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In this supplementary material, we include (1) further numerical experiments and experimental details1

for estimating the different trade-offs in Section A (2) proofs of all theorems, lemmas and corollaries2

in Section B.3

A Numerical Estimation of Trade-Offs4

A.1 Training Details of Numerical Estimation of Trade-Offs in Section 45

In this Section we specify all the training details of the numerical results presented int Section 4 of6

the main paper.7

Trade-Offs D & L: The optimal embedding z is learned for the trade-off D through the closed8

from solution in Theorem 5 for different invariance parameter values τ in [0, 1). Then this optimal9

embedding is fed to a target task predictor which is an MLP with two hidden layers, and 4, 8 neurons10

where we use MSE as a loss function and AdamW [1] as an optimizer. The same procedure is11

implemented for trade-off L, except that the input data is v instead of x. We choose the number12

of epochs and batch-size to be 500 and optimize the learning rate by trying six different values13

among {10−2, 10−3, 3× 10−4, 5× 10−4, 10−4, 10−5}. We consider Gaussian kernel for allHx,Hs,14

and Hy and seek the band-width (i.e., σ) of Gaussian kernels using five different logarithmically15

spaced values in [10−2, 102]. Further, we optimize the regularization parameter γ in equation (10)16

by considering three values among {0, 10−4, 1}. We first set σx = σs = σy = 1, γ = 10−4 and17

explore the optimal learning rate by minimizing MSE in the validation set. Once the learning rate is18

found, we explore the σs by minimizing MSE in the validation set. In the end, we explore γ similarly.19

Spectral Adversarial Representation Learning (Spectral-ARL): Spectral ARL [2] is very similar20

to the trade-off D of this paper except thatHs andHy are both linear RKHS. We followed the same21

experimental setting of trade-off D. The results of this approach is illustrated in Figure 1 (c).22

Adversarial Representation Learning (ARL): We followed the ARL formulation in (3) for different23

invariance parameter values τ in [0, 1). The embedding z = f(x) is extracted via the encoder f(·)24

which is an MLP with two hidden layers, and 4, 2 neurons. Then, z is fed to a target task predictor25

gY (·) and an proxy adversary gS(·) network where both are MLP with two hidden layers, and 4, 826

neurons. We use stochastic gradient descent-ascent (SGDA) [3] with AdamW [1] as an optimizer to27

alternately train the encoder, target predictor and proxy adversary networks. We choose the number28

of epochs and batch-size to be 500 and optimize the learning rate among {10−2, 10−3, 3× 10−4, 5×29

10−4, 10−4, 10−5} by minimizing MSE in the validation set by. Since ARL can be unstable, we run30

our experiment for five different random seeds. The mean and standard-deviation (std) of the results31

are illustrated in Figure 1.32
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Figure 1: The mean and std of ARL method (ARL is optimized with SGDA [3]) after running five
times with different random seeds on weight initialization.

A.2 Fair Classification33

We consider an additional experiment, a fair classification application of IRL on Adult dataset1. This34

dataset contains 45, 222 instances of different individual where each instance includes 14 attributes.35

The target task is a binary classification of annual income (more or less than 50K) while the sensitive36

attribute (i.e., semantic attribute) in which we aim to be independent of it is s =(race, gender). We37

randomly split the data into training (25, 222 instances), validation (10, 000 instances), and testing38

(10, 000 instances) and perform our experiment five times (each time with a different random seed on39

data split and weight initialization of involved networks).40

We consider demographic parity (DP) [4] as the fairness criterion, where the goal is to have the41

prediction of target feature ŷ be independent of the sensitive feature s. In the context of representation42

learning, DP exactly falls into IRL since ŷ = gY (z) is required by DP to be independent of s43

regardless of the target predictor gY (·). Following [5], we define DP violation (DPV) as44

DPV = max
s0,s′0

∣∣∣P[ŷ | s = s0]− P[ŷ | s = s′0]
∣∣∣. (A.1)

Following Section A.1, we learn the optimal embedding z for the trade-offs D and L using Theorem45

