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A APPENDIX
All simulations are available in the accompanied videos:https://youtu.be/pCB8ADIRADk

A.1 TRAINING DETAILS

Our ground-truth data is simulated with a piece of cloth hanging at its two corners, blown by a
wind with a constant magnitude (Figure[I). The simulation is conducted with a time step h = 0.001.

Figure 1: A piece of square cloth blown by constant magnitude wind.

In all experiments, we use Stochastic Gradient Descent and run 70 epochs for training, except in
XXX-(1,3) where we trained our model for 90 epochs. The training is conducted on a machine with
Intel(R) Xeon(R) Silver 4216 CPU, 187G memory, NVIDIA TITAN RTX graphics card on Linux.
The main factors of training speed are the cloth size and the training data size. In our experiments,
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Published as a conference paper at ICLR 2022

Ground Truth

Figure 2: The visual learning results of the differentiable sheet-level simulator (Liang et all, [2019)
and our model learns on the data generate by (Narain et al. [2012)

the training takes approximately 68, 133, and 328 seconds per epoch on a 17 x 17 cloth with training
data containing 5, 10, and 25 frames respectively. The training per epoch takes approximately 13,
106, 328, and 1310 seconds with 25 training frames, ona 5 x 5, 10 x 10, 17 x 17, and 25 x 25 cloth
respectively.

Additional experiments. Further, we also conduct comparisons on the data simulated under the
same settings by a sheet-level simulator (Narain et al., 2012), which tends to be stiffer. This is to
compare the performance when the ground-truth does not contain the same level of subtle dynamics.
Since there is no Eulerian coordinates in the sheet-level simulation, we only use Lagragian coordi-
nates in the loss function. The visual comparison is in Figure [2]and the prediction errors are shown
in Table m Our model can learn comparable results on 5 frames, and better results on 10 and 25
frames. The slightly worse 5-frame result is mainly because the first 5 frames contain small dynam-
ics and therefore is insufficient for our model to learn the overall stiffness of the cloth. However,
when 10 and 25 frames are given, the learning is significantly improved and even outperforms|Liang
(2019). Also, since there is no woven pattern information in the ground truth, we examine our
model across the three woven patterns, all giving more accurate predictions. Overall, the compar-
isons show our model has higher prediction accuracy regardless the granularity of the underlying
physics model.

Parameters. We induce prior knowledge to limit the parameter learning within valid ranges, so that
the multi-solution problem, also met by existing methods, can be mitigated. All cloths we used are
made of two types of yarns. We use the same range, d € [0.001,0.003], b € [0.00005, 0.00018],
S € [0,1200] and p € [0, 1.0] for both yarns, where d, b, S and p are the density, bending modulus,
shear modulus and friction coefficient respectively. We use s; € [0,800000] and sy € [0, 300000]
for the stretching for both yarns. For other coefficients, we use ky = 1000 and dy = 1000 in
the friction force, ¢ = 3 and ¢ = 0.6 in the shear force, k. = 1 in yarn-to-yarn collision in all
experiments.

When training our model on the data generated by a sheet-level cloth simulator (Narain et al., 2012),
we use a pure woven cloth made of one type of yarn. This is because it is not possible to specify
multiple yarn behaviors in a sheet simulator, so we use a pure yarn cloth for generating the ground
truth. The cloth parameters are from the ‘white-dots-on-black’ cloth in [Wang et al.| (2011)) which
is 100 percent polyester. To learn from it, we employ all three woven patterns in our model as
there is no prior knowledge about the woven pattern of the ‘white-dots-on-black’ cloth. We also fix
the friction coefficient ¢ = 0.5 and impose the ranges on parameters shown in Table 5} Finally,
we would like to point it out in real-world applications, information such as woven patterns and
yarn materials are easily available so that the ranges of parameter values such as density, bending
and stretching can be obtained. Although the knowledge of shearing and friction cannot be easily
acquired, the ranges we use are general enough.

Note that in all experiments, the prior knowledge we induce is only a weak prior, i.e. using the same
general ranges for multiple experiments across different woven patterns, so that the learning success
still lies in our model’s ability to infer the right parameter values.
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Table 1: Testing errors (x 107) of our model and (Liang et al.,|2019) trained on 5, 10 and 25 frames
generated by (Narain et al., [2012)).

fabrics/frames 5 10 25
Plain-(1,2) 6.702 1.167 0.496
Satin-(1,2) 7972 1.225 0.624
Twill-(1,2) 8.218 1.772 0.776

(Liang et al.,[2019) 4.098 4.752 1.716

Table 2: Learning cloth parameters with different initial values (part one).

Size Shear S Friction p
5x5 1011.79+6.12 0.39 +0.08
10 x 10 983.41+6.84 0.44 £0.03
17 x 17 962.29 £8.99  0.47 £+ 0.06

Parameter Initialization. The material estimation results are affected by initialization. To test if
our model can learn stably, we report the mean and the standard deviation of multiple experiments
with different parameter initial values. The initial values of the physical parameters are randomly
selected from a range of +10% of the average of the two yarns. For instance, in learning the stretch
in Plain-(1,2), we only know the ranges of the stretching parameters Y1 and Y2 of Yarnl and Yarn2
but not the exact values. Therefore, when initializing Y1 and Y2, we randomly sample values
from a range of £10% of the mean stretch stiffness of the Yarnl and Yarn2, [mean(Y1, Y2) x
0.9,mean(Y1, Y2) x 1.1] for initialization. The results of the 5 repetitions are shown Table [2] and
Table E} Given that the standard deviations are small, it shows that our model can stably learn
reasonable parameter values.

Different Force Magnitude. To evaluate the influence of the wind force, we conduct experiments
using SN, 10N, and 15N wind force to blow a piece of 17 x 17 Plain-(1,2) cloth. The learning
result is shown in the Table ] which demonstrate wind force strength has ignorable influence on the
learned parameters.

