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In this supplementary material, we include (1) further numerical experiments and experimental details
for estimating the different trade-offs in Section E] (2) proofs of all theorems, lemmas and corollaries
in Section

A Numerical Estimation of Trade-Offs

A.1 Training Details of Numerical Estimation of Trade-Offs in Section 4

In this Section we specify all the training details of the numerical results presented int Section 4 of
the main paper.

Trade-Offs D & L: The optimal embedding z is learned for the trade-off D through the closed
from solution in Theorem 5 for different invariance parameter values 7 in [0, 1). Then this optimal
embedding is fed to a target task predictor which is an MLP with two hidden layers, and 4, 8 neurons
where we use MSE as a loss function and AdamW [1]] as an optimizer. The same procedure is
implemented for trade-off L, except that the input data is v instead of . We choose the number
of epochs and batch-size to be 500 and optimize the learning rate by trying six different values
among {1072,1073,3 x 1074,5 x 107%4,10~*, 10~ }. We consider Gaussian kernel for all H, H.s,
and H, and seek the band-width (i.e., o) of Gaussian kernels using five different logarithmically
spaced values in [10~2,102]. Further, we optimize the regularization parameter ~ in equation (10)
by considering three values among {0,107% 1}. We first set 0, = 05 = 0y = 1,7y = 107 and
explore the optimal learning rate by minimizing MSE in the validation set. Once the learning rate is
found, we explore the os by minimizing MSE in the validation set. In the end, we explore ~y similarly.

Spectral Adversarial Representation Learning (Spectral-ARL): Spectral ARL [2] is very similar
to the trade-off D of this paper except that H, and H,, are both linear RKHS. We followed the same
experimental setting of trade-off D. The results of this approach is illustrated in Figure[T](c).

Adpversarial Representation Learning (ARL): We followed the ARL formulation in (3) for different
invariance parameter values 7 in [0, 1). The embedding z = f(x) is extracted via the encoder f(-)
which is an MLP with two hidden layers, and 4, 2 neurons. Then, z is fed to a target task predictor
gy (+) and an proxy adversary gg(-) network where both are MLP with two hidden layers, and 4, 8
neurons. We use stochastic gradient descent-ascent (SGDA) [3]] with AdamW [1]] as an optimizer to
alternately train the encoder, target predictor and proxy adversary networks. We choose the number
of epochs and batch-size to be 500 and optimize the learning rate among {1072,1073,3 x 1074, 5 x
10~%,107%,10~°} by minimizing MSE in the validation set by. Since ARL can be unstable, we run
our experiment for five different random seeds. The mean and standard-deviation (std) of the results
are illustrated in Figure|[T]
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Figure 1: The mean and std of ARL method (ARL is optimized with SGDA [3]]) after running five
times with different random seeds on weight initialization.

A.2 Fair Classification

We consider an additional experiment, a fair classification application of IRL on Adult dataselﬂ This
dataset contains 45, 222 instances of different individual where each instance includes 14 attributes.
The target task is a binary classification of annual income (more or less than 50K) while the sensitive
attribute (i.e., semantic attribute) in which we aim to be independent of it is s =(race, gender). We
randomly split the data into training (25, 222 instances), validation (10, 000 instances), and testing
(10, 000 instances) and perform our experiment five times (each time with a different random seed on
data split and weight initialization of involved networks).

We consider demographic parity (DP) [4] as the fairness criterion, where the goal is to have the
prediction of target feature 4 be independent of the sensitive feature s. In the context of representation
learning, DP exactly falls into IRL since y = gy (z) is required by DP to be independent of s
regardless of the target predictor gy (-). Following [3], we define DP violation (DPV) as

DPV = max |P[y| s = so] — Ply| s = s(]|.

’
S(),S0

(A1)

Following Section[A.1] we learn the optimal embedding z for the trade-offs D and L using Theorem
5 for different invariance parameter values 7 € [0, 1] and then feed this representation to a three-
layer MLP with 64, 128, and 64 neurons, respectively. Similar RKHSs together with optimization
procedure (except that the batch-size is 250) and hyperparameter tuning as Section[A.T]is deployed.
The mean of results are illustrated in Figure[2] Further, the std from five random splits is depicted in
Figure|3|(a) and (b). Note that the baseline spectral-ARL [2]] is almost similar to trade-off D where
linear RKHS is used for both H s and H,,. The mean and std of results are illustrated in Figures 2]
and 3| (c). For ARL method, the encoder f(-) is a three-layer MLP with 64, 128 and 64 neurons,
respectively. Both the target task predictor gy (-) and proxy adversary gs(-) are MLP with the similar
architecture to encoder. We followed the same optimization procedure and hyperparameter tuning
as Section[A.T|except that the batch-size is 250. The mean and std of ARL results are illustrated in

Figures [2)and 3] (d).

