Overcoming Muti-model Forgetting in Oneshot Neural Architecture Search Via Orthogonal Gradient Learning

Anonymous authors

Paper under double-blind review

1 Supplementary File.

1.1 A Proof of Lemma 2

Figure 1: An illustration of the relationship between the input space S and the orthogonal projector P, where $f=b-c$.

Lemma 2. Given a gradient space $S_{r}^{(i, j)}$ consists of a number of gradient vectors, i.e., $S_{r}^{(i, j)}=$ $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, the projection of $\Delta w_{l, r}^{(i, j)}(k+1)^{B P}$ on $S_{r}^{(i, j)}$ can be calculated by Eq. 1 .

$$
\begin{align*}
& \operatorname{pro}_{S_{r}^{(i, j)}}\left(\Delta w_{l, r}^{(i, j)}(k+1)^{B P}\right)= \\
& \qquad G\left(G^{T} G\right)^{-1} G^{T} \Delta w_{l, r}^{(i, j)}(k+1)^{B P}, \tag{1}
\end{align*}
$$

where $G=\left[g_{1}, g_{2}, \ldots, g_{n}\right], g_{i} \in \mathbb{R}^{h \times 1}, i=1,2, \ldots, n . n$ and h are the number of gradient vectors and the dimension of the gradient space $S_{r}^{(i, j)}$, respectively.

Proof. We use \hat{w} to represent $\Delta w_{l, r}^{(i, j)}(k+1)^{B P}$ and use S to represent the gradient space $S_{r}^{(i, j)}$ for simplicity. We take Figure 1 to illustrate the relationship between \hat{w} and S. In the figure, \hat{w} is a gradient vector, while $\operatorname{pro}_{S}(\hat{w})$ is the gradient \hat{w} projected on S.

Step 1: we express $\operatorname{pro}_{S}(\hat{w})$ by a linear combination of the gradient vectors from S :

$$
\begin{equation*}
\operatorname{pro}_{S}(\hat{w})=x_{1} g_{1}+x_{2} g_{2}+\ldots+x_{n} g_{n}=G X \tag{2}
\end{equation*}
$$

where G is a matrix of gradient vectors from S, i.e., $G=\left[g_{1}, g_{2}, \ldots, g_{n}\right]^{T} . X$ is a vector of constants, denoted by $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$.
Step 2: In order to get X, we find that $\hat{w}-\operatorname{pro}_{S}(\hat{w})$ is orthogonal to S. In other words, $\hat{w}-\operatorname{pro} o_{S}(\hat{w})$ is orthogonal to any input vector from S. Namely, the inner product of $\hat{w}-\operatorname{pro}_{S}(\hat{w})$ and g_{i} is zero, where $i=1, \ldots, n$.

$$
\left\{\begin{array}{l}
<g_{1}, \hat{w}-\operatorname{pro}_{S}(\hat{w})>=g_{1}^{T} \cdot(\hat{w}-G X)=0 \tag{3}\\
\cdots \\
<g_{n}, \hat{w}-\operatorname{pro}_{S}(\hat{w})>=g_{n}^{T} \cdot(\hat{w}-G X)=0
\end{array}\right.
$$

And we can reform the Eq. 3 by matrix calculations as follows:

$$
\begin{equation*}
G^{T}(\hat{w}-G X)=0 \tag{4}
\end{equation*}
$$

Step 3: On the basis of Step 2, we can get the vector X as follows:

$$
\begin{equation*}
X=\left(G^{T} G\right)^{-1} G^{T} \hat{w} \tag{5}
\end{equation*}
$$

Step 4: We integrate Eq. 5 into Eq. 2 to get $\operatorname{pro}_{S}(\hat{w})$ using

$$
\begin{equation*}
\operatorname{pro}_{S}(\hat{w})=G X=G\left(G^{T} G\right)^{-1} G^{T} \hat{w} \tag{6}
\end{equation*}
$$

Thus the Lemma 2 is proven.