Table 4: Learning cloth physical parameters with different wind force.

Wind Shear S Friction x  Yarn Density Stretch Bend
1 1969 x 1073 505421 1.323 x 104
> 947 0.402 2 2440 x 1072 171304 1.034 x 10~*
1 2.026x 1073 494109 1.311 x 104
10 942 0.520 2 2441 x 1073 168267 1.049 x 104
1 2029 x 1073 487918 1.341 x 104
5 934 0.586 2 2437 x10~3 167601 1.066 x 10—

Table 3: Learning cloth parameters with different initial values (part two).

Size Yarn Density Stretch Bend
Exh 1 1.98 x 1073+£3.00 x 10~° 498595 + 8862  1.37 x 10™*+1.41 x 10~6
2 245 x1073+£4.81 x 107° 186710+ 3776 1.11 x 10*+£4.78 x 1076
10 x 10 1 2.03x1073+£5.04 x 1075 542375+ 7099 1.44 x 10~*+2.08 x 10~6
2 247 x1073+£4.73 x 107° 180032 4+ 1848 1.05 x 107*£8.18 x 1076
17 % 17 1 2.00 x 10—?i6.66 x 1075 519993 + 3175 1.43 x 10~*£5.55 x 1076
2 245 x1073£5.04 x 107° 1762324+ 1514  1.19 x 107*£6.50 x 1076
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Step:

Step:

Figure 3: Three pieces of cloth woven in different patterns show different dynamics.

Table 5: Cloth parameters’ initial values and ranges when ground-truth generated by sheet-level

cloth simulator(Narain et al.| 2012)

Name Density(kg/m) Stretch(N/m) Bend(N/m) Shear(N/m)

Value 0.004 le6 0.0001 20000
Upper limit 0.008 2e6 0.0002 30000
Lower limit 0.001 0 0 0

Influence of Woven Patterns. The investigation on different woven patterns is crucial as they
affect the cloth dynamics significantly. To show this, we conducted simulations of three pieces
of cloths with the same parameters, but with different woven patterns. We shear three pieces of
cloth then release them. The Figure [3| shows three pieces of cloth in the initial state and 10 steps
later. There are obvious differences after merely 10 steps. This demonstrates woven patterns have
considerable influences on the overall mechanical properties.

Table 6: Testing errors (x10~%) of our model (left) and (Liang et al., [2019) (right) trained on 5, 10

and 25 frames. Ground-truth generated by a yarn-level simulator (Cirio et al.,[2014).

fabrics/frames 5 10 25 5 10 25
Plain-(1,2)  1.152 x 10™% 1.068 x 10™* 3.962 x 1075 | 1.462 0.7375 0.4124
Plain-(1,3)  1.516 x 10~* 1.268 x 10=* 3.555 x 10~° | 1.608 0.7906 0.4567
Plain-(2,3)  5.233 x 107* 1.291 x 107% 2.117 x 107° | 1.952 0.5999 0.2294
Satin-(1,2)  1.134 x 10% 1.070 x 10~% 4.285 x 10~° | 1.466 0.7405 0.4146
Satin-(1,3) 1.551 x 10™*  1.355 x 107% 4.362 x 107° | 1.624 0.8004 0.4445
Satin-(2,3)  6.254 x 107*  1.355 x 107* 4.413 x 107° | 2.128 0.5949 0.2265
Twill-(1,2)  1.130 x 10°% 1.068 x 10-* 4.208 x 10~° | 1.472 0.7451 0.4160
Twill-(1,3)  1.550 x 107* 1.349 x 10~% 4.200 x 107° | 1.633 0.8059 0.4577
Twill-(2,3) 6470 x 10~*  1.352 x 10~* 4.938 x 107° | 2.181 0.5994 0.2278
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Figure 4: The visual results of our model learning on different cloth sizes. From left to right: 5 x 5,
10 x 10, 17 x 17 and 25 x 25.

Table 7: Learned parameters by Bayesian Optimization on different kinds of fabrics.

Frames Density Stretch Bend Density Stretch Bend
5 2.483 x 1073 647270 0.636 x 10~% 2.125 x 10~2 270641 1.576 x 10~*
10 2176 x 1073 577235 0.798 x 107% 2.264 x 1073 217144 1.542 x 1074
25 2.328 x 1073 537434 1.687 x 10~% 2.097 x 10™3 249896 0.976 x 10~4
5 2.202 x 1073 605289 1.403 x 10~% 2.349 x 103 272153 0.868 x 10~*
10 1.669 x 1073 257877 1.582 x 10™% 2.635 x 103 268451 0.529 x 10~*%
25 1.454 x 1073 315715 1.213x10~* 2950 x 1073 23702 1.656 x 10~*
5 2.514 x 1073 250093 1.611 x 107% 2.363 x 1073 20371  0.985 x 10~%
10 2.964 x 1073 164021 0.524 x 107% 2.255 x 1073 49648 1.225 x 10~*
25 2414 x 1073 73734 0.890 x 107% 2.436 x 1073 267452 1.113 x 1074

A.2 VISUAL RESULTS

Here we show some snapshots of our model on cloths of different sizes in Figure ] As expected,
small cloths tend to show low dynamics and appear to be more ‘rigid’. Bigger cloths tend to have
more subtle dynamics such as wrinkles, even under the same external impact, i.e. gravity and wind
with a constant magnitude. More visual results can be found in the supplementary video.

A.3 YARN-LEVEL VERSUS SHEET-LEVEL

A full comparison between our model and (Liang et al [2019) is shown in Table [f] where a yarn-
level simulator is used to generate the ground-truth. We exhaustively conduct
comparisons using all combinations of yarns and woven patterns. We can see that our model is con-
sistently better than (Liang et al., 2019) by large margins. Visually, we show snapshots in Figure[5]
The sheet model results are in general more rigid and do not contain as much subtle dynamics as ours
do, across different training frame numbers. Since 5, 10 and 25 frames contain different amounts of
information on (subtle) motion dynamics, Figure [5] shows that there is a lack of granularity in the
sheet model when capturing subtle dynamics compared with ours.

