in neuron identification methods – stability: Is
the identified concept consistent across different probing datasets? Leveraging the connection estab-
lished in Sec. 3.1, we adopt a bootstrap ensemble approach for stability estimation. This method is
applicable to any neuron identification algorithm without modifying its internal mechanism. Build-
ing on this bootstrapping framework, we further design a method to construct a prediction set of
candidate concepts that contains the desired concept with guaranteed probability.

7
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Figure 4: Illustration of bootstrap ensemble in neuron identification. Multiple probing datasets are
generated via bootstrapping. Then, neuron identification algorithm is applied to each dataset and
final concepts are aggregated to estimate the probability of each concept.

4.1 EMPIRICAL MEASUREMENT VIA BOOTSTRAP ENSEMBLE

Bootstrap ensemble (Breiman, 1996) is a machine learning technique used to improve prediction ac-
curacy and quantify uncertainty. The method aggregates multiple models, each trained on a different
resampled version of the original dataset obtained via bootstrapping (sampling with replacement).
The final prediction is typically determined by majority voting, and the confidence is estimated as
the proportion of models voting for the final prediction (Lakshminarayanan et al., 2017).

For neuron identification, we introduce a bootstrap-based stability framework that resamples the
probing dataset to produce multiple identification outcomes for a single neuron. This adaptation
allows us to quantify the stability of the neuron explanations obtained. The procedure is:

1. Collect bootstrap datasets: Sample K datasets {Di}Ki=1 independently by randomly se-
lecting samples from the probing dataset Dprobe with replacement.

2. Run neuron identification: Apply the neuron identification algorithm to each bootstrap
dataset Di and record the predicted concept ci.

3. Aggregate predictions: After K runs, estimate the probability of each concept as: P(c) =
1
K

∑K
i=1 1(ci = c), where 1(·) denotes the indicator function.

Fig. 4 summarizes the pipeline. With bootstrap ensemble, the algorithm now outputs probability of
each candidate concept.

4.2 THEORETICAL GUARANTEES VIA CONCEPT PREDICTION-SET CONSTRUCTION

While bootstrap ensembles provide an empirical measure of stability, we also seek theoretical guar-
antees on the identified concept. In particular, we want to bound the probability that the most
frequent concepts in bootstrap ensemble capture the desired concept2. To achieve this, we construct
a concept prediction set, a set of concepts that are likely to describe the neuron, rather than a single
best guess. This prediction-set approach can be applied to any neuron identification algorithm with-
out any modifications. We call this method Bootstrap Explanation (BE) and list the full procedure
in Alg. 1 in Appendix A.

The following theorem gives a probabilistic guarantee that a desired concept c∗ will be included in
the prediction set constructed via the bootstrap ensemble, under mild assumptions on the candidate
set and similarity function:

1. c∗ ∈ C (the desired concept is included in candidate concept set).

2. sim(f, c∗) ≥ sim(f, c) + ∆,∀c ∈ C, c ̸= c∗, where ∆ > 0 is a positive constant. This
assumes the similarity function can distinguish the desired concept with other concepts.

With these assumptions, we have the following theorem:

2Analogous to the ground truth in conventional machine learning.
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Figure 5: Results of applying bootstrap ensemble to NetDissect and CLIP-Dissect on ResNet-50
neurons. NetDissect shows more stable, concrete concepts. CLIP-Dissect outputs are more diverse
and abstract. We show more results in Appendix C due to space limitations.

Theorem 4.1. Let c∗ be the desired concept for a given neuron and the assumptions above hold for
c∗. Let S ⊆ C be the prediction set constructed in Alg. 1, and let k(S) =

∑K
i=1[ĉi ∈ S] be the

number of bootstrap trials that predict a concept in S. Then, under these assumptions,

P(c∗ ∈ S) ≥
K−k(S)−1∑

i=0

(
K
i

)
pi(1− p)K−i, (9)

where p is the single-trial error probability defined implicitly by the equation r(f,Dprobe,
p
|C| ) =

∆
2 .

Thm. 4.1 provides a statistical guarantee on the probability that our desired concept is included in
the prediction set. We postpone its proof to Appendix A.1.

