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1 SUPPLEMENTARY FILE.

1.1 A PROOF OF Lemma 2
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Figure 1: An illustration of the relationship between the input space .S and the orthogonal projector
P, where f =b—c.

Lemma 2. Given a gradient space Sf(,i’j ) consists of a number of gradient vectors, i.e., Sﬁi’j) =

{91, 92, ---; gn }, the projection of Awli’,j) (k+1)BF on 587) can be calculated by Eq.

G(GTG) TG Aw? (k+1)PP,

where G = [g1, G2, -, gn)> s € RP¥1, i =1,2,....n. n and h are the number of gradient vectors

progin (Awfy! (k+1)P7) = )

and the dimension of the gradient space Sﬁi’j ), respectively.

Proof. We use w to represent Awl(i’,j ) (k + 1)P% and use S to represent the gradient space Sﬁi”j )
for simplicity. We take Figure[I]to illustrate the relationship between @ and S. In the figure, @ is a
gradient vector, while prog(w) is the gradient w projected on S.

Step 1: we express prog(w) by a linear combination of the gradient vectors from S:
pros() = x1g1 + ¥292 + ... + Tngn = GX, 2)

where G is a matrix of gradient vectors from S, i.e., G = [¢1, 92, ..., gn]T. X is a vector of constants,
denoted by X = [z1, 22, ..., 7] 7.

Step 2: In order to get X, we find that & — prog () is orthogonal to S. In other words, W — prog ()
is orthogonal to any input vector from S. Namely, the inner product of @& — prog(w) and g; is zero,
where:=1,...,n.

< g1,w — pros() >=g{ - (b — GX) =0

3)
< gn, W — prog(w) >= g} - (W —GX) =0
And we can reform the Eq. [3|by matrix calculations as follows:
GT(w - GX) =0. (4)



Step 3: On the basis of Step 2, we can get the vector X as follows:

X = (GTG)'GTw. S
Step 4: We integrate Eq. [5]into Eq. [2]to get prog (i) using

prog(w) = GX = G(GTG)1GTw. (6)
Thus the Lemma 2 is proven.

1.2 CONVERGENCE GUARANTEE OF OGL

Theorem 1. Given a [-smooth and convex loss function L(w), w* and wy are the optimal and initial
weights of L(w), respectively. If we let n = 1/, then we have:

L(wy) = L(w") < = Jwo = w’||7, 0

where w; is the weights after ¢-th training.

Theorem 1 demonstrates that our proposed method OGL has a convergence rate of O(1/¢)Niu et al.
(2021).

Proof. Based on projected gradient descent (PGD) [Nesterov| (2003)), the update of w can be repre-
sented as follows:

afuee) = ang min(L(uwe) + (L' (), w = we) + 5 = w3 ®
wey1 = wy — nB(wr — g(wy)), €))

where 1 and (8 are two hyperparameters.

Let @ is a closed convex set, w" € @ and 3 > [. We denote Q,, = g(w™) and g = ggo(w™) =
Blw*T — g(w™)), then we let:

o(w) :L(w+)+<L/(w+),w—w+>+§Hw—w*Hiﬂ. (10)

Based on Eq. |10, we have ¢ (w) = L' (w") + (w — w™), Then we have:

/

¢ (Qu) = L' (w) + B(Qw —w™) = L' (wh) — go. (11

and

<L/ (w+) —9Q,W — Qw> = <L/ (er)aw - Qw> - <9Qaw - Qw> = <¢/ (Qw)a w — Qw> (12)

> 0.

Based on Eq. [10] Eq. [TT]and Eq. [I2]and the property of convex function, we have:



L(w) > Lw®) + (L' (w*),w — w™)
= L(wh) + (L' (wh),w — Qu) + (L' (w"), Qu — w™)
> Lwt) + (L' (wt), Qu — wh) + (9o, w — Qu)
:(b(Qw)_gHQw_w HF+<gQﬁw_Qw> 13)
— $(Qu) — % lgall% + (ggrw — Qu)

1 1
= ¢(Qu) — 35 lgalls + {90, w — wh) + (90, BQQ>

1
= ¢(Qu) + 35 lgells + (90, w —w™).

And ¢(Qu) > L(Q,,) since 8 > I, Eq. [13|can be formulated as:

L(w) > 6(Qu) + % lgoll? + (g0, w — wh) > L(Qu) + % lgol® + (g0, w —wh). (14

Based on Egq. welet 3 =1, w = wt = wy and L(q(w;)) > L(q(wis1)), then we have
(9g,w —wt) =0 and:

1
L(wt) = L(we41) + 5 lge (w5, (15)
where gg (w;) = B(w; — q(wy)).
Also, based on Eq. |14, we let 3 = I, w = w*, wt = wy and L(q(w;)) > L(w*), then we have:
1
L(w") > L(w") + g7 9o (we)ll — (9@ (we), w” — w'). (16)
We denote r, = ||wy — w*|| and gg+ = gg(w:), then based on Eq we have:
* 112
Tt2+1 = lwitr — w*(|

2
= [lws —w* —ngq.¢llx

* 2
=77 = 20{gq.e,wr — w*) + 0 [lgg.ll an

n 2 2
<rj - 3 9.t +n* 9./l
1 2
=17 +n(n— ) l9alr-
And based on Eq. and if n < 1/p, then we have:

Ty <rp < < < (18)

We denote A; = L(w;) — L(w*) and based on Eq. [18] then we have:

Ay <{gQ.t,we —w*) < 1o llgq.ell p- 19)

Based on Eq. [13]and Eq. [T9} we have:



Apr1 = L(wey1) — L(w®)

. 1
< L(wy) = L(w") = = llgoully

1 2 (20)
= &= o lgally

1 A2
SAt—27¥~

Based on Eq. 20} we have:

1 1 11 A
— < — =
At At+1 2[ 7’0 At+1

(21)
Based on Eq[2T|combined with A;1 < Ay, we have:

L1 11 A 1 1 L1
At+1_At 2lT%At+1_At 2Z7’8 ”._A() 217"8
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(22)
Then we have:
At = L(wt) — L(U}*)
1

A+
- 1 (23)
Ty i R P
20(L(wo) — L(w*)) wy — w*||
20 ||wg — w* |5 + t(L(wo) — L(w*))

.
oim‘”‘

Based on the property of L-smooth function, we have:

’

l
L(wy) < L(w") + (L ("), wo = w*) + 5 lwo —w* . (24)
We have L(wp) > L(w*), combine with Eq. [23|and Eq. [24] we have:

2 ||wo — w*||%

L(wy) — L(w") < < = [lwo — w7 (25)

S w =7
2 LtweyLwy Tt

Thus the Theorem 1 is proven.
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