5 for different invariance parameter values τ ∈ [0, 1] and then feed this representation to a three-46

layer MLP with 64, 128, and 64 neurons, respectively. Similar RKHSs together with optimization47

procedure (except that the batch-size is 250) and hyperparameter tuning as Section A.1 is deployed.48

The mean of results are illustrated in Figure 2. Further, the std from five random splits is depicted in49

Figure 3 (a) and (b). Note that the baseline spectral-ARL [2] is almost similar to trade-off D where50

linear RKHS is used for both Hs and Hy. The mean and std of results are illustrated in Figures 251

and 3 (c). For ARL method, the encoder f(·) is a three-layer MLP with 64, 128 and 64 neurons,52

respectively. Both the target task predictor gY (·) and proxy adversary gS(·) are MLP with the similar53

architecture to encoder. We followed the same optimization procedure and hyperparameter tuning54

as Section A.1 except that the batch-size is 250. The mean and std of ARL results are illustrated in55

Figures 2 and 3 (d).56

We observe that i) As expected, trade-off L dominates trade-off D. ii) The two baseline methods57

(trade-offs F) are dominated by trade-off D which is due to the suboptimality of their optimization58

and dependence measures.59

1The data is downloaded from the UCI ML-epository at https://archive.ics.uci.edu/ml/datasets/adult.
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Figure 2: Fair classification: Two fundamental trade-offs, L and D, together with two baseline feasible
trade-offs F, ARL optimized with SGDA [3] and global optima of ARL with a linear RKHS [2].
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Figure 3: Fair classification: The mean and std of (a): trade-off L, (b): trade-off D, (c): ARL [3], and
(d): Spectral-ARL [2].
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B Proofs60

B.1 Proof of Theorem 161

Theorem 1. Let Hs contain all Borel-measurable functions and LS(·, ·) be mean squared error62

(MSE) loss. Then,63

z ∈ arg sup

{
inf

gS∈Hs

Ex,s
[
LS
(
gS(z), s

)]}
⇔ E[s | z] = E[s].

Proof. Let si, (gS(z))i, and (E[s | z] )i denote the i’th entries of s, gS(z), and E[s | z], respectively.64

Then, it follows that65

inf
gS∈Hs

Ex,s
[
LS
(
gS(z), s

)]
= inf

gS∈Hs

ds∑
i=1

(
(gS(z))i − si

)2

=

ds∑
i=1

(
(E[s | z] )i − si

)2

≤
ds∑
i=1

(
(E[s] )i − si

)2

=

ds∑
i=1

Var[si],

where the second step is due to the optimality of conditional mean (i.e., Bayes estimation) for MSE [6]66

and the last step is due the fact that the independency between z and s leads to an upper bound on67

MSE. Therefore, if z ∈ arg sup

{
infgS∈Hs Ex,s

[
LS
(
gS(z), s

)]}
then E[s | z] = E[s].68

On the other hand, if E[s | z] = E[s], then it follows immediately that z ∈69

arg sup

{
infgS∈Hs Ex,s

[
LS
(
gS(z), s

)]}
.70

B.2 Proof of Lemma 271

Lemma 2.

dep(z, s) =

r∑
j=1

{
Ex,s,x′,s′

[
fj(x) fj(x

′) ks(s, s
′)
]

+ Ex[fj(x)]Ex′ [fj(x′)]Es,s′ [ks(s, s′)]

−2Ex,s
[
fj(x)Ex′ [fj(x′)]Es′ [ks(s, s′)]

]}
where (x, s) and (x′, s′) are independently drawn from the joint distribution pxs.72

Proof. We first note that this Lemma is inspired by HSIC [7]. In our case, dep(z, s) is defined for a73

fixed f where HS-norm is carried only on βs, while HSIC considers HS-norm on both βs and f .74

Using definition (8), we get75

dep(z, s) =
∑
βs∈Us

r∑
j=1

h2(fj , βs)