1.2 Convergence Guarantee of OGL

Theorem 1. Given a l-smooth and convex loss function $L(w), w^{*}$ and w_{0} are the optimal and initial weights of $L(w)$, respectively. If we let $\eta=1 / l$, then we have:

$$
\begin{equation*}
L\left(w_{t}\right)-L\left(w^{*}\right) \leq \frac{2 l}{t}\left\|w_{0}-w^{*}\right\|_{F}^{2}, \tag{7}
\end{equation*}
$$

where w_{t} is the weights after t-th training.
Theorem 1 demonstrates that our proposed method OGL has a convergence rate of $O(1 / t)$ Niu et al. (2021).

Proof. Based on projected gradient descent (PGD) Nesterov (2003), the update of w can be represented as follows:

$$
\begin{gather*}
q\left(w_{t}\right)=\arg \min _{w \in Q}\left(L\left(w_{t}\right)+\left\langle L^{\prime}\left(w_{t}\right), w-w_{t}\right\rangle+\frac{\beta}{2}\left\|w_{t}-w\right\|_{F}^{2}\right) \tag{8}\\
w_{t+1}=w_{t}-\eta \beta\left(w_{t}-q\left(w_{t}\right)\right) \tag{9}
\end{gather*}
$$

where η and β are two hyperparameters.
Let Q is a closed convex set, $w^{+} \in Q$ and $\beta \geq l$. We denote $Q_{w}=q\left(w^{+}\right)$and $g_{Q}=g_{Q}\left(w^{+}\right)=$ $\beta\left(w^{+}-q\left(w^{+}\right)\right)$, then we let:

$$
\begin{equation*}
\phi(w)=L\left(w^{+}\right)+\left\langle L^{\prime}\left(w^{+}\right), w-w^{+}\right\rangle+\frac{\beta}{2}\left\|w-w^{+}\right\|_{F}^{2} \tag{10}
\end{equation*}
$$

Based on Eq. 10, we have $\phi^{\prime}(w)=L^{\prime}\left(w^{+}\right)+\beta\left(w-w^{+}\right)$, Then we have:

$$
\begin{equation*}
\phi^{\prime}\left(Q_{w}\right)=L^{\prime}\left(w^{+}\right)+\beta\left(Q_{W}-w^{+}\right)=L^{\prime}\left(w^{+}\right)-g_{Q} \tag{11}
\end{equation*}
$$

and

$$
\begin{array}{r}
\left\langle L^{\prime}\left(w^{+}\right)-g_{Q}, w-Q_{w}\right\rangle=\left\langle L^{\prime}\left(w^{+}\right), w-Q_{w}\right\rangle-\left\langle g_{Q}, w-Q_{w}\right\rangle=\left\langle\phi^{\prime}\left(Q_{w}\right), w-Q_{w}\right\rangle \tag{12}\\
\geq 0
\end{array}
$$

Based on Eq. 10. Eq. 11 and Eq. 12 and the property of convex function, we have:

$$
\begin{align*}
L(w) & \geq L\left(w^{+}\right)+\left\langle L^{\prime}\left(w^{+}\right), w-w^{+}\right\rangle \\
& =L\left(w^{+}\right)+\left\langle L^{\prime}\left(w^{+}\right), w-Q_{w}\right\rangle+\left\langle L^{\prime}\left(w^{+}\right), Q_{w}-w^{+}\right\rangle \\
& \geq L\left(w^{+}\right)+\left\langle L^{\prime}\left(w^{+}\right), Q_{w}-w^{+}\right\rangle+\left\langle g_{Q}, w-Q_{w}\right\rangle \\
& =\phi\left(Q_{w}\right)-\frac{\beta}{2}\left\|Q_{w}-w^{+}\right\|_{F}^{2}+\left\langle g_{Q}, w-Q_{w}\right\rangle \\
& =\phi\left(Q_{w}\right)-\frac{1}{2 \beta}\left\|g_{Q}\right\|_{F}^{2}+\left\langle g_{Q}, w-Q_{w}\right\rangle \tag{13}\\
& =\phi\left(Q_{w}\right)-\frac{1}{2 \beta}\left\|g_{Q}\right\|_{F}^{2}+\left\langle g_{Q}, w-w^{+}\right\rangle+\left\langle g_{Q}, \frac{1}{\beta} g_{Q}\right\rangle \\
& =\phi\left(Q_{w}\right)+\frac{1}{2 \beta}\left\|g_{Q}\right\|_{F}^{2}+\left\langle g_{Q}, w-w^{+}\right\rangle .
\end{align*}
$$