Further, we also show the plots on the data efficiency in Figure [6] under all 9 yarn-woven pattern
combinations, across different amounts of training data. In all settings, our data efficiency is sig-
nificantly higher. By extrapolation, it would take a large number of extra training frames for the
sheet-level model to achieve similar accuracy. More comparisons are also available in the supple-
mentary video.

A.4 OUR MODEL VERSUS BAYESIAN OPTIMIZATION

Table 8] shows the testing errors of the Bayesian Optimization. Although the MSE errors are small,
the learned parameters are far from the ground truth (shown in the Table [7), which is somewhat
surprising. After examining the results, we find that Bayesian Optimization suffers from the multi-
solution problem so that it merely gives a set of working parameters instead of the true parameters.
In other words, although the prediction error is low, physically speaking, the learned parameters
are far from the true materials. This happens even when we use the same parameter ranges as in
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Ground Truth

Yarn 5 frames | Yarn 10 frames Yarn 25 frames

Sheet 5 frames |Sheet 10 frames|Sheet 25 frames

Figure 5: The visual results of Plain-(1, 2) ground-truth, our model, and sheet-level model trained
with different number of frames. The snapshots are the 133th frame of the simulations after learning.
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Figure 6: Prediction error logarithm vs training data.

our model. This is an intrinsic property of Bayesian optimization which is based on sampling, and
therefore difficult to avoid during learning.

Table 8: Testing error (x107%) of Bayesian Optimization with yarn-level simulator

2016) learned on 5, 10, and 25 frames.

A.5 CONTROL EXPERIMENT SETTING

Fabrics/Frames 5 10 25
Plain-(1,2) 0.512 0.176 0.109
Plain-(1,3) 1.280 1.269 0.738
Plain-(2,3) 28.19 19.22 18.16

The control experiment scenario is illustrated in the Figure 7}
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Figure 7: A square cloth is thrown from the table into the black box by four forces applied on the
four corners of the cloth.

A.6  SIGNIFICANT ERROR IN VISUAL
We discussed the significance of the small error in physics-based simulation. Figure [8and Figure

[] visually prove our explanations in the main paper: the error accumulates over time and increases
with increasing cloth size.
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Figure 8: Visual differences in long simulations. The grey cloth is ground truth. The blue cloth and
the red cloth are simulated with the parameters learned by our model and BO. The blue cloth shows

smaller visual differences than the red one.

B DIFFERENTIABLE YARN-LEVEL CLOTH SIMULATOR

In this section, we give the full details of our model and mathematical derivation.

B.1 INTRO YARN FORCE MODELS

Representing the cloth as in Figure[I0} we employ an EoL
discretization (Sueda et all, [2011)) and denote the spatial
positions of crossing nodes in Lagrangian coordinates and
represent the contact sliding movement in Eulerian coor-
dinates, q; = (x;, u;, v;) where x; € R3 implies crossing
node ’s spatial position and (u;, v;) the node’s position in
the material frame. The two end points of yarns are taken
as special crossing nodes as they do not contact with other
yarns and therefore have no Eulerian terms, i.e. q; = x;.
Therefore, on a r(rows) x ¢(columns) cloth, there are

Figure 10: Blue and red rods denote
warps and wefts respectively. gs are the

(r —2) x (¢ — 2) crossing nodes with five Degrees of ~crossing nodes.

Freedom (DoFs) and 2r 4 2¢ — 4 crossing nodes with

three DoFs. Every two neighboring crossing nodes on the same warp/weft delimit a warp/weft seg-
ment. A warp segment whose two end points are qo and q; is denoted as [qo, 1] and its position is
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Size: x1

Size: x2

Size: x4

Figure 9: Visual differences on larger cloths and long simulation (500 steps). The grey cloth is
ground truth. The blue cloth and the red cloth are simulated with the parameters learned by our
model and BO. The blue cloth shows smaller differences than the red one.

(x0,X1,ug,u1) (shown in . This way, a woven cloth is discretized into crossing nodes and seg-
ments which are the primitive units of the simulated cloth. Every segment is assumed to be straight
so that linear interpolation can be employed on the segment, e.g. the spatial position of a point in
the segment [qo, q1] is x(u) = “x2X¢ + “k.“X1, Where u is the point’s position in Eulerian coor-

10
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dinates and Au = wuy — ug is the length of the segment. We use L to denote the distances between
neighbor yarns and R to denote the yarn radius.

B.2 SYSTEM EQUATION FOR SIMULATION

A cloth’s state at time ¢, S5y = {Q(y), Q(t) }, includes all its crossing nodes’ positions Q = {q;|i =

1,2,..., N} and velocities Q= {qili = 1,2,..., N}, where N is the number of crossing nodes.
Knowing the states, then we can calculate the internal and external forces:

F=Mg=— — — — Mq ¢))

where q, q, and q are the nodes general position, velocity, and acceleration respectively, with a
dimension [ =3 x 7 x ¢ +2 x (r —2) x (¢ —2). M € R/*! is the general mass matrix. The model
assumes mass is distributed homogeneously in one segment, so the mass matrix of a warp segment

[q07 ql] is

213 13 —2w —wW
o 1 13 213 —W —2w
My = EAUP owT —w' wTw ww (2)
—w! 2w w'w 2w'w

where w = *L=%0 and p is yarn density. 7" and V' are the kinetic and potential energy respectively.
As the partial derivative of energy with respect to position is force, the right hand terms in Equation
are inertia, conservative forces, and part of the time derivative of M q. Non-conservative forces
are added to the right side of the equation.