We observe that i) As expected, trade-off L. dominates trade-off D. ii) The two baseline methods
(trade-offs F) are dominated by trade-off D which is due to the suboptimality of their optimization
and dependence measures.

'The data is downloaded from the UCI ML-epository at https://archive.ics.uci.edu/ml/datasets/adult.



Accuracy

0.9

0.8

-
—e—  Trade-off L
—e— Trade-off D
+ Spectral-ARL [2]
° ARL [3]

1

1

i

0 0.1

DPV

0.2

0.3

Figure 2: Fair classification: Two fundamental trade-offs, L and D, together with two baseline feasible
trade-offs F, ARL optimized with SGDA [3]] and global optima of ARL with a linear RKHS [2].
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(d): Spectral-ARL [2].
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B Proofs

B.1 Proof of Theorem 1

Theorem 1. Let 7 contain all Borel-measurable functions and Lg(-,-) be mean squared error
(MSE) loss. Then,

z € argsup { gsig?f{‘g Ez s [LS (gs(z), s)] } < Els|z] = E[s].

Proof. Let s;, (9s(z)),, and (E[s| 2] ), denote the 7’th entries of s, g5(2), and E[s | 2], respectively.
Then, it follows that

ds

g Beales(oen )] < g 30 o, o)
1=1
_ i((E[S|z”"5i>2
'Ld:Sl ) .
< Z:((E[s])i—si) :ZVar[si],

where the second step is due to the optimality of conditional mean (i.e., Bayes estimation) for MSE [6]
and the last step is due the fact that the independency between z and s leads to an upper bound on

MSE. Therefore, if z € arg sup { infgien, Exs {Es (gg(z), s)} } then E[s | z] = E[s].

On the other hand, if E[s|z] = [E[s|, then it follows immediately that z €

arg sup { infysen, Ex,s {ES (gg(z), s)} } O

B.2 Proof of Lemma 2

Lemma 2.

T

dep(z,5) = Z{Ew,w',s'[fj(w)fj(-’v’)ks(s,S’)}+Em[fj(w)}Emf[fj(w’)]Es,s/[ks(s,8’)]

j=1
—2E,., {fj(a:) B [f; ()] Eor ks (s, s’)]} }
where (x, s) and (x’, 8") are independently drawn from the joint distribution pgs.

Proof. We first note that this Lemma is inspired by HSIC [7]. In our case, dep(z, s) is defined for a
fixed f where HS-norm is carried only on S5, while HSIC considers HS-norm on both 5 and f.

Using definition (8), we get

dep(z,s) = Z ZhQ(ijﬂs)

Bs€Us j=1

Z Z </887 stfj>'2Hs

Bs€EUs j=1

Z Z <657 stfj>’2ﬂs

J=1 Bs€Us
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= 2 IZafil,
j=1

= Y (Ceati Seati)n,

Jj=1

= ZCOVms fj 7 s:cfj)( ))
j=1

= Z(Covms fj COVm S(f]( ) S(s/’S»)

(hee

- g«:ovm(fj ka(-,8), Zaafila, )
(5o
(

= 3 Covea (fi(@). Barrlfs (&) k(. )] = Bar[f; (@] Ewla(s. )] )

r

= 2 {E [15(@) (@) ks(s,8)| + Eal (@) Ear[f; (2')] Eo,o ks(s, )

2B £(2) Bar[fs ()] Eur [ks<s,s'>]}}

where (a) is due to Parseval relation for orthonormal basis and (b) is from the definition of ¥,
in (7). O

B.3 Proof of Lemma 3

Lemma 3. Let an empirical estimation of covariance be

n

1 n
Cove s(fi(x), Bs(s)) =~ —ij x;)Ps(s;) — —222 (x;)Bs(8k)- (B.1)
i=1 k=
Then, the empirical estimator of dep(z, s) is given by
em 1 2
dep*™(z,s) = —2||®KmHLS||F,
n

where K, K; € R"*"™ are Gram matrices corresponding to H, and Hs, respectively, H =
I— %11T, and L is a full column-rank matrix in which L st = K (Cholesky factorization).

This empirical estimator in (9) has a bias of O(n ') and a convergence rate of O(n~1/?).

