
OVERCOMING MUTI-MODEL FORGETTING IN ONE-
SHOT NEURAL ARCHITECTURE SEARCH VIA ORTHOG-
ONAL GRADIENT LEARNING

Anonymous authors
Paper under double-blind review

1 SUPPLEMENTARY FILE.

1.1 A PROOF OF Lemma 2

Figure 1: An illustration of the relationship between the input space S and the orthogonal projector
P , where f = b− c.

Lemma 2. Given a gradient space S
(i,j)
r consists of a number of gradient vectors, i.e., S(i,j)

r =

{g1, g2, ..., gn}, the projection of ∆w
(i,j)
l,r (k + 1)BP on S

(i,j)
r can be calculated by Eq. 1.

pro
S

(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ) =

G(GTG)−1GT∆w
(i,j)
l,r (k + 1)BP ,

(1)

where G = [g1, g2, ..., gn], gi ∈ Rh×1, i = 1, 2, ..., n. n and h are the number of gradient vectors
and the dimension of the gradient space S

(i,j)
r , respectively.

Proof. We use ŵ to represent ∆w
(i,j)
l,r (k + 1)BP and use S to represent the gradient space S

(i,j)
r

for simplicity. We take Figure 1 to illustrate the relationship between ŵ and S. In the figure, ŵ is a
gradient vector, while proS(ŵ) is the gradient ŵ projected on S.

Step 1: we express proS(ŵ) by a linear combination of the gradient vectors from S:

proS(ŵ) = x1g1 + x2g2 + ...+ xngn = GX, (2)

where G is a matrix of gradient vectors from S, i.e., G = [g1, g2, ..., gn]
T . X is a vector of constants,

denoted by X = [x1, x2, ..., xn]
T .

Step 2: In order to get X , we find that ŵ−proS(ŵ) is orthogonal to S. In other words, ŵ−proS(ŵ)
is orthogonal to any input vector from S. Namely, the inner product of ŵ− proS(ŵ) and gi is zero,
where i = 1, . . . , n. 

< g1, ŵ − proS(ŵ) >= gT1 · (ŵ −GX) = 0

...

< gn, ŵ − proS(ŵ) >= gTn · (ŵ −GX) = 0

(3)

And we can reform the Eq. 3 by matrix calculations as follows:

GT (ŵ −GX) = 0. (4)
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Step 3: On the basis of Step 2, we can get the vector X as follows:

X = (GTG)−1GT ŵ. (5)

Step 4: We integrate Eq. 5 into Eq. 2 to get proS(ŵ) using

proS(ŵ) = GX = G(GTG)−1GT ŵ. (6)

Thus the Lemma 2 is proven.

1.2 CONVERGENCE GUARANTEE OF OGL

Theorem 1. Given a l-smooth and convex loss function L(w), w∗ and w0 are the optimal and initial
weights of L(w), respectively. If we let η = 1/l, then we have:

L(wt)− L(w∗) ≤ 2l

t
∥w0 − w∗∥2F , (7)

where wt is the weights after t-th training.

Theorem 1 demonstrates that our proposed method OGL has a convergence rate of O(1/t) Niu et al.
(2021).

Proof. Based on projected gradient descent (PGD) Nesterov (2003), the update of w can be repre-
sented as follows:

q(wt) = arg min
w∈Q

(L(wt) + ⟨L
′
(wt), w − wt⟩+

β

2
∥wt − w∥2F ) (8)

wt+1 = wt − ηβ(wt − q(wt)), (9)

where η and β are two hyperparameters.

Let Q is a closed convex set, w+ ∈ Q and β ≥ l. We denote Qw = q(w+) and gQ = gQ(w
+) =

β(w+ − q(w+)), then we let:

ϕ(w) = L(w+) + ⟨L
′
(w+), w − w+⟩+ β

2

∥∥w − w+
∥∥2
F
. (10)

Based on Eq. 10, we have ϕ
′
(w) = L

′
(w+) + β(w − w+), Then we have:

ϕ
′
(Qw) = L

′
(w+) + β(QW − w+) = L

′
(w+)− gQ. (11)

and

⟨L
′
(w+)− gQ, w −Qw⟩ = ⟨L

′
(w+), w −Qw⟩ − ⟨gQ, w −Qw⟩ = ⟨ϕ

′
(Qw), w −Qw⟩

≥ 0.
(12)

Based on Eq. 10, Eq. 11 and Eq. 12 and the property of convex function, we have:

2



L(w) ≥ L(w+) + ⟨L
′
(w+), w − w+⟩

= L(w+) + ⟨L
′
(w+), w −Qw⟩+ ⟨L

′
(w+), Qw − w+⟩

≥ L(w+) + ⟨L
′
(w+), Qw − w+⟩+ ⟨gQ, w −Qw⟩

= ϕ(Qw)−
β

2

∥∥Qw − w+
∥∥2
F
+ ⟨gQ, w −Qw⟩

= ϕ(Qw)−
1

2β
∥gQ∥2F + ⟨gQ, w −Qw⟩

= ϕ(Qw)−
1

2β
∥gQ∥2F + ⟨gQ, w − w+⟩+ ⟨gQ,

1

β
gQ⟩

= ϕ(Qw) +
1

2β
∥gQ∥2F + ⟨gQ, w − w+⟩.

(13)

And ϕ(Qw) ≥ L(Qw) since β ≥ l, Eq. 13 can be formulated as:

L(w) ≥ ϕ(Qw) +
1

2β
∥gQ∥2F + ⟨gQ, w − w+⟩ ≥ L(Qw) +

1

2β
∥gQ∥2F + ⟨gQ, w − w+⟩. (14)

Based on Eq. 14, we let β = l, w = w+ = wt and L(q(wt)) ≥ L(q(wt+1)), then we have
⟨gQ, w − w+⟩ = 0 and:

L(wt) ≥ L(wt+1) +
1

2l
∥gQ(wt)∥2F , (15)

where gQ(wt) = β(wt − q(wt)).

Also, based on Eq. 14, we let β = l, w = w∗, w+ = wt and L(q(wt)) ≥ L(w∗), then we have:

L(w∗) ≥ L(w∗) +
1

2l
∥gQ(wt)∥2F − ⟨gQ(wt), w

∗ − wt⟩. (16)

We denote rt = ∥wt − w∗∥F and gQ,t = gQ(wt), then based on Eq.16, we have:

r2t+1 = ∥wt+1 − w∗∥2F
= ∥wt − w∗ − ηgQ,t∥2F
= r2t − 2η⟨gQ,t, wt − w∗⟩+ η2 ∥gQ,t∥2F
≤ r2t −

η

β
∥gQ,t∥2F + η2 ∥gQ,t∥2F

= r2t + η(η − 1

β
) ∥gQ,t∥2F .

(17)

And based on Eq. 17 and if η ≤ 1/β, then we have:

r2t+1 ≤ r2t ≤ rt−1 ≤ . . . ≤ r20. (18)

We denote ∆t = L(wt)− L(w∗) and based on Eq. 18, then we have:

∆t ≤ ⟨gQ,t, wt − w∗⟩ ≤ r0 ∥gQ,t∥F . (19)

Based on Eq. 15 and Eq. 19, we have:
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∆t+1 = L(wt+1)− L(w∗)

≤ L(wt)− L(w∗)− 1

2l
∥gQ,t∥2F

= ∆t −
1

2l
∥gQ,t∥2F

≤ ∆t −
1

2l

∆2
t

r20
.

(20)

Based on Eq. 20, we have:

1

∆t
≤ 1

∆t+1
− 1

2l

1

r20

∆t

∆t+1
. (21)

Based on Eq.21 combined with ∆t+1 ≤ ∆t, we have:

1

∆t+1
≥ 1

∆t
+

1

2l

1

r20

∆t

∆t+1
≥ 1

∆t
+

1

2l

1

r20
≥ . . . ≥ 1

∆0
+

1

2l

1

r20
. (22)

Then we have:

∆t = L(wt)− L(w∗)

≤ 1
1
∆0

+ 1
2l

t
r20

=
1

1
L(w0)−L(w∗) +

1
2l

t
∥w0−w∗∥2

F

=
2l(L(w0)− L(w∗)) ∥w0 − w∗∥2F

2l ∥w0 − w∗∥2F + t(L(w0)− L(w∗))
.

(23)

Based on the property of L-smooth function, we have:

L(w0) ≤ L(w∗) + ⟨L
′
(w∗), w0 − w∗⟩+ l

2
∥w0 − w∗∥2F . (24)

We have L(w0) ≥ L(w∗), combine with Eq. 23 and Eq. 24, we have:

L(wt)− L(w∗) ≤
2l ∥w0 − w∗∥2F

2l
∥w0−w∗∥2

F

L(w0)−L(w∗) + t
≤ 2l

t
∥w0 − w∗∥2F . (25)

Thus the Theorem 1 is proven.
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