We employ implicit Euler for stability in large steps (Baraff & Witkinl, [1998). Given the accel-
eration ¢ = M™!F and the change of speed over time step h, Aq can be approximated by

Aq = thlF(H_l), where F ;1) is the force at ¢ + 1 that can be approximated by first-order

algg,) Aq + %Aq, where F 4 is the force at ¢ which can be

computed by Equation Then node positions at ¢ + 1 are q(;+1) = q) + h(dq() + Aq). Finally,
we have the system equation for simulation:

OFwy, o OFw, Y. OF 1) :
M F +M
( 2 T a4 h) dee+) h( ® "o ) ae) ©)

To solve Equation [3] we explain every term including the general mass matrix M and every force
contained in F ;) below.

Taylor expansion F(; 1) = F) +

B.3 GENERAL MASS MATRIX

The mass matrix of a warp segment [qo, q1] is

213 I3 —2w —W
1 Ig 213 —W —2w
My, = EAUP owT —w' owTw  wlw “4)
—w! 2w w'w 2w'w
where Au = u; — uyg is the distance between the two nodes in Eulerian coordinates, w = L0,

and p is yarn’s linear density. The partial derivatives of general mass matrix with respect to nodes’
position is

oMo, OMo, OMos OMo, ) | 5)
Ox¢ Ox1 Oug Ouy
As xg and x; are vectors:

8M0,1 81\/-[0,1

ax(l) ax(l)

a1\/[0,1 31\/100,1 8M0,1 81\/110,1
= @ and = @ (6)

aX 9x ) axl ox
0 61\/10011 81\/110,1
é)x(()s) ax<13>

11
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01

The component SO is
X0
ow ow
0 0 —2 (’)xél) N 6xg1>
0 0 __ow -9 ow
8M0 1 1 axV ax(V
— = — T T P 70
a P —9 ow _ ow 26w w ow_ w
0%, 6 € €Y ™ ™
0 BXOr ox 8)§0 8er
ow 72 ow " ow_ w 28w w
axH xSV ax axH
OMo,1 OMo, OMoy, OM oM . o oM
and —5, —&¢, 1> % and (%)1 are in a similar form as ~——5;*. In each term, we have:
Ox ox %, oxy Ox,
L
ow Au ow (1) ow 0
—==—1 01, =—|=x;|,and —=—1 0
ax( ox'? ' ox 1
0 0 0 0 0 A
ow Au ow (1) d ow 8
—_— —_— _— an =
(1) T 94(2) Au | (3) 1
X x 1
ox; 0 25} 0 1 A
1 1
ow'w  ow' wT ow x(1 ) _ xé )
D a0 Y 5 T T A
X0 X0
T .. T
and BW(B‘)"’ have a similar form as a@“’%.
X0

ow'w Ow'w dw'w

W
where © x (2) *Tox® * ax® * ox®

OMj 1 OMp 1

Unsurprisingly, we can find that
8xé3) B 8x(13)

OMo1  OMgy; OMo:  OMy, and
ax(()l) 8x§1) 5‘xé2) 8x(12)
After deriving the partial derivatives of M ; with respect to the Lagrangian coordinates, we give its

partial derivatives with respect to Eulerian coordinates

213 13 —2w —W
8M0,1 o 1 Ig 213 —W —2w
oug ¢ l-2wT —w' 2ww w'w
—w! 2w w'w 2w'w
) )
0 0 250 o
1 0 0 -5 -2
+ éAU’p —9 aw " _ow’ 2 awTow awTv&? @)
6’!1.‘9 auo auo aug
ow ow ' w ow
8u0 Oug Oug Oug
where ag/lo L has a similar form as 63/10 L and:
ow _x1-% _w 0w  X1—-X W
Oug Au? Au Ouq Au? Au
ow'w  ow' rwT ow w'lw
= W W — =
Ouyg Oug Oug Au
owlw  Ow' ow w'w
= wWAwW — = —
Ouq ouy ouq Au
Likewise, we can find
8M0,1 . 8M071
8u0 o Bul

12
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So far, we have given the full details of Mg ;’ s partial derivatives with respect to positions in

Equation[5] Now we give its time derivative:

213 13 —2w —W
. . . I3 215 —-wW —2w
Mo,1 = =p(tin — o) | _gp, T wl 2wTw wlw
—w 2w w'w 2w'w
o) o
0 0 —Qﬁ g";’
1 0 0 aw _2767‘:,
+ EPAU 2BWT ow | 26w w ow_ w
ot ot a ot
_ow —92 ow ow _ w ) ow_ w
ot ot ot ot

where

(®)

().(1 — Xo)Au — (Xl — Xo)(’[tl — Uo)

8W_3x1—x0_
ot ot Au Au?

ow'w ow' - 0w

ot ot "V o

In addition, the derivatives of M071q071 with respect to the nodes’ positions are:

OMy 1

My, - .
9D q0,1 D d0,1
. . X0 y . X1
a:,-\/‘[0,1(10,1 o OMpy 1 q a1\/[0,1(10,1 . OMp 1 q
8X0 - 8);(()2) 0,1 1> 6X1 - 8);52) 0,1
OMo 1 - OMp,1 -
axff) q0,1 8x§3) qo,1
OMy 1901 0My a OMy 1901  O0Mjg, a ©)
= 0,1 = 0,1
auo 8u0 77 8u1 8u1 ’
The components in Equation 9] are:
ow ow
0 0 -2 é)x(()l) B Bxél)
. 0 ow ) ow
oMy, 1 . o ox(V
. gp(ul uO) ) ow " aw " 90w _w ow'w
9% ax" xS ax{H ax("
awor ) ow 8WT0W ) 6W0TW
8X(1> 8)((1) 6)((1) ax(l)
0 0 0
2 2
0 0 —2;0% —5 2
otox, otox
0 0 9w 5 9w
n 1A otox) otox)
6p u 5 8*w 9w’ Pw'w Pw'w
otoxV otoxlV otoxlV otoxV
9w Pw’ P*w'w 262w w
atoxH atoxH atoxH atoxH