And $\phi\left(Q_{w}\right) \geq L\left(Q_{w}\right)$ since $\beta \geq l$, Eq. 13 can be formulated as:

$$
\begin{equation*}
L(w) \geq \phi\left(Q_{w}\right)+\frac{1}{2 \beta}\left\|g_{Q}\right\|_{F}^{2}+\left\langle g_{Q}, w-w^{+}\right\rangle \geq L\left(Q_{w}\right)+\frac{1}{2 \beta}\left\|g_{Q}\right\|_{F}^{2}+\left\langle g_{Q}, w-w^{+}\right\rangle \tag{14}
\end{equation*}
$$

Based on Eq. 14, we let $\beta=l, w=w^{+}=w_{t}$ and $L\left(q\left(w_{t}\right)\right) \geq L\left(q\left(w_{t+1}\right)\right)$, then we have $\left\langle g_{Q}, w-w^{+}\right\rangle=0$ and:

$$
\begin{equation*}
L\left(w_{t}\right) \geq L\left(w_{t+1}\right)+\frac{1}{2 l}\left\|g_{Q}\left(w_{t}\right)\right\|_{F}^{2} \tag{15}
\end{equation*}
$$

where $g_{Q}\left(w_{t}\right)=\beta\left(w_{t}-q\left(w_{t}\right)\right)$.
Also, based on Eq. 14. we let $\beta=l, w=w^{*}, w^{+}=w_{t}$ and $L\left(q\left(w_{t}\right)\right) \geq L\left(w^{*}\right)$, then we have:

$$
\begin{equation*}
L\left(w^{*}\right) \geq L\left(w^{*}\right)+\frac{1}{2 l}\left\|g_{Q}\left(w_{t}\right)\right\|_{F}^{2}-\left\langle g_{Q}\left(w_{t}\right), w^{*}-w^{t}\right\rangle \tag{16}
\end{equation*}
$$

We denote $r_{t}=\left\|w_{t}-w^{*}\right\|_{F}$ and $g_{Q, t}=g_{Q}\left(w_{t}\right)$, then based on Eq 16, we have:

$$
\begin{align*}
r_{t+1}^{2} & =\left\|w_{t+1}-w^{*}\right\|_{F}^{2} \\
& =\left\|w_{t}-w^{*}-\eta g_{Q, t}\right\|_{F}^{2} \\
& =r_{t}^{2}-2 \eta\left\langle g_{Q, t}, w_{t}-w^{*}\right\rangle+\eta^{2}\left\|g_{Q, t}\right\|_{F}^{2} \tag{17}\\
& \leq r_{t}^{2}-\frac{\eta}{\beta}\left\|g_{Q, t}\right\|_{F}^{2}+\eta^{2}\left\|g_{Q, t}\right\|_{F}^{2} \\
& =r_{t}^{2}+\eta\left(\eta-\frac{1}{\beta}\right)\left\|g_{Q, t}\right\|_{F}^{2} .
\end{align*}
$$

And based on Eq. 17 and if $\eta \leq 1 / \beta$, then we have:

$$
\begin{equation*}
r_{t+1}^{2} \leq r_{t}^{2} \leq r_{t-1} \leq \ldots \leq r_{0}^{2} \tag{18}
\end{equation*}
$$

We denote $\Delta_{t}=L\left(w_{t}\right)-L\left(w^{*}\right)$ and based on Eq. 18 , then we have:

$$
\begin{equation*}
\Delta_{t} \leq\left\langle g_{Q, t}, w_{t}-w^{*}\right\rangle \leq r_{0}\left\|g_{Q, t}\right\|_{F} \tag{19}
\end{equation*}
$$