Proof. Firstly, let us reconstruct the orthonormal set I/ through i.i.d. observations {37} 1- Invoking
representer theorem, for two arbitrary elements 5; and 3,,, of Us, we have

(Bis Bm)mr = <ZO¢] (85:7), ka (s1,°) >

=y ZajnlkT(yj7 )

j=11=1
o’ K,n
(Lio, Lin)g,

Hs

where L, € R™*7 is a full column rank matrix and K = LSL;F is the Chelesky factorization. As a
result, 3; € U would become equivalent to LT o € U, where U, is any complete orthonormal set



ss for R?. Using empirical expression for covariance in (B.I)) together with equations (7) and (8), we get

ss where f(x) = Olkz(x1,x

n

2.2 {i S Si@)Ba(sn) — 2fj(wi)2ﬁs(sk)}

Bs€Us j=1 =1 k=1

1 1 2
> 3 {EHJTKmea - ﬁe,{KmhﬁKya}

LTacu, j=1

3 Z {%GJTK:CHKsa}Q

LTacu, j=1
- 1 T T 2
3 Z{Eej KwHLsLsa}
LTacu, j=1
r 1 2
>y {orma.g)
cetty =1 "
1 2
> S IlOK.HL||,
n
ceu,

1 2
IOk, HL, 2.

)i ka(@n, @) and © := [01,---,6,]".

0 We now show that the bias of dep®™™(z, s) to estimate dep(z, s) in (8) is O (). To do this, we split
ot dep®"(z, s) into three terms as

1 2
E”@Ka:HLsHF

1
ﬁTr{QKwHKsHKwGT}
1 1 T 1 T T
- —ZTr{G)Km I--11") K, (I--11 KmG}
n

1 2
= 5 Tr{Kw(-)TG)KwKs} - Tr{lTK,,G)T@KwKsl}

1 1T

1
+— Tr{lTKwQTGlelTKsl} (B.2)
n
I
92 Let ¢ denote the set of all p—tuples drawn without repetition from {1,---,n}. Also, let @ =
ea [01,--,0,]7 € R™" and (A);; denote the element of arbitrary matrix A at i’th row and j’th

94 column. Then, it follows that



o5 (D):

E[Tr{Km(aT@KmKSH

Il
&

:Tr{\%egKmKsH

k=1 on

= Z]E_Tr{akagKSH

- Z]E Z(akag)m‘(Ks)n-F Z (akaf)ij(Ks)ji]
k=1 i (i.)€cy

= Y Eus[fE(@)ha(s.5)]

k=1

+(n

n! - / /
—2)! ;Em,s,m’7s’ {fk(ill)fk(w Vks(s, s )}

r

= O(TL) + (’I’Lﬁ'Q)' ZEw,s,m’,s’ [fk(w)fk(x/)ks(s, Sl)j| (B3)

T k=1

96 where (x, s) and (', s’) are independently drawn from the joint distribution pgs.

97 (ID):

E[lTKZGTGKwKsl]

S ENT K,0, O,meKsl]
L~

k=1 o

r -

E E lTakastl}
k=1

T n n n

STE[Y DD (el )mi(Ka)n]

k=1 m=1i=1 j=1

ZE»Z(akag)ii(Ks)ii + Z (akag)an(Ks)mJ}

k=1 i (m,j)eck
ZE Z (akag)mi(Ks)mm + Z (akag)m](KS)mj}
k=1 (m,i)ecy (m.j)eey

+ i E[ Z (akaZ)mi(Ks)mj]

k=1 (m,i,j)€ecy

n ,; Eas [ /2(@)ks(s,5)| + (nﬁ;), ’;E [ (@)ha(s. ")

(n’r_u2>! ]; Em,s,m’ |:fk (-’B)fk(ﬂ)/)ks(s7 5):|

T

n! ) /

m kZ:1 Ea:,s,a:’,s’ [fk(%’)fk(:l: )ks(s’ s )]

g 2 B B B 1)

O) + g5 3 B[ () o @) (5, (B
T k=1

7
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E 1TKm®T®Km11TK31}

|
o

1T K0, BkTKmllTKsl]
L ~—~—

o

- Y E _1Taka£11TK81}

= SB[ Y (aral)i (Kol

k=1 4,5,m,l

= (’)(ng)—i—ZE[ Z (akag)ij(Ks)ml}
k=1

(i,5,m,l)€cy

= O0)+ g S Bal () (@) B s, 5)
k=1

99 Using above calculations together with Lemma 2 lead to
1
dep(z, s) = E{depemp( )} +0 (> .
n

100 We now obtam the convergence of dep®™?(z, s). Consider the decomposition in (B.2)) together with
101 [B.4),and (B.3). Let vy, := K0y , then it follows that

dep z,8) —dep®™(z, ) > t}

< IP’{ ZT Eg sz s/ fk () fu (ks (s, s’)] ( ! Z (arad )i )ji‘i‘O(i) >at}
k=1 .