13
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and
ow ow
0 0 72831“) 77850
. W W
a1\/10,1 _ 1 . . 0 0 duo 728150
9 = gp(ul - U‘O) _odw | _ow | ow'w ow'w
Uo ou Aug dug ou
P @
_ow 90w ow'w 28w
Oug Oug Oug Oug
ow ow
N I R
6p -9 ow _ ow 28w w ow w
atr ot @t atr
_ow'l _gow!  w w  9ow'w
ot ot ot ot
3w 9w
0 0 _2 8t28u0 - 8t82u0
9w 0w
+ 1AUP 0 T 0 T B 8t8_y0 728]&78%
6  5d*w 9w 3w 'w Pw'w
Otdug otdu Otdug otdu
_(92wT _9 82w0r Pw'w 82w70w
OtOug OtOug Otoug OtOug
where
U1 —Ug
0w Au? 0w 0 0w 0
prec il SR eyl Bl By Rl W
otox 0 otox, 0 otox L
U1 —Ug
0*w Au? 0w 0 0w 0
o= 0 ).~y =~ | kg | cand ;=0
o0toxy 0 0tox; 0tox; a i
aQW - 5(1 - Xl . 2(X1 - X())(’lel — ib(])
Btauo (U1 — UO)2 (u1 — UO)3
2 . . . .
8 W _ X1 — X1 +2(X1—X0)(U1—UO)
8t3u1 (U1 — ’LLO)2 (u1 — U0)3
PPw'w ow' ow wT ?w n Pw’ n ow' ow
= - W W
1 1 1 1 1
atox(V  ox{l ot otox\V  otox(V ot px{M
Pw'w  Ow' ow + 0®w  Pwl ow' ow
— = — W
8t8uo 8UO ot 8t8u0 8t6U0 ot (9’660
The derivatives of 1\'/10}1('10’1 with respect to the nodes’ velocities are:
AMo,1 40, Mo 1 - : dqo,
0.(11)0 ! .((i)l do,1 + MO,l .?i;
. . (2.5 0% %
81\/[0,1(:10,1 OMo,190,1 | OMo,1 + M 90,1
I3 = 7% = Erie) q0,1 015.®
X0 %o X0 0
OMp,1d0,1 OMpo,1 - M 9do,1
2% o5 do,1 + 0,1‘8).((()3)
OMo,1d0.1 OMo,1 - M 990,1
T _85:51) 6:::(11) do,1 + Mo,1 %D
0,190,1 | 0Mo,190.1 | | dMo1 do1 + M 90,1
a).(l - _85((12> = 6}:42) 0,1 0,1 8>'c§2)
OMp,140,1 OMp 1 - M 9do,1
8).((13) 8x(13) qo,1 t+ O,I?)xga)
OMo 1qo1 5’1\/10,1(.l M 0qo,1
- = - 0,1 0,1 7
8u0 Buo 8u0

14



Published as a conference paper at ICLR 2022

OMo1éo1  OMo, . 9401
—= = — 1+Mo1— 10
(’9u1 8u1 o, 0, (’9u1 ( )
where
8w 3w
0 0 atoxSV atoxH
. 9w _9_0%w
OMy, 1 0 0 o1ox 91ox)
8X(1) 6 p _ 9 ?w" 3w’ FPw'w ’w'w
1 atoxV otoxtV atoxtV otoxi
3w 2w Pw ' w ’w'w
atoxSV atoxSV atoxgV atoxgV
. 213 I3 —2w —W
(Q)Mo’l 1 13 213 —W —2w
g ¢ —2wT —wT 2w'w w'w
—w! 2w’ w'w 2w'w
*w *w
0 0 728&9110 © Otduo
1 0 0 _ 9w _ 9 9w
+ 7Au OtOug OtOug
6 p 902w’ _ 9w’ 282wTw P?w'w
dtdao LD dtdiy e
9w’ _202w Pw'w Pw'w
dtdg dtdy dtday dtdy
1 0
0 0
0 0
09,1 10 nd 00,1 1
- (1) 0 Oug | O
0%, 0
0 0
0 0
0 0
B.4 INERTIA
Kinetic energy is computed segment-wise, e.g. for a segment [qo, q1]:
Xo
1.+ . 1. . . . X1
Toq = §QO,1M0,1(1071 =3 (¢ %[ 1o 1) Mo, i (11)
Uy
Its derivatives with respect to each node’s position is the node’s inertia:
Fx,
Ton _ [ Fx, (12)
aqO,l Fuo
F

uy

_ 0Tpy 1.+ OMy; .
= 59

Fy, = -
0 8x0 2q 1 8X0 do.1
3To_1 1 T 8M0,1
Fy, = — = 54,1 1
0x1 2 70 Oxy
o 1.+ OMy .
Fu _ L 2 5
° a’LL() 2 o.1 auo o1
0Ty 1 1. T OMj 1 .
Fu _ 1 ,
! ﬁul 2q0’1 3u1 o1
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where F, and F,,, are the inertia of q( in Lagrangian and Eulerian coordinates respectively. Sim-
ilarly, F,, and F,, are the inertia of q;. The derivative of the forces with respect to positions

are:
OFx, OFx, OFyx, 0Fx,

0xo Ox1 dug Ouy
2 OF., OF. 0F. OF,
0 To1
> _ Oxo ox1 Aug Ouy (13)
aq 8q - 8Fu0 OF . 8Fu0 aFuO
0,1 0,1 Oxo Ox1 dug Ouq
OFw,  OFw, OFw  OFn
0% Ox1 Oug Ouy

The derivative of the force in Lagrangian coordinates with respect to Lagrangian coordinates is

OFxy 1.7 "My,
8x0 n 2q0’18x08x0q0’1

2 2 2
) a0, %%,1 a0, %82;52)(10,1 A0, af#a:;gg)flm
=3 QL%%J qg)r,1af+;;gz>%,1 qg)r,1af+;;ga>%,1
Wm0 et don A0 it dos
Mxo 9 and 21 are in similar forms as 2220, Also, the derivative of the force in Lagrangian

ox1 > 0% . x4 . . on
coordinate with respect to Eulerian coordinates is:

OFy, 1.1 0°My; .