Based on Eq. 15 and Eq. 19 we have:

$$
\begin{align*}
\Delta_{t+1} & =L\left(w_{t+1}\right)-L\left(w^{*}\right) \\
& \leq L\left(w_{t}\right)-L\left(w^{*}\right)-\frac{1}{2 l}\left\|g_{Q, t}\right\|_{F}^{2} \\
& =\Delta_{t}-\frac{1}{2 l}\left\|g_{Q, t}\right\|_{F}^{2} \tag{20}\\
& \leq \Delta_{t}-\frac{1}{2 l} \frac{\Delta_{t}^{2}}{r_{0}^{2}}
\end{align*}
$$

Based on Eq. 20, we have:

$$
\begin{equation*}
\frac{1}{\Delta_{t}} \leq \frac{1}{\Delta_{t+1}}-\frac{1}{2 l} \frac{1}{r_{0}^{2}} \frac{\Delta_{t}}{\Delta_{t+1}} \tag{21}
\end{equation*}
$$

Based on Eq 21 combined with $\Delta_{t+1} \leq \Delta_{t}$, we have:

$$
\begin{equation*}
\frac{1}{\Delta_{t+1}} \geq \frac{1}{\Delta_{t}}+\frac{1}{2 l} \frac{1}{r_{0}^{2}} \frac{\Delta_{t}}{\Delta_{t+1}} \geq \frac{1}{\Delta_{t}}+\frac{1}{2 l} \frac{1}{r_{0}^{2}} \geq \ldots \geq \frac{1}{\Delta_{0}}+\frac{1}{2 l} \frac{1}{r_{0}^{2}} \tag{22}
\end{equation*}
$$

Then we have:

$$
\begin{align*}
\Delta_{t} & =L\left(w_{t}\right)-L\left(w^{*}\right) \\
& \leq \frac{1}{\frac{1}{\Delta_{0}}+\frac{1}{2 l} \frac{t}{r_{0}^{2}}} \\
& =\frac{1}{\frac{1}{L\left(w_{0}\right)-L\left(w^{*}\right)}+\frac{1}{2 l} \frac{t}{\left\|w_{0}-w^{*}\right\|_{F}^{2}}} \tag{23}\\
& =\frac{2 l\left(L\left(w_{0}\right)-L\left(w^{*}\right)\right)\left\|w_{0}-w^{*}\right\|_{F}^{2}}{2 l\left\|w_{0}-w^{*}\right\|_{F}^{2}+t\left(L\left(w_{0}\right)-L\left(w^{*}\right)\right)}
\end{align*}
$$

Based on the property of L-smooth function, we have:

$$
\begin{equation*}
L\left(w_{0}\right) \leq L\left(w^{*}\right)+\left\langle L^{\prime}\left(w^{*}\right), w_{0}-w^{*}\right\rangle+\frac{l}{2}\left\|w_{0}-w^{*}\right\|_{F}^{2} \tag{24}
\end{equation*}
$$

We have $L\left(w_{0}\right) \geq L\left(w^{*}\right)$, combine with Eq. 23 and Eq. 24, we have:

$$
\begin{equation*}
L\left(w_{t}\right)-L\left(w^{*}\right) \leq \frac{2 l\left\|w_{0}-w^{*}\right\|_{F}^{2}}{2 l \frac{\left\|w_{0}-w^{*}\right\|_{F}^{2}}{L\left(w_{0}\right)-L\left(w^{*}\right)}+t} \leq \frac{2 l}{t}\left\|w_{0}-w^{*}\right\|_{F}^{2} \tag{25}
\end{equation*}
$$

Thus the Theorem 1 is proven.

References

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. 2003.
Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yong Guo, Peilin Zhao, Junzhou Huang, and Mingkui Tan. Disturbance-immune weight sharing for neural architecture search. Neural Networks, 144: 553-564, 2021.