=
∑
βs∈Us

r∑
j=1

〈βs,Σsxfj〉
2

Hs

=

r∑
j=1

∑
βs∈Us

〈βs,Σsxfj〉
2

Hs

4



(a)
=

r∑
j=1

‖Σsxfj‖2Hs

=

r∑
j=1

〈Σsxfj ,Σsxfj〉Hs

(b)
=

r∑
j=1

Covx,s
(
fj(x), (Σsxfj)(s)

)
=

r∑
j=1

Covx,s
(
fj(x), 〈ks(·, s),Σsxfj〉Hs

)
=

r∑
j=1

Covx,s
(
fj(x),Covx′,s′(fj(x′), ks(s′, s))

)
=

r∑
j=1

Covx,s
(
fj(x), Ex′,s′ [fj(x′) ks(s, s′)]− Ex′ [fj(x′)]Es′ [ks(s, s′)]

)

=

r∑
j=1

{
Ex,s,x′,s′

[
fj(x) fj(x

′) ks(s, s
′)
]

+ Ex[fj(x)]Ex′ [fj(x′)]Es,s′ [ks(s, s′)]

−2Ex,s
[
fj(x)Ex′ [fj(x′)]Es′ [ks(s, s′)]

]}
where (a) is due to Parseval relation for orthonormal basis and (b) is from the definition of Σsx76

in (7).77

B.3 Proof of Lemma 378

Lemma 3. Let an empirical estimation of covariance be79

Covx,s(fj(x), βs(s)) ≈
1

n

n∑
i=1

fj(xi)βs(si)−
1

n2

n∑
i=1

n∑
k=1

fj(xi)βs(sk). (B.1)

Then, the empirical estimator of dep(z, s) is given by80

depemp(z, s) :=
1

n2
‖ΘKxHLs‖

2

F ,

where Kx,Ks ∈ Rn×n are Gram matrices corresponding to Hx and Hs, respectively, H =81

I − 1
n11T , and Ls is a full column-rank matrix in which LsLTs = Ks (Cholesky factorization).82

This empirical estimator in (9) has a bias of O(n−1) and a convergence rate of O(n−1/2).83

Proof. Firstly, let us reconstruct the orthonormal set Us through i.i.d. observations {sj}nj=1. Invoking84

representer theorem, for two arbitrary elements βi and βm of Us, we have85

〈βi, βm〉HT
=

〈 n∑
j=1

αjks(sj , ·),
n∑
l=1

ηlks(sl, ·)
〉
Hs

=

n∑
j=1

n∑
l=1

αjηlkT (yj ,yl)

= αTKsη

= 〈LTsα, LTs η〉Rq

where Ls ∈ Rn×q is a full column rank matrix andKs = LsL
T
s is the Chelesky factorization. As a86

result, βi ∈ Us would become equivalent to LTsα ∈ Uq where Uq is any complete orthonormal set87
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for Rq . Using empirical expression for covariance in (B.1) together with equations (7) and (8), we get88

depemp(z, s) :=
∑
βs∈Us

r∑
j=1

{
1

n

n∑
i=1

fj(xi)βs(si)−
1

n2

n∑
i=1

fj(xi)

n∑
k=1

βs(sk)

}2

=
∑

LT
s α∈Uq

r∑
j=1

{ 1

n
θTj KxKyα−

1

n2
θTkKx1n1TnKyα

}2

=
∑

LT
s α∈Uq

r∑
j=1

{ 1

n
θTj KxHKsα

}2

=
∑

LT
s α∈Uq

r∑
j=1

{ 1

n
θTj KxHLsL

T
sα
}2

=
∑
ζ∈Uq

r∑
j=1

{ 1

n
θTj KxHLsζ

}2

=
∑
ζ∈Uq

1

n2
‖ΘKxHLsζ‖

2

2

=
1

n2
‖ΘKxHLs‖

2

F ,

where f(x) = Θ[kx(x1,x), · · · , kx(xn,x)]
T and Θ := [θ1, · · · ,θr]T .89

We now show that the bias of depepm(z, s) to estimate dep(z, s) in (8) is O
(

1
n

)
. To do this, we split90

depepm(z, s) into three terms as91

1

n2
‖ΘKxHLs‖

2

F =
1

n2
Tr
{

ΘKxHKsHKxΘT
}

=
1

n2
Tr
{

ΘKx

(
I − 1

n
11T

)
Ks

(
I − 1

n
11T

)
KxΘT

}
=

1

n2
Tr
{
KxΘTΘKxKs

}
︸ ︷︷ ︸

I

− 2

n3
Tr
{

1TKxΘTΘKxKs1
}

︸ ︷︷ ︸
II

+
1

n4
Tr
{

1TKxΘTΘKx11TKs1
}

︸ ︷︷ ︸
III

(B.2)