8“0 N §q0’1 8X08U0 o1

OFx, OFx OF 5 L OF . o .
0. L and L are in similar forms as . Correspondingly, the derivative of the force in
ouq Oug Ouq Oug

Eulerian coordinates with respect to Lagrangian coordinates is:

OF,, 1. 0°My, .

8X0 - 501071 8u06x0 o1

F.

oF,, OF, oF, .
0 —*L and =% are in similar forms as
x4 Oxo 0%,

nates with respect to Eulerian coordinates is:

axOO . The derivative of the force in Eulerian coordi-

OF,, 1.1 0°Moy;.

a’u,o N §q0’1 8u08u0 do.1

OF,, OF, oF,, o OF,,
0, L and L are in similar forms as ——2.
Ouy dug Ouq dug
. ) o )
Specially, the entries in Dxg are:
0 0 0 0
00 0 0
9*Mj 1 1 g e
o = FAup |0 0 20 o s
aX(l)aX(l) 6 oxg Ox oxy ) Ox
0 0 0 0 Pw'w Pw'w
6x(1)6x(1) ax(1>ax(1)
0 0 0 0
0 o0 0 0
0 o0 0 0
82M01 1 2T 2 T
oL@~ glur |0 0 2.0 O
8X(2)3X(2) 6 x5 0% ox ) Ox
0 0 00 Pw'w Pw'w
Bx(2)6x(2) 3x(2)3x(2)
0 0 0 0
0 o0 0 0
0 0 0 0
0°M 1 1 g e
—ma.m —glur |0 0 22 OO
8X(3)6X(3) 6 ox 0% oxy 0%
0 0 0 0 8w w ) Pw'w
o (3)8 (3) o (3)8 (3)
Xo 0% Xo OXg
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where
Pw'w 2 Pw'w 2 and Pw'w 2
axél)axél) Au?’ 8x52)8x82) Au?’ 8x(()3)8x((33) Au?

The other components are

82Mo71 821\/[0,1

3x(()1)8x62) B 8x(()1)8x83) B

9*°M 1 9°My 1

6x62)8x81) B ax52>ax(()3) B

821\/[0’1 aQMO,l

(’“)xgg)ax(()l) - Bxég)Gxéz) a

Moreover, as

PwTw 2 Pw'

W 2 and ’w'w B 2
axVox(V Aur T oxPlox® Aur T gy Pax® Aw?

6‘2M071 B 82M071 B
('9x(()1) 8x(12) 8xél) 8x§3)
82M071 o (921\/[071 N
8x§)2) 6‘x§1) 5‘x82) 8x§3)
82M071 B 82M0,1 B
8x§)3) (‘3x§1) 8x(()3) 8x§2)
We can find that
82M0,1 _ 82M0’1
8Xél) Oxél) axél) 8X§1)
82M0,1 _ 82M071
8X82) BXBZ) 8x£)2) 8X§2>
82M071 _ 82M0,1
8Xé3) 8Xé3) axég) ax§3>
Therefore,
OFyx, _8FX0
8X0 o 8X1

OFy,  0Fy,  0Fy,
8X1 o 8X0 - aXO
To compute the derivatives of the forces in Lagrangian coordinates with respect to Eulerian coordi-

nates, we need to compute:

0°Mo .1 %Mo 1

Bxé1> dug Bxél) Ouq

821\/-[0,1 o 82M0,1 and azM()#l . (32].\/[011
= 2 = 2

8X08U0 8"25) ) duo 8X08U1 8"2(() ) o

o M0,1 o M0,1

ax((JB) dug axfﬁ) Ouy

R Y 9°Mo 1

8x§1)8u0 axgl)aul

82M0,1 o 8°My 1 and 52M0,1 . 62M011
= 2 = 2

0x10ug 3x2§ ) dug Ox10u1 3x2(1 ) o

a MO,l a MO,l

8x§3>8u0 8x(13)8u1
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2
M
Take one component - T as example:
6x0 a’ug
ow ow
0 0 —2 ax(D ax(D
0 0 __ow -9 ow
9°Mo 1 1 ox(” axSD
1 = ow _ ow" ow  w ow'w
3){8 )3u0 6 28x(1) 6x§)1) 2 ax(l) ax(l)
wOr 28w—r awjgw 28w w
M M M M
ox, ox, ox, ox,
2 2
0 0 2 O
8x% Aug ox 28u0
0 0 __ 0w -9 0w
EA Bxgl)auo 3x(1)3u0
+ 6 up o 9w 9w *w'w Pw ' w
x5V dug x5V dug x5V oug ery
62 T 82 02 T ) T
-5 i
Ix ' Oug 9% ' Oug 0% ' Oug Ox ’ Oug
in which
1
32w A('1)1,2 82W B (1) a?w - 8
(1) T T 9.2 I -V AP E) B 1
0xg  Oug 0 Oxy " Oug Oxy Oug s
1
*w A(v)ﬂ *w (1) 0w B 8
(1) o > 9..(2) Au? |0 g (3) 1
X e be
0 0 8u1 0 o 0 Oul 0 15; 0 8’11,1 YTE
1
0w Aéﬂ 0’w (1) 0w 8
(1) - > 5.(2) I -V AP E) B 1
0xy "’ Oug 0 0x1” Oug 0x;7” Oug s
1
0w Aéﬁ 0*w (1) 0w 8
(1) o T 9,(2) I Y B E)) o
0%y’ Oug 0 0x;7” Oug 0 0x3” Oug Ah?
OFx, OFx,