* P{iEm,s[ﬁc Eg [fr(2")|Es [k (ss)]]
k=1

T

(n3

> (aro])mi(Ke)mj + O <Tll) > bt}

k=1 ( :]7m)603

+ P{ Z Ex[fe(®)] Ew [ fr ("B/)]ES,S’ [ks(s, 5/)]

k=1

(n .4 Z Z (anaf )ij(Ks)mi + O (i) >(1—a-— b)t},

k=1 (i,j,m,l)ecy

102 where a,b > 0 and a + b < 1. For convenience, we omit the term O (1) and add it back in the last
103 stage.

104 Define ¢ := (x, s) and consider the following U-statistics [8]

u1(€i, ¢j) = n—2 > Z ara)ij(

(i,5)€ch k=1

u2<ci,<j,cm)=(”‘3)! S S (el i (K

n!
(i,,m)€cy k=1

us(¢ @) = =S S (gal ) (K

(i,9,m,l)ecy k=1
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Then, from Hoeffding’s inequality [8] it follows that

—242t2 —2p2¢2 —2(1—a—b)2¢2

]P’{dep(z, s) — dep™™P(z,s) > t} <ez2m®" 4 ez 4 e w2m? ",

where we assumed that k-, -) is bounded by one and fZ(x;) is bounded by M forany k = 1,---,r
andi=1,---,n.
Further, if 0.22 < a < 1, it holds that

2,2 2,2 2,2 2,2
2a%t 2b2¢ 2(1—a—b)?t a2t
pe —aZt®

e 2r2Mm? v —+ e3r2m? n +e 4r2 M2 "< 3er2m?2 ",

Consequently, we have
0242
P{‘dep(z, 8) — dep”™(z, s)‘ > t} < Germz ",

Therefore, with probability at least 1 — ¢, it holds

2M?log(6 1
‘dep(z,s) - depemp(z,s)‘ < %i(ﬂ‘) +0 <) . (B.6)

B.4 Proof of Theorem 4

Theorem 4. A solution to the optimization problem in (11) is the eigenfunctions corresponding to r
largest eigenvalues of the following generalized problem

(1= 1)%eTye = 72100 ) f = Ao f,

where ¥, and ¥, are defined in (7), and ¥} and EZE are the adjoint operators of X5 and Xy,
respectively.

Proof. Consider dep(z, s) in (8):

dep(z,s) = Z ZhZ(fj,/Bs)

Bs€EUs j=1

= Z Z <ﬂ57zswfj>§{s

Jj=1Bs€Us
r
= Zstmfj||’2)-[s7
j=1

where the last step is due to Parseval’s identity for orthonormal basis. Similarly, we have dep(z,y) =
Y e Bz f H%_[y Recall that = = f(x) = (f1 (), fr(zc)), then, it follows that

J(f@) = =7 Safill, 7 D 1T fill3,
j=1 j=1

= (1—T)i<2ymfj72waj>,}_t _Ti<zswfj’2”fj>ﬂ
y j=1 i

Jj=1
T

> (fi (1= D)TZhe = 7S50 Ze)fi)

Ha

j=1
where ¥* is the adjoint operator of ¥. Further, note that Cov(f;(z), fj(x)) is equal to
(fis Xz fj>7_[ . As aresult, the optimization problem in (11) can be restated as

r

sup 3 <fj, (1= 7)5 g — ngmzsm)fj> L 1<ik<r
<fi7(2ww+'7[m)fk>%m:6i,k j=1 He



122

123

124

125

126

127
128

129
130

131

132
133

134

135

136

where I, denotes identity operator from H,, to H,. This optimization problem is known as general-
ized Rayleigh quotient [9] and a possible solution to it is given by the eigenfunctions corresponding
to the r largest eigenvalues of the following generalized problem

((1 ) ey Sy — T zmzsw)f — A (zm n ylw)f.