Let cnp denote the set of all p−tuples drawn without repetition from {1, · · · , n}. Also, let Θ =92

[θ1, · · · ,θr]T ∈ Rr×n and (A)ij denote the element of arbitrary matrix A at i’th row and j’th93

column. Then, it follows that94

6



(I):95

E
[
Tr
{
KxΘTΘKxKs

}]
=

r∑
k=1

E
[
Tr
{
Kxθk︸ ︷︷ ︸
αk

θTkKxKs

}]

=

r∑
k=1

E
[
Tr
{
αkα

T
kKs

}]
=

r∑
k=1

E
[∑

i

(αkα
T
k )ii(Ks)ii +

∑
(i,j)∈cn2

(αkα
T
k )ij(Ks)ji

]

= n

r∑
k=1

Ex,s
[
f2
k (x)ks(s, s)

]
+

n!

(n− 2)!

r∑
k=1

Ex,s,x′,s′
[
fk(x)fk(x′)ks(s, s

′)
]

= O(n) +
n!

(n− 2)!

r∑
k=1

Ex,s,x′,s′
[
fk(x)fk(x′)ks(s, s

′)
]

(B.3)

where (x, s) and (x′, s′) are independently drawn from the joint distribution pxs.96

(II):97

E
[
1TKxΘTΘKxKs1

]
=

r∑
k=1

E
[
1T Kxθk︸ ︷︷ ︸

αk

θTkKxKs1
]

=

r∑
k=1

E
[
1Tαkα

T
kKs1

]
=

r∑
k=1

E
[ n∑
m=1

n∑
i=1

n∑
j=1

(αkα
T
k )mi(Ks)mj

]
=

r∑
k=1

E
[∑

i

(αkα
T
k )ii(Ks)ii +

∑
(m,j)∈cn2

(αkα
T
k )mm(Ks)mj

]

+

r∑
k=1

E
[ ∑

(m,i)∈cn2

(αkα
T
k )mi(Ks)mm +

∑
(m,j)∈cn2

(αkα
T
k )mj(Ks)mj

]

+

r∑
k=1

E
[ ∑

(m,i,j)∈cn3

(αkα
T
k )mi(Ks)mj

]

= n

r∑
k=1

Ex,s
[
f2
k (x)ks(s, s)

]
+

n!

(n− 2)!

r∑
k=1

Ex,s,s′
[
f2
k (x)ks(s, s

′)
]

+
n!

(n− 2)!

r∑
k=1

Ex,s,x′
[
fk(x)fk(x′)ks(s, s)

]
+

n!

(n− 2)!

r∑
k=1

Ex,s,x′,s′
[
fk(x)fk(x′)ks(s, s

′)
]

+
n!

(n− 3)!

r∑
k=1

Ex,s
[
fk(x)Ex′ [fk(x′)]Es′ [ks(s, s′)]

]
= O(n2) +

n!

(n− 3)!

r∑
k=1

Ex,s
[
fk(x)Ex′ [fk(x′)]Es′ [ks(s, s′)]

]
. (B.4)
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(III):98

E
[
1TKxΘTΘKx11TKs1

]
=

r∑
k=1

E
[
1T Kxθk︸ ︷︷ ︸

αk

θTkKx11TKs1
]

=

r∑
k=1

E
[
1Tαkα

T
k 11TKs1

]
=

r∑
k=1

E
[ ∑
i,j,m,l

(αkα
T
k )ij(Ks)ml

]
= O(n3) +

r∑
k=1

E
[ ∑

(i,j,m,l)∈cn4

(αkα
T
k )ij(Ks)ml

]

= O(n3) +
n!