2 02 2 2
Moy 1 0°Mp1 0°Mp,; 9°My1
x00ug’ Oxp0uy’ 9x10up’ 0x10uy and then compute
"11 . The derivatives of the forces in Eulerain coordinates with respect to Lagrangian coordinates

It should be easy to compute g
are the transpose of the forces in Lagrangian coordinates with respect to Eulerian coordinates:

OF
ou
OF,, [(0Fg\  OF, (0F\'
6){0 N 8’&0 3x1 N 0uo
OF,, (0F\' OF,  [0F.\'
6X0 o aul 8x1 B 8u1
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To compute the derivatives of the forces in Eluerian coordinates with respect to Eulerian coordinates,

. Mo, 9°Mo1 9°Mo 8*My 1
we need to compute: Bundue® Duoduy’ Durduo and T TR For example,

0 0 25w g
2 _ ow ow
My, 1| o0 I -
- ow " ow ow_ w ow_ w
ow _28w—r ow'w 28w w
auo uo auo auo
ow ow
0 0 —QBa—uo Bgo
0 0 _ow  _gow
auo 8u0
- gp —92 ow " _ow’ 28wTw ow"w
Ou, Oug Oug ou
GWTO 90w " ow'w *
dug Oug dug Oug
3w 3w
0 0 - a’lLé) 6u0 - Buoguo
1 0 0 — w9 0w
- OupOuo ' Qugdug
+ GAup Pw’ 9w oO°w_w o) wgw
8u06u0 dugOou, Buoaug OupOug
9w . bt 9w 'w *w'w
auoauo auoauo auoauo 8uoau0
in which
0w w Pwlw w'w

= 2 =
OugOug Az OugOug Au?
Similarly, we can compute

0w _ o w Pw'w B _6WTW
Ougdur, Au?  Ougdu; Au?
0w _ w P*wlw B 6WTW
61618110 B Au? 8u18u0 n Au?
0*w _ w *w'w _ 6wTw

Ou10uq Au?  Ou 0wy A2

°M 9°M °M . S
0.1 o, and 7. The derivatives of the inertia with respect to nodes’ veloc-

to compute OugOui’ duidug’
ities are:

1949 1 Mo 1 - T OMp,1 990,1
2 5% 5 oo do,1 + 3401 Dxo o)

aFXo_ 19401 Mo 1 . + T 9Mo,1 990,1

%o | 2ox? 9% Q0.1 + 5340,1 s %
10491 Mg 1 T 6M01BQO1
2 9% <3> 0,1 + 340, 1 g 50
1‘9 1 OMo1 - T 0Mo,1 8do,1
2 5% 0 ~oxg Q0.1 T 3401 oxo oxD

aFXO_ l8018M01 + T 0Mp,1 9q9o,1

0%, | 20x® 9o 0.1+ 540,1 “oxs %2
19901 OMo,1 - T OMo,1 90,1
2 5% <3> oxe 0.1 + 3401 x, % ®
la 8M01 1-T 8M018q01
2 9% ox, Qo1 + 5%0,1 7o, ()

aFX1 _ | 194901 OMo ;s . + T OMg,1 9901

%y | 2% om o1 + 3401 “ox, %)
194901 OMo,1 T a1\/10130101
2 9% <3 %, Qo1 + 3401 1 ox®
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94T .
1999,1 OMpo,1 - 1T OMp.1 99o.1
2920 ox; 401 T 390,15, %)
8Fxl _ 19901 OMo,1 - + 1T O0Mo,1 99,1
F%, 2 9x® ox,; 40,1 T 30,1 5%, 2%
194p,1 OMo 1 - 1T OMp.1 99o.1
29x®  0xa qo,1 + 39,1 5%, ax®
. T .

anO - 1 aQQJ 6M0,1 . 1. T 61\/.[0,1 8q071

8110 o 5 8u0 8X0 do,1 + §q071 (’9x0 8’&0

OFy, 185}(11 OMy . n 1.+ OMy,1 9901
8120 2 8”0 0x1 Qo1 2q0’1 0%, 8u0

aFXo _ laq(—)r,l alv-[(),l . + 1 LT 8M0,1 (9(.10’1
9y 2 0uy  Oxg 0T 0150 T 0,

anl _ laq(—)r,l 8lv-[(),l . + 1 LT 8M071 6(']071
9y 2 0uy  Oxg 0T g%aTH T

B.5 STRETCHING

Stretch force resists length changes of segments (with the rest length ||w| = 1). Therefore, the
stretching energy is generated when the length changes. We compute the energy of segment [qg, 1],
in a similar way as (Loock et al., 2001} |Spillmann & Teschner, [2007) :

1
Vo= §Y7rR2Au(||w|| —1)? (14)

where Y is yarn’s elastic modulus and R is yarns’ radius. The stretching forces at the two nodes are:

oV,
Fop = —Foy = =5 2 = —VrR2(|w] = 1)do, (15)
X1
AR 1
Fu1 = _Fuo - a’u,l - §Y7TR2(”W”2 - 1) (16)
where dg ; is the unit vector points from g to g1, dg,;1 = 7‘@1 :ig T The derivatives of the stretching
forces with respect to nodes’ positions are:
OFy, OF«, O0F«, OF«, 5, 1 1
8x1 c’)xo 8x0 8x1 m (ll 0.1 Au ) ( )
OF,, OF,  OF,  0F, o W]
ouy Oug Oug ouq T Au (18)
OFy, 0OFy,  OFy, OFy, o [wl?
8U1 auo 8u0 87-141 i Au 01 ( )
3Fu1 _ aFuO — aFul — 76F’u0 — Y,]TR2 WT (20)

0% 0% 0% 0x1 Au

where Pgy = I3 —do1dg
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B.6 BENDING

