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This document is supplementary material for the paper “Group-
aware Parameter-efficient Updating for Content-Adaptive Neural
Video Compression”. We provide optimization details (Section A.1)
adaptor details (Section A.2), more setting details (Section B.1), ad-
ditional quantitative results (Section B.2), additional ablation stud-
ies (Section B.3) and individual quantitative results (Section B.4).

A METHODOLOGICAL DETAILS
A.1 Optimization Details
This section outlines our optimization strategy. Specifically, for the
1𝑠𝑡 GoP in the video, we utilize a pre-trained NVC model based
on [19]. Initially, we optimize it over 1200 epochs with a learning
rate of 1 × 10−5. Throughout each epoch, the back-propagation
operation is applied to all frames within the GoP. Subsequently,
the learning rate is reduced to 5 × 10−6, and the model is further
optimized for an additional 600 epochs. For subsequent GoPs, we
employ the parameters optimized from the previous GoP. The train-
ing for these GoPs starts with a learning rate of 1 × 10−5 for 600
epochs. Following this, the learning rate is decreased to 5 × 10−6,
and the training continues for another 300 epochs.

A.2 Adaptor Details
This section elaborates on the architectural decisions concerning
the integration of adaptors into our content-adaptive NVC frame-
work, initially introduced in Sec 3.2.1 of the main manuscript. As
detailed in Fig. 2 (c) of the main manuscript, each adaptor consists
of three convolutional layers. These include two point-wise con-
volution layers denoted asW𝑝𝑟𝑒 andW𝑧𝑒𝑟𝑜 , and one depth-wise
convolution layer denoted asW𝑑𝑤 . The subsequent discussion will
detail the configuration and integration of these adaptor modules
into various coding components of the NVC framework.

Serial Adaptor. In the light-weight coding components—namely,
Motion Estimation,MotionHyper-Prior Encoder andContexture Hyper-
Prior Encoder, a serial configuration is applied. This setup ensures
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that the width and height of the input feature F and the delta fea-
ture 𝛿 (F) remain identical. Consequently, the stride for all three
convolutional operations is set to 1 to maintain dimension consis-
tency. The depth-wise convolutional kernelW𝑑𝑤 is utilized with
dimensions of 3 × 3. The output channel specifications for each
component are as follows:

#Output Channel W𝑝𝑟𝑒 W𝑑𝑤 W𝑧𝑒𝑟𝑜

Motion Estimation 32 32 2
Motion Hyper-Prior Encoder 16 16 64
Contexture Hyper-Prior Encoder 32 32 128

Table S1: Configuration Details of Serial Adaptors: The serial
adaptors are integrated within various components of our
NVC framework as detailed in Sections 3.1.2 and 3.2.1.

Parallel Adaptor. For those larger coding components, specifi-
cally the Motion Encoder and Contexture Feature Encoder, we imple-
ment parallel adaptors. Different from the serial configuration, the
width and height of the input feature F and the delta feature 𝛿 (F)
do not need to match. This allows the stride of W𝑝𝑟𝑒 to vary, en-
abling the reshaping of the feature resolution as required. However,
we maintain a stride of 1 for bothW𝑑𝑤 andW𝑧𝑒𝑟𝑜 , and keep the
kernel size forW𝑑𝑤 consistent at 3 × 3. Further details and visual
representations can be found in Fig. S1.

B EXPERIMENTS
B.1 More Setting Details

Settings of Traditional Codecs. We benchmark the performance of
our method against the reference software for H.265/HEVC [17] and
H.266/VVC [5], specifically using HM-16.20 [1] and VTM-11.2 [3],
respectively. For both reference models, we employ the low delay
configuration, which prioritizes the highest compression ratio. All
video processing is conducted in YUV 420 format. Post compression,
all RGB frames are extracted from the reconstructed videos to
compute distortion metrics, allowing for a consistent evaluation
of video quality across different coding standards. The detailed
settings used for HM and VTM are as follows:
• HM
TAppEncoder -c encoder_lowdelay_main_rext.cfg [args]

• VTM
EncoderApp -c encoder_lowdelay_vtm.cfg [args]

where both codecs use the following common command line
arguments ([args]):

--InputFile={input_filename}
--BitstreamFile={bitstream_filename}
--ReconFile={reconstructed_filename}
--DecodingRefreshType=2
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Figure S1: Configuration Details of Parallel Adaptors: The parallel adaptors are strategically integrated into specific coding
components of our NVC framework. The configuration is denoted as Adaptor(𝐶𝑝𝑟𝑒 ,𝐶𝑑𝑤 ,𝐶𝑧𝑒𝑟𝑜 , 𝑆𝑝𝑟𝑒 ), where 𝐶𝑝𝑟𝑒 , 𝐶𝑑𝑤 , and 𝐶𝑧𝑒𝑟𝑜
represent the number of output channels in the convolutional operations ofW𝑝𝑟𝑒 , W𝑑𝑤 , andW𝑧𝑒𝑟𝑜 , respectively. 𝑆𝑝𝑟𝑒 denotes
the stride number ofW𝑝𝑟𝑒 . Detailed descriptions are elaborated in Sec 3.1.2.

--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=420
--FrameRate={frame_rate}
--FramesToBeEncoded={frame_num}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod={GoP_Size}
--QP={quantization_parameter}
--Level=6.2

For more details regarding the size of GoP and frame number
please refer to our Sec 4.1.2 of the main manuscript. For the resolu-
tion (i.e., width and height), please refer to the next section.