(n− 4)!

r∑
k=1

Ex[fk(x)]Ex′ [fk(x′)]Es,s′ [ks(s, s′)]

(B.5)

Using above calculations together with Lemma 2 lead to99

dep(z, s) = E
[
depemp(z, s)

]
+O

(
1

n

)
.

We now obtain the convergence of depemp(z, s). Consider the decomposition in (B.2) together with100

(B.3), (B.4),and (B.5). Let αk := Kxθk , then it follows that101

P
{

dep(z, s)− depemp(z, s) ≥ t
}

≤ P

{
r∑

k=1

Ex,s,x′,s′
[
fk(x)fk(x′)ks(s, s

′)
]
− (n− 2)!

n!

r∑
k=1

∑
(i,j)∈cn2

(αkα
T
k )ij(Ks)ji +O

(
1

n

)
≥ at

}

+ P

{
r∑

k=1

Ex,s
[
fk(x)Ex′ [fk(x′)]Es′ [ks(s, s′)]

]
− (n− 3)!

n!

r∑
k=1

∑
(i,j,m)∈cn3

(αkα
T
k )mi(Ks)mj +O

(
1

n

)
≥ bt

}

+ P

{
r∑

k=1

Ex[fk(x)]Ex′ [fk(x′)]Es,s′ [ks(s, s′)]

− (n− 4)!

n!

r∑
k=1

∑
(i,j,m,l)∈cn4

(αkα
T
k )ij(Ks)ml +O

(
1

n

)
≥ (1− a− b)t

}
,

where a, b > 0 and a+ b < 1. For convenience, we omit the term O
(

1
n

)
and add it back in the last102

stage.103

Define ζ := (x, s) and consider the following U-statistics [8]104

u1(ζi, ζj) =
(n− 2)!

n!

∑
(i,j)∈cn2

r∑
k=1

(αkα
T
k )ij(Ks)ij

u2(ζi, ζj , ζm) =
(n− 3)!

n!

∑
(i,j,m)∈cn3

r∑
k=1

(αkα
T
k )mi(Ks)mj

u3(ζi, ζj , ζm, ζl) =
(n− 4)!

n!

∑
(i,j,m,l)∈cn4

r∑
k=1

(αkα
T
k )ij(Ks)ml

8



Then, from Hoeffding’s inequality [8] it follows that105

P
{

dep(z, s)− depemp(z, s) ≥ t
}
≤ e

−2a2t2

2r2M2 n + e
−2b2t2

3r2M2 n + e
−2(1−a−b)2t2

4r2M2 n,

where we assumed that ks(·, ·) is bounded by one and f2
k (xi) is bounded by M for any k = 1, · · · , r106

and i = 1, · · · , n.107

Further, if 0.22 ≤ a < 1, it holds that108

e
−2a2t2

2r2M2 n + e
−2b2t2

3r2M2 n + e
−2(1−a−b)2t2

4r2M2 n ≤ 3e
−a2t2

r2M2 n.

Consequently, we have109

P
{∣∣∣dep(z, s)− depemp(z, s)

∣∣∣ ≥ t} ≤ 6e
−a2t2

r2M2 n.

Therefore, with probability at least 1− δ, it holds110 ∣∣∣dep(z, s)− depemp(z, s)
∣∣∣ ≤√r2M2 log(6/σ)

α2n
+O

(
1

n

)
. (B.6)

111

B.4 Proof of Theorem 4112

Theorem 4. A solution to the optimization problem in (11) is the eigenfunctions corresponding to r113

largest eigenvalues of the following generalized problem114 (
(1− τ)Σ∗yxΣyx − τ Σ∗sxΣsx

)
f = λΣxxf,

where Σsx and Σyx are defined in (7), and Σ∗sx and Σ∗yx are the adjoint operators of Σsx and Σyx,115

respectively.116

Proof. Consider dep(z, s) in (8):117

dep(z, s) =
∑
βs∈Us

r∑
j=1

h2(fj , βs)

