
A Experiment details

Verification experiments. In these experiments, we used pre-trained MNIST and CIFAR-
10 image classifiers provided by (Weng et al., 2018). These are MLP networks with ReLU
activation functions trained in a standard vanilla manner. The input for these models are
normalized to fit in the range [−0.5, 0.5]. The experiments were done on a personal laptop
with a 4 core Intel Core i7-8550U CPU. All verifications were done under the threat model
where the class with the second-highest logit is a target.

Probabilistic training experiments. In these experiments, we trained the small architec-
ture in table 1 on MNIST using IBP and using PROVEN-IBP. The input for these models
were normalized to fit in [0, 1]. In order to compare the two models, they share training
parameters whenever possible. We used batch sizes of 512 for 100 epochs, or 11.8k steps.
The learning rate was fixed at 5 × 10−4 and we used the AdamW optimizer. We have a
warm-up period for the first 5 epochs in which the loss is the standard cross-entropy loss.
After this, the next 45 epochs use the corresponding loss regularization terms and ramp-up
the parameters (ϵ, κ for IBP and ϵ, κ, β for PROVEN-IBP) over these 45 epochs. We use
ϵtrain = 0.4 and ϵtest = 0.3. Furthermore, κ goes from 1 to 0.5 and for PROVEN-IBP, β goes
from 1 to 0. Rather than a linear schedule, we use an exponential-growth schedule which
allows for a more gradual change of parameters. In particular, for a schedule which starts at
epoch u, ends at epoch v, and changes a parameter from a to b, we set that parameter to

(b− a)

exp
(

r(t−u)
v−u

)
− 1

exp(r)− 1

+ a

during epoch t for hyperparameter r = 1.5. PROVEN-IBP uses Qtrain fixed at 1×10−4 while
Qtest = 1× 10−2. We also set the linear relaxations on ReLU so that the bounds are always
at least as tight as IBP by using the zero function as the lower bound when the interval
crosses both negative and positive values. As noted in the main text, these experiments were
done on a NVIDIA Tesla V100 GPU.

Sparsity experiments. For these experiments, we train several standard and robust
classifiers with the architectures listed in table 1. We approximately follow the same
parameters as (Gowal et al., 2019), rounding to use whole epochs when necessary. We opt to
use their 350-epoch CIFAR training, although we do not use any of their data augmentation.
Notably, we clip the model gradients at a low value of 0.1 as we found large losses during
the beginning of the ramp-up periods. This was done on a NVIDIA Tesla V100 GPU. To
evaluate the linear bounds AL, AU , we use I-PROVEN with Q = 1 × 10−2, ϵ = 0.3 for
MNIST and Q = 1× 10−2, ϵ = 8/255 for CIFAR-10.

Table 1: Model architectures used in (Gowal et al., 2019). All layers are followed by ReLU
activations except the last fully connected output layer which is omitted. Conv k :: w×h :: s
denotes a 2D convolutional layer with k filters of size w × h and stride s while FC n
corresponds to a fully connected layer with n outputs.

small medium large

Conv 16 :: 4× 4 :: 2 Conv 32 :: 3× 3 :: 1 Conv 64 :: 3× 3 :: 1
Conv 32 :: 4× 4 :: 1 Conv 32 :: 4× 4 :: 2 Conv 64 :: 3× 3 :: 1

FC 100 Conv 64 :: 3× 3 :: 1 Conv 128 :: 3× 3 :: 2
Conv 64 :: 4× 4 :: 2 Conv 128 :: 3× 3 :: 1

FC 512 Conv 128 :: 3× 3 :: 1
FC 512 FC 512

1

B Additional results

We compared I-PROVEN against the same Monte Carlo method used in Section 4.3 of the
paper. We report largest ϵ such that the B∞(x, ϵ) uniform distribution which is correctly
classified with probability at least 1 − Q. We perform 20 steps of binary search on ϵ for
both I-PROVEN and the Monte Carlo method, and we evaluate samples in large batches
to leverage the parallelizability of the sampling. We average our results over 10 inputs and
report the runtimes in seconds below as well. Note that the original image values are in [-0.5,
0.5] and we do not truncate them. The first 3 models are for MNIST and the last two are
for CIFAR-10. We consider the margin between the best class and second-best class. This
experiment was done on a NVIDIA Tesla V100 GPU.

Table 2: I-PROVEN versus original PROVEN versus simple Monte Carlo method on
MNIST classifier with 2 layers, 1024 neurons each on the probabilistic robustness certificate

Q 0.0001 0.01 0.05 0.25 0.5 0.95

PROVEN (Weng et al., 2019) 0.0292 0.0300 0.0304 0.0309 0.0313 0.0319
Time (s) 0.4847 0.4789 0.4813 0.4811 0.4834 0.4822

I-PROVEN 0.0757 0.0888 0.0953 0.1034 0.1076 0.1120
Time (s) 0.9136 0.4886 0.4897 0.4912 0.4950 0.4899

Monte Carlo 0.3691 0.4977 0.5543 0.6843 0.6958 0.7858
Time (s) 233.7793 4.8198 2.6030 1.6715 1.5603 1.5039

Table 3: I-PROVEN versus original PROVEN versus simple Monte Carlo method on
MNIST classifier with 3 layers, 1024 neurons each on the probabilistic robustness certificate

Q 0.0001 0.01 0.05 0.25 0.5 0.95

PROVEN (Weng et al., 2019) 0.0223 0.0226 0.0227 0.0228 0.0229 0.0231
Time (s) 0.8991 0.8993 0.9047 0.8983 0.8977 0.9007