4.3 EXPERIMENTS

We apply our BE method to two base methods: CLIP-Dissect (Oikarinen & Weng, 2023) and Net-
Dissect (Bau et al., 2017). We use a ResNet-50 model trained on the ImageNet dataset (Deng et al.,
2009), run K = 100 bootstrap samples and choose the bootstrap count threshold t = 0.95K =
0.95×100 = 95 in Alg. 1. The results are shown in Fig. 5. In Appendix C, we include more results.

From the results, we can observe interesting differences between these two methods: (1) CLIP-
Dissect prefers more abstract concepts. For example, it gives concepts like fostering and biblio-
graphic. NetDissect, in contrast, tends to identify concrete concepts. (2) In general, CLIP-Dissect
provides more diverse concepts and sometimes captures ones missed by NetDissect (e.g. Birding
for Neuron 89). NetDissect is more stable across different bootstrap samples. A potential reason is
that NetDissect utilizes localization information, which improves stability.

5 CONCLUSION AND LIMITATIONS

In this work, we presented a theoretical framework for neuron identification, with the goal of clar-
ifying the faithfulness and stability of existing algorithms. Building on our key observation that
neuron identification can be viewed as the inverse process of learning, we introduced the notion
of generalization gap to quantify and derive formal guarantees for explanation faithfulness. To quan-
tify stability, we proposed BE procedure to construct concept prediction sets with statistical coverage
guarantees. Together, these results provide the first principled framework for the trustworthiness
of neuron identification, complementing existing empirical studies.

Our work also has some limitations: the bound on generalization gap is a general bound for any con-
cept set. It does not utilize the relation between concepts thus may be improved for specific concept
sets. The bootstrap ensemble method provides an algorithm-agnostic way to quantify stability and
generate prediction sets, but also introduces additional computational overhead.
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A DETAILS ON BOOTSTRAP ENSEMBLE

Algorithm 1: BE: Generating a concept prediction set for target neuron
Input: Concept set C, probing dataset Dprobe, target neuron f , neuron identification procedure

Identify(C, f,Dprobe), bootstrap sample count K, bootstrap count threshold t
Output: Prediction set S of candidate concepts
for i← 1 to K do

Sample dataset Di from Dprobe with replacement (same size as Dprobe);
Calculate ĉi = Identify(C, f,Di);

end
For each concept cj ∈ C, count the number of its appearances:

kj =

K∑
i=1

[ĉi = cj ]

Sort concepts by frequency, kr1 ≥ kr2 · · · ≥ krs , s is the number of different concepts
generated during bootstrapping;

Initialize S ← ∅, j ← 0, cur count← 0;
while cur count < t do

Add crj to S: S ← S ∪ {crj};
Update j ← j + 1, cur count← cur count + krj

end

A.1 PROOF FOR THM. 3.1

In this section, we prove Thm. 3.1:

Theorem 3.1. Let c∗ be the desired concept for a given neuron and the assumptions above hold for
c∗. Let S ⊆ C be the prediction set constructed in Alg. 1, and let k(S) =

∑K
i=1[ĉi ∈ S] be the

number of bootstrap trials that predict a concept in S. Then, under these assumptions,

P(c∗ ∈ S) ≥
K−k(S)−1∑

i=0

(
K
i

)
pi(1− p)K−i, (10)

where p is the single-trial error probability defined implicitly by the equation r(f,Dprobe,
p
|C| ) =

∆
2 .

Proof. We start the proof by estimating single-trial error rate.

Lemma A.1. Let p be defined implicitly by the equation

r(f,Dprobe,
p

|C|
) =

∆

2
, (11)

where r(·) is the uniform convergence rate in Thm. 3.1. Then,

P(ĉ = c∗) ≥ 1− p (12)

Remark A.2. Lemma A.1 can be easily derived from Thm. 3.1: with probability 1 − p,
supc∈C | ˆsim(f, c;Dprobe)− sim(f, c)| ≤ ∆

2 , thus

ˆsim(f, c∗;Dprobe) ≥ sim(f, c∗;Dprobe)−
∆

2

≥ sim(f, c;Dprobe) +
∆

2
(Assumption 2)

≥ ˆsim(f, c;Dprobe).