=

r∑
j=1

∑
βs∈Us

〈βs,Σsxfj〉
2

Hs

=

r∑
j=1

‖Σsxfj‖2Hs
,

where the last step is due to Parseval’s identity for orthonormal basis. Similarly, we have dep(z,y) =118 ∑r
j=1‖Σyxfj‖2Hy

. Recall that z = f(x) =
(
f1(x), · · · , fr(x)

)
, then, it follows that119

J(f(x)) = (1− τ)

r∑
j=1

‖Σyxfj‖2Hy
−τ

r∑
j=1

‖Σsxfj‖2Hs

= (1− τ)

r∑
j=1

〈
Σyxfj ,Σyxfj

〉
Hy

− τ
r∑
j=1

〈
Σsxfj ,Σsxfj

〉
Hs

=

r∑
j=1

〈
fj , ((1− τ)Σ∗yxΣyx − τ Σ∗sxΣsx)fj

〉
Hx

,

where Σ∗ is the adjoint operator of Σ. Further, note that Covx(fi(x), fj(x)) is equal to120

〈fi,Σxxfj〉Hx
. As a result, the optimization problem in (11) can be restated as121

sup
〈fi,(Σxx+γIx)fk〉Hx=δi,k

r∑
j=1

〈
fj , ((1− τ)Σ∗yxΣyx − τ Σ∗sxΣsx)fj

〉
Hx

, 1 ≤ i, k ≤ r

9



where Ix denotes identity operator fromHx toHx. This optimization problem is known as general-122

ized Rayleigh quotient [9] and a possible solution to it is given by the eigenfunctions corresponding123

to the r largest eigenvalues of the following generalized problem124 (
(1− τ)ΣxyΣyx − τ ΣxsΣsx

)
f = λ

(
Σxx + γIx

)
f.

125

B.5 Proofs of Theorem 5 and Corollary 5.1126

Theorem 5. Consider the Cholesky factorization Kx = LxL
T
x , where Lx is a full column-rank127

matrix. A solution to (13) is128

f opt = Θopt
[
kx(x1, ·), · · · , kx(xn, ·)

]T
where Θopt = UT (Lx)

† and the columns of U are eigenvectors corresponding to r largest eigenval-129

ues, λ1, · · · , λr of generalized problem130 (
LTx((1− τ)K̃y − τK̃s)Lx

)
u = λ

(
LTxHLx + nγI

)
u

where γ is the regularization parameter from (10) and the supremum value of (13) is
∑r
j=1 λj .131

Proof. Consider the Cholesky factorization Kx = LxL
T
x where Lx is a full column-rank matrix.132

Using representer theorem, disentanglement condition in (10), can be expressed as133

Cov(fi(x), fj(x)) + γ 〈fi, fj〉Hx

=
1

n

n∑
k=1

fi(xk)fj(xk)− 1

n2

n∑
k=1

fi(xk)

n∑
m=1

fj(xm) + γ 〈fi, fj〉Hx

=
1

n

n∑
k=1

n∑
t=1

Kx(xk,xt)θit

n∑
m=1

Kx(xk,xm)θjm −
1

n2
θTi Kx1n1TnKxθj + γ 〈fi, fj〉Hx

=
1

n
(Kxθi)

T
(Kxθj)−

1

n2
θTi Kx1n1TnKxθj + γ

〈 n∑
k=1

θikkx(·,xk),

n∑
t=1

θitkx(·,xt)
〉
Hx

=
1

n
θTi KxHKxθj + γ θTi Kxθj

=
1

n
θTi Lx

(
LTxHLx + nγ I

)
LTxθj

= δi,j .