B.5 Proofs of Theorem 5 and Corollary 5.1

Theorem 5. Consider the Cholesky factorization K, = Lng, where L, is a full column-rank
matrix. A solution to (13) is

foPt— @ont [km(wh Do kg (@, )}T

where @ = UT(L )Jr and the columns of U are eigenvectors corresponding to r largest eigenval-
ues, A1, - - -, A of generalized problem

(Lg((l -nK, - TKS)LQ:)’U' = /\<L£HL93 + n'yI)u
where ~y is the regularization parameter from (10) and the supremum value of (13) is Z;:l A

Proof. Consider the Cholesky factorization K, = LILE where L, is a full column-rank matrix.
Using representer theorem, disentanglement condition in (10), can be expressed as

COV(fi( ); filz ))+7<fmfj>ﬂm
= 7Zfz xy) fi(xk) Zfz xy) Z i(@m) + 7 (fi, [i) s

n

1 — 1
- gZZKw(fﬂkawt it Z z(Tk, Trn) m_ﬁenglnngmej""Y(fiafﬁHm
k=1t=1 m=1
_ 1 T T T . -
= (K.0) (Kxaj)—ﬁoi Km1n1nK$0j+7<;eikkm(.,mk),;eitkm(.,mt)>%

1
= —OLTKQ,HKwQJ +’}/0lTKwGJ
n

1

- 67 Lm(LgﬂLm+n7I)L£0j
n

= dij

As aresult, f € A, is equivalent to

1
~OL, (LgHLm n mI) Lre’ -1,
n

=C
where © := [0, -, OT}T € R,

Let V = - LT®T and consider the optimization problem in (13):

vn
sup {(1—7) dep™ (£ (@), y) — 7 dep™(f (). 5) }
feA,

1
= sup —2{(1 —T7)|®K HL
feA.

1
— ;g‘) ﬁ{a -7)Tr{®K,HK,HK,0©"} — TTr{GKmHKsHKm(-)T}}

2 2
yHF _THGKwHLsHF}

1
=  max —Tr{G)L BLIeT}
vrev=I,

= ,Amex o —Tr{VTBV} (B.7)

10
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where the second step is due to (9) and
B = Lg((l — 7)HK,H — THKSH) L,
= L£<(1 -7)K, - TKS)LE.
It is shown in [10] that arﬂ optimizer of is any matrix U whose columns are eigenvectors
corresponding to r largest eigenvalues of generalized problem
Bu = \Cu

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any
© in which LL®” = \/n U is optimal ® (denoted by ®°"). Note that ©@°" is not unique and has a
general form of

0T = Vn(LL)'U + Ay, R(Ag) CN(LE).

However, setting Ay to zero would lead to minimum norm for @. Therefore, we opt @' =
UT (L)', where ignoring the constant multiplier /7 does not change the generalized eigenvalue
problem in (B.8). [

Corollary 5.1. Embedding Dimensionality: A useful corollary of Theorem 5 is optimal embedding
dimensionality:

T feA,

argsup{ sup {J(F(@)) = (1 —7) dep™(f (), y) — 7 dep™(F(w >,s>}},

which is the number of positive eigenvalues of the generalized eigenvalue problem in (14).

Proof. From the proof of Theorem 5, we know that

sup < (1 —7)dep™™(f — 7dep™™(f A,
sup {(1=7) dep™ (£(2) ) )8)} = ZJ
where {A1,--+, A\, } are eigenvalues of the generalized problem in (B-8) in decreasing order. It

follows immediately that

arg sup { Z )\j} = number of positive elements of {\q,- -+, \,}.
r —

B.6 Proof of Theorem 6

Theorem 1. Assume that ks (-, -) and ky (-, -) are bounded by one and fZ(z;) is bounded by M for
anyk=1,---,randi=1,---,nfor which f = (f1,---, f-) € A.. Foranyn > land 0 < ¢ < 1,
with probability at least 1 — §, we have

log(6/6 1
sup J(f(@)) — sup F(f(a))| < rany/ BI04 o ()

feA, feA, an n
where 0.22 < a < 1 is a constant.

Proof. Recall that in the proof of Lemma 3, we have shown that with probability at least 1 — ¢, the
following holds,

em r2M?log(6/o 1
dep(z, 8) — dep”™™(z, )‘ < # +0 <n) .

2Optimal V is not unique.

11
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Using the same reasoning, with probability at least 1 — §, we have

om, r2M?log(6/o 1
dep(y) — dep™ (z.)| < | B0 o (1)

Since J(f()) = (1 — 7)dep(z,y) — 7 dep(z, 5) and J™(f(z)) = (1 — 7)dep™(z,3) —
7 dep®™(z, s), it follows that with probability at least 1 — 4,
@) s | < o [FEQD o (1)

a?n n
We complete the proof by noting that

| sup J(F(2)) — sup J™(F(@)] < sup [J(F(@)) = I (F ().
fEA, feA. fEA,
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