Settings of Patches. In this section, we outline the configura-
tion for segmenting each GoP into patch-based GoPs for various
video and medical sequences. Consistent with prior benchmarks ,
we first cropped the smaller dimension of all sequence frames as
in [4, 6–10, 13–16]. Following this, we systematically partition each
sequence from full resolution down to each sub-resolution. The
specific segmentation details are as follows:

Resolution Patch Resolution #Patch
HEVC B 1920 × 1024 320 × 256 24
HEVC C 832 × 448 416 × 224 4
HEVC D 384 × 192 384 × 192 1
HEVC E 1280 × 704 320 × 176 16
ACDC 256 × 224 256 × 224 1

Table S2: Configuration of Patch Settings for Each Dataset.

B.2 Additional Quantitative Comparison
Here, we present a more quantitative comparison between our
method and other state-of-the-art video codecs using an additional
public video dataset, the UVG dataset [2]. This dataset consists of 7
high-resolution videos (1920×1080). We processed and encoded the
UVG dataset in the same manner as we did with the HEVC ClassB
dataset. Further details can be found in Sec 4.1.2 and B.1.

Fig. S2 demonstrates the rate-distortion performance on the UVG
dataset. As discussed in our Sec 4.2.3, given the smaller domain gap
between the pre-trained dataset [19] and the test dataset, coupled
with the nearing saturation of video compression benchmarks, it is
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Figure S2: Rate-distortion (i.e., bit-rates vs PSNR) perfor-
mance comparison of our and other state-of-the-art video
codecs on additional video compression benchmark, UVG.

Table S3: The computational complexity on ClassD of our
method using encoding-side adapters to delta-tune the en-
coder (i.e., GPU) against the variant directly optimizing all
modules within the encoding network (i.e., Full Updating).

Full Updating GPU (Ours)
Optimizing Time (s/Epoch) 2.71 2.25

increasingly challenging to further enhance performance on such
standard video compression benchmarks. Nevertheless, our method
still outperforms the state-of-the-art NVC method DCVC_DC and
the traditional video codec H.266/VVC, achieving bit-rate savings
of 0.56% and 24.76%, respectively. Moreover, it shows significant
performance gains over those content-adaptive NVC methods such
as Lu et al. [12] and Tang et al. [18], saving 66.97% and 56.77%
bit-rates. These results further underscore the effectiveness of our
method in video compression

B.3 Additional Ablation Studies
In this section, we conduct experiments for the ablation study de-
scribed in Sec 4.3 using the standard video dataset, HEVCClassD [17].
We adhere to the experimental protocol described in Sec 4.3. Fig. S3
and S4 demonstrate the performance of our methods, comparing
variants that update all encoder-side parameters (as detailed in
Sec 4.3.1) and variants that involve different numbers of updated
frames (as discussed in Sec 4.3.2), respectively.

The overall results are consistent with our main manuscript. In
terms of optimizing efficiency, our GPU only incurs a negligible
increase in bit-rates (< 1%) compared to the full updating strategy,
yet only requires 83.0% optimization time for each epoch (i.e., GoP)
as shown in Table S3, and utilizes less than 10% of the parameters
as shown in Table 2 of the manuscript. Regarding the impact of the
number of frames optimized, optimizing 1, 10, and 20 frames results
in additional bit-rate costs of 20.61%, 3.71%, and 1.27%, respectively.

0.100 0.125 0.150 0.175 0.200 0.225 0.250
Bpp
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33.0

33.5

34.0

34.5

35.0

PS
N
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HEVC ClassD

DCVC_DC
Full Updating
GPU (Ours)

Figure S3: Performance of our method against the variant
updating all encoder-side parameters (i.e., Full Updating) on
the HEVC ClassD dataset.

0.10 0.15 0.20 0.25
Bpp

32

33

34

35

PS
N
R

HEVC ClassD

DCVC_DC
Optimize 1 frame
Optimize 10 frames
Optimize 20 frames
GPU (Ours)

Figure S4: Performance of our method against variants opti-
mizing different numbers of frames during online updating
on the HEVC ClassD dataset.

B.4 Individual Quantitative Comparison
Lastly, we present selected rate-distortion performance curves for
individual sequences from both the video and medical dataset
Specifically, we feature two cases for each dataset: the best (left
column) and the worst (right column) cases. The best and worst
cases are defined based on how our proposed content-adaptive
NVC framework performs in comparison to our baseline method,
DCVC_DC [11]. It is important to highlight that, on average, our
NVC framework is able to outperform both the baseline DCVC_DC
and the VTM methods across all datasets. This superiority is sup-
ported by the quantitative comparisons (please refer to the details
in Fig. 4 and 5 and Table. 1 of the main manuscript).

Regarding the performance on the medical dataset, as shown in
Fig. S6, our method significantly improves over the baseline in both
the best and worst cases when compressing each MRI sequence.
This further demonstrates its adaptability for individual cases.
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Figure S5: Selected individual rate-distortion (i.e., bit-rates vs PSNR) performance comparison on standard video dataset, HEVC
B, C, D and E, showing best (left) and worst case (right) on the dataset.
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Figure S6: Selected individual rate-distortion (i.e., bit-rates vs PSNR) performance comparison of medical volumetric image
dataset, ACDC, showing best (left) and worst case (right) on the datasets.

In terms of standard video compression, from Fig. S5, it can
be observed that across the standard video benchmarks, HEVC
Class B, C, D, and E, our proposed method consistently improves
upon, or at least performs no worse than, the baseline DCVC_DC,
even in the worst cases (e.g., HevcD RaceHorses). For cases where
our method does not yield significant improvements, we plan to
conduct detailed studies to explore the bottlenecks of such content-
adaptive NVC methods. We believe these investigations will yield
new insights for the video coding community.
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