As a result, f ∈ Ar is equivalent to134

1

n
ΘLx

(
LTxHLx + nγI

)
︸ ︷︷ ︸

:=C

LTxΘT = Ir,

where Θ := [θ1, · · · ,θr]
T ∈ Rr×n.135

Let V = 1√
n
LTxΘT and consider the optimization problem in (13):136

sup
f∈Ar

{
(1− τ) depemp(f(x),y)− τ depemp(f(x), s)

}
= sup

f∈Ar

1

n2

{
(1− τ)‖ΘKxHLy‖

2

F − τ ‖ΘKxHLs‖
2

F

}
= sup

f∈Ar

1

n2

{
(1− τ) Tr{ΘKxHKyHKxΘT } − τ Tr{ΘKxHKsHKxΘT }

}
= max

V TCV =Ir

1

n2
Tr{ΘLxBLTxΘT }

= max
V TCV =Ir

1

n
Tr{V TBV } (B.7)
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where the second step is due to (9) and137

B := LTx

(
(1− τ)HKyH − τHKsH

)
Lx

= LTx

(
(1− τ)K̃y − τK̃s

)
Lx.

It is shown in [10] that an2 optimizer of (B.7) is any matrix U whose columns are eigenvectors138

corresponding to r largest eigenvalues of generalized problem139

Bu = λCu

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any140

Θ in which LTxΘT =
√
nU is optimal Θ (denoted by Θopt). Note that Θopt is not unique and has a141

general form of142

ΘT =
√
n (LTx)

†
U + Λ0, R(Λ0) ⊆ N (LTx).

However, setting Λ0 to zero would lead to minimum norm for Θ. Therefore, we opt Θopt =143

UT (Lx)†, where ignoring the constant multiplier
√
n does not change the generalized eigenvalue144

problem in (B.8).145

Corollary 5.1. Embedding Dimensionality: A useful corollary of Theorem 5 is optimal embedding146

dimensionality:147

arg sup
r

{
sup
f∈Ar

{
J emp(f(x)) := (1− τ) depemp(f(x),y)− τ depemp(f(x), s)

}}
,

which is the number of positive eigenvalues of the generalized eigenvalue problem in (14).148

Proof. From the proof of Theorem 5, we know that149

sup
f∈Ar

{
(1− τ) depemp(f(x),y)− τ depemp(f(x), s)

}
=

r∑
j=1

λj ,

where {λ1, · · · , λn} are eigenvalues of the generalized problem in (B.8) in decreasing order. It150

follows immediately that151

arg sup
r

{ r∑
j=1

λj

}
= number of positive elements of {λ1, · · · , λn}.

152

B.6 Proof of Theorem 6153

Theorem 1. Assume that ks(·, ·) and ky(·, ·) are bounded by one and f2
k (xi) is bounded by M for154

any k = 1, · · · , r and i = 1, · · · , n for which f = (f1, · · · , fr) ∈ Ar. For any n > 1 and 0 < δ < 1,155

with probability at least 1− δ, we have156 ∣∣∣ sup
f∈Ar

J(f(x))− sup
f∈Ar

J emp(f(x))
∣∣∣ ≤ rM√ log(6/δ)

a2n
+O

(
1

n

)
,

where 0.22 ≤ a ≤ 1 is a constant.157

Proof. Recall that in the proof of Lemma 3, we have shown that with probability at least 1− δ, the158

following holds,159 ∣∣∣dep(z, s)− depemp(z, s)
∣∣∣ ≤√r2M2 log(6/σ)

α2n
+O

(
1

n

)
.

2Optimal V is not unique.
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Using the same reasoning, with probability at least 1− δ, we have160 ∣∣∣dep(z,y)− depemp(z,y)
∣∣∣ ≤√r2M2 log(6/σ)

α2n
+O

(
1

n

)
.

Since J(f(x)) = (1 − τ) dep(z,y) − τ dep(z, s) and J emp(f(x)) := (1 − τ) depemp(z,y) −161

τ depemp(z, s), it follows that with probability at least 1− δ,162 ∣∣∣J(f(x))− J emp(f(x))
∣∣∣ ≤ rM√ log(6/σ)

α2n
+O

(
1

n

)
.

We complete the proof by noting that163 ∣∣∣ sup
f∈Ar

J(f(x))− sup
f∈Ar

J emp(f(x))
∣∣∣ ≤ sup

f∈Ar

∣∣∣J(f(x))− J emp(f(x))
∣∣∣.

164
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