I-PROVEN 0.0640 0.0745 0.0797 0.0860 0.0893 0.0926
Time (s) 1.0111 0.9104 0.9204 0.9102 0.9017 0.9136

Monte Carlo 0.4480 0.5745 0.6431 0.7780 0.8295 0.8923
Time (s) 524.8032 7.7765 3.3641 1.9709 1.7936 1.7367

Table 4: I-PROVEN versus original PROVEN versus simple Monte Carlo method on
MNIST classifier with 4 layers, 1024 neurons each on the probabilistic robustness certificate

Q 0.0001 0.01 0.05 0.25 0.5 0.95

PROVEN (Weng et al., 2019) 0.0083 0.0084 0.0084 0.0084 0.0084 0.0084
Time (s) 1.5498 1.5483 1.5521 1.5522 1.5541 1.5459

I-PROVEN 0.0299 0.0347 0.0370 0.0398 0.0413 0.0428
Time (s) 1.6641 1.5747 1.5774 1.5781 1.5739 1.5745

Monte Carlo 0.3619 0.4884 0.5566 0.6647 0.7369 0.8141
Time (s) 810.0939 10.5965 3.7936 1.9063 1.7350 1.5721

In addition, we tested these three methods for Q from 10−6 to 10−2. We had to use a very
small MNIST model in this experiment because of the prohibitive runtime of the sampling
method.

For reference, the adversarial L∞ certified radius found by CROWN on this small MNIST
model was 0.0145.

2

Table 5: I-PROVEN versus original PROVEN versus simple Monte Carlo method on CIFAR-
10 classifier with 5 layers, 2048 neurons each on the probabilistic robustness certificate

Q 0.0001 0.01 0.05 0.25 0.5 0.95

PROVEN (Weng et al., 2019) 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
Time (s) 14.0501 14.0448 14.0455 14.0449 14.0349 14.0342

I-PROVEN 0.0123 0.0141 0.0150 0.0161 0.0166 0.0171
Time (s) 14.3249 14.2359 14.2281 14.2094 14.2036 14.2218

Monte Carlo 0.1477 0.2213 0.2734 0.3350 0.4423 0.4756
Time (s) 5013.3533 61.4112 20.1818 10.4928 9.2565 8.4926

Table 6: I-PROVEN versus original PROVEN versus simple Monte Carlo method on CIFAR-
10 classifier with 7 layers, 1024 neurons each on the probabilistic robustness certificate

Q 0.0001 0.01 0.05 0.25 0.5 0.95

PROVEN (Weng et al., 2019) 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
Time (s) 4.1160 4.1139 4.1163 4.1143 4.0971 4.0928

I-PROVEN 0.0128 0.0147 0.0157 0.0168 0.0174 0.0179
Time (s) 4.4922 4.1673 4.1725 4.1664 4.1689 4.1710

Monte Carlo 0.2157 0.2982 0.3346 0.4751 0.5351 0.7140
Time (s) 1437.8627 18.0755 5.9482 2.3806 1.9541 1.7490

Table 7: I-PROVEN versus original PROVEN versus simple Monte Carlo method on
MNIST classifier with 3 layers, 20 neurons each on the probabilistic robustness certificate

Q 10−6 10−5 10−4 10−3 10−2

PROVEN (Weng et al., 2019) 0.0202 0.0204 0.0206 0.0208 0.0211
Time (s) 0.6174 0.6185 0.6191 0.6192 0.6177

I-PROVEN 0.0492 0.0526 0.0569 0.0624 0.0699
Time (s) 0.7007 0.6307 0.6356 0.6288 0.6302

Monte Carlo 0.1753 0.1889 0.2071 0.2381 0.2922
Time (s) 16063.6184 1594.6121 161.5650 17.4352 3.4294

3

C Connection to l2-norm robustness

I-PROVEN uses the norm of the bounding linear matrices ||AL||2, ||AU ||2. This is similar
to linear relaxation methods when certifying the robustness of a model to adversarial attacks
within an l2-norm ball. This connection is clearest when using I-PROVEN to certify
Gaussian noise and distributing Q equally so that qi = q for some constant q. In this case,
we have

lprob = ALx+bL−ϵprob erf−1(1−2q) ||AL||2, uprob = AUx+bU−ϵprob erf−1(1−2q) ||AU ||2.
(1)

On the other hand, for adversarial robustness withn an l2-norm ball, we have

lstrict = ALx+ bL − ϵstrict||AL||2, ustrict = AUx+ bU − ϵstrict||AU ||2. (2)

Thus, if
ϵprob erf−1(1− 2q) = ϵstrict, (3)

the two methods will obtain the same results. In general, however, I-PROVEN may not set
all qi’s equal. For uniform noise in particular, the use of strict l∞ bounds when available means
that this connection will not always hold. This does suggest that one can make non-trivial
statements about the probabilistic robustness of a model given it’s adversarial robustness
against l2-norm attacks. This is assuming that the adversarial robustness certificate was
obtained using linear relaxation methods.

4

References
Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,

Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable
verified training for provably robust image classification. ICCV, 2019. 1

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane
Boning, and Inderjit Dhillon. Towards fast computation of certified robustness for relu
networks. In International Conference on Machine Learning, pp. 5276–5285. PMLR, 2018.
1

Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets,
and Luca Daniel. Proven: Verifying robustness of neural networks with a probabilistic
approach. In International Conference on Machine Learning, pp. 6727–6736. PMLR, 2019.
2, 3

5