(13)
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Previously, we show that for many similarity metrics (AUROC, accuracy, IoU, etc.),
r(f,Dprobe, δ) = O(

√
− log δ
|Dprobe| ), i.e. r(f,Dprobe, δ) ≤ Q(

√
− log δ
|Dprobe| ) for some constant Q > 0. In

this case, we can plug in δ = p
|C| and get

∆

2
= r(f,Dprobe,

p

|C|
) ≤ Q

√
− log p

|C|

|Dprobe|
, (14)

which gives p ≤ |C|e−
∆2

4Q2 |Dprobe|. This shows when probing dataset size |Dprobe| and gap between
desired concept and other concept ∆ becomes larger, the error probability p can be reduced.

Suppose we repeat our experiment K times and get {ĉi}Ki=1. Then, we have the following theorem.

Theorem A.3. Let k∗ =
∑K

i=1 1[ĉi = c∗] denotes the number of times target neuron is given during
K experiments. Then,

P(k∗ ≥ t) ≥
t∑

i=0

(
K
i

)
(1− p)ipK−i (15)

Remark A.4. This could be derived by Lemma A.1 and binomial distribution CDF.

Using Thm. A.3, we can derive:

P(c∗ /∈ S) ≤ P(k∗ ≤ K − k(S))

= 1− P(k∗ ≥ K − k(S)− 1)

≤ 1−
K−k(S)−1∑

i=0

(
K
i

)
(1− p)ipK−i

(16)

Thus,

P(c∗ ∈ S) ≥
K−k(S)−1∑

i=0

(
K
i

)
(1− p)ipK−i, (17)

finishes the proof.

B RELATED WORKS

B.1 NEURON IDENTIFICATION

The goal of neuron identification is to find a human-interpretable concept that describes the behavior
and functionality of a specific neuron. A variety of methods have been proposed for neuron iden-
tification. Network Dissection (Bau et al., 2017) is a pioneering work with the idea of comparing
neuron activations with ground-truth concept masks. Subsequent work explored extensions such as
compositional explanations (Mu & Andreas, 2020), automated labeling with CLIP (Oikarinen &
Weng, 2023), and multimodal summarization (Bai et al., 2024). More recent approaches expand
the concept space to linear combinations (Oikarinen & Weng, 2024). While these advances provide
useful empirical tools, in this work we aim to fill the gap in a principled theoretical foundation for
neuron identification.

B.2 PRINCIPLED FRAMEWORK FOR NEURON IDENTIFICATION

To unify the rapid growing neuron identification methods, Oikarinen et al. (2025) design a frame-
work, summarizing most neuron identification algorithm into three major components: neuron rep-
resentation, concept activations and similarity metrics. Additionally, two meta-tests are proposed
to compare similarity metrics. While this work provides a good start point, rigorous theoretical
analysis is still lacking, which we want to provide in this work.
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Figure 6: Additional results of applying BE to NetDissect and CLIP-Dissect on ResNet 50 neurons.

C ADDITIONAL BOOTSTRAP RESULTS

In Fig. 6, we present additional results on applying BE on NetDissect and CLIP-Dissect.

D DETAILS IN RECALL, PRECISION AND IOU’S CONVERGENCE SPEED
DERIVATION

In the main text, we mention the key idea of deriving convergence speed r for recall, precision and
IoU: that is regard them as special case of accuracy where data are limited in a subgroup. For recall:

simrecall(f, c) =
P(f(x) = 1, c(x) = 1)

P(c(x) = 1)

= P(f(x) = c(x) | c(x) = 1).

(18)

Therefore, we can regard calculation of recall as a rejection sampling process: The samples sat-
isfying c(x) = 1 are kept and others are rejected. Then, accuracy is calculated on remaining
samples. Thus, the convergence speed can be calculated by inserting the effective sample size
|{c(x) = 1 | x ∈ Dprobe}| into the accuracy’s convergence rate:

rrecall =

√
log( 2δ )

2|{c(x) = 1 | x ∈ Dprobe}|
. (19)

For precision and IoU, the derivation is similar.

E LLM USAGE

In this article, LLM is used to check grammar and typos as well as improve the writing.
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