We adopt the discrete differential geometry method (Sullivan, |2008)) to define the curvature at the
common crossing node of two adjacent segments. Bending energy is defined as the integration of
bending energy density along the two segments. The bending energy on the two connected warp
segments [q2, qo] and [qo, q1] is

92

U1 — U2

Va0, = BTR? 21)

where B is yarn bending modulus and § = arcsin(—d& 1do,2) is the angle between the two seg-
ments. Its derivatives with respective to the node position are the bending forces:

2BT R0
Fy,=——F—————Po1d 22
! ll(ul — UQ) sin 0,170, ( )
(2BTR%0)
Fy,=—————"""—Pp.od 23
2 lo(uy — ug)sin 0,270,1 (23)
Fxo = _(FX1 + FXz) 24)
2BmR?6?
F, =-F,=—— 25
1 2 (ul _ U2)2 ( )
F,, =0 (26)
The derivatives of the bending forces with respected to the nodes’ position are
OFy, 2BTR? cosf
= 0 Po.1dood] , + ——Po.1dg2dg P oP
9%, l%(ul—uo)sin0(< 0,1do,2 01+ 2ot 01do2dos 0,1 +costPo 1
+ d0,1d8—72P0,1> - sir10P0’1d0’2dE)r’2P0’1> (27)
OF, 2BTR? cosf

= 0 Pyodp1dd , + ——Pgodg1d] P 0P
9% l%(ul—uo)sinO( ( 0,2do,1 0,2+ 2o 02d0,1d0, 0,2 +costPq o

OFx,
8x2

(34)

+ do,zdgilP(),2> - mHPo,2d0,1dE)r71P0,2> (28)
OF, 2BmR? cos 6 1 T
= — Po1———P —P P 2
Ox2a lali(ug — ug) sinf <6< 01 G2 1do.2dy 1) ind 0.1do,2dg 1 JPo2 (29)
0Fx, B 2B7R? cosf 1 T
o1~ L — up)sing (9 <P0,2 2 9P0 2do,1dg 2) n9P0,2d0,1d0,2 Po1 (30)
anl 8F‘xl anl
_ 31
8X0 ( 6X1 * aXQ ( )
OFy, OFx, 0Fy,
_ 32
6Xo ( 8x1 * 8X2 ( )
OF, OFx, 0Fy,
_ 33
6x1 ( 8x1 + 8x1 ( )
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anO o anl aFXQ
8x0 N ( 8x0 + 8x0 ) (35)
oF, _ OF,, OF, _0F,  2BrtR%? 6
Ouy  Ous  Ouz  Oup  (ug —ug)?
OF« OF« 2BTR?6
1 I 1 — P d
ouq Ous I1(u; —ug)?siné 0,1770,2 37
OF 15) 2B7wR?0
L - P.d
ouq Oua lo(u; —ug)?siné 0,2770,1 (38)
OF 4 0Fy OF« OF
0 — 0 — 1 2 39
6U1 8u2 <6U1 * 6u1 ) ( )
OF., OF,, 2BmR?0 T
ox;  Ox; I3 (ug — ug)? si11(9do’2PO’1 (40)
OF., OF,, 2B7R?0 T
Oxs  Oxy lo(ug — ug)? sin@do’lPO’2 “h
OF, OF,, OF, OF,
T 2 _ 1 1 42
8X() on <8x1 + 8xz ) ( )

B.7 SLIDE FRICTION

The slide friction at a crossing node qq along warp u direction is

krou — K(6u)uF, keou + K(6u)uF, .
Fsiiqge = —( ! 2( n K(uF, —F,)+ ! 2( L ) —dylg (43)
The derivative of friction force with respect to node position in Eulerian coordinate is
Folide kf — ((1 — tanh® Su)uF, + tanh dup 2L
O0Fsiid __ f (( )U n ,uauo) tanh (/an B Fu)
8’&0 2
kféu — tanh dupFy, 9 JF, oF,
— 1 —tanh” (uF, — F,)) | =— —
5 (1 — tanh” (u N 9 ™ " ug

ks + (1 — tanh? du)puF), + tanh dupu 2=
S ): o (44)

The derivative of friction force with respect to node velocity in Eulerian coordinate is

O0Fsiige  kyéu — tanh dupk, 9 oF,
= 1 — tanh*(uF, — F,)) —
Dig 5 (1 — tanh(u ) Ditg

—dy (45)

B.8 SHEARING

The potential energy over the segments [qo, q1] and [qg, q3] caused by shearing deformation is

1 _
Vios = 5ksL(¢ = )* (46)
1 ’ > q§5(¢ B ¢l) )
ks = ~(F, + )SR*| (1+9°) + (1 -9t h( ki _
y(nr ) <( T+ = a6 - 9 T 707
The shear forces at those crossing nodes are
_ Wios _ 10ks g0 kL(6—0)
Fx, =— %, 2 ale(¢ })” + [ sing Po,1do3 (47)
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_ Wiy _ 10k oo ksL(@—9)
Fy, = oxs 2 8X3L(¢ ?)” + lssin ¢ Po,3do,1 (48)
FXO = _(Fxl + Fxs) (49)
For the sake of simplicity, we define:
_ P° (¢ — P1)
)= o= a0 =) + 57
f(¢) = tanh g(¢)
The numerator and denominator of g(¢) are
gnum(¢) = Q_SS (¢ - QSZ)
and - ~
9aen(9) = (6(¢ — &1)(¢ — 9))? + §'0”
Then, we have:
Ok, 1 e v Oy c 9g(¢)
o = 5+ DS (e 2 e 2 f0) 4 (1= 291 - (0 )
ks 1 eq O w1 O . 9]
e 4 s (o 2L e 2 f0) 4 (1091 - (0 A )
where
Oy _ L 0096 O L ¢0¢
(9X1 n R 2 8x1 ’ 8X3 B R 2 8X3 ’
8g(¢) _ 597:5;:,;((25) gden(¢) - gnum(¢) 89?;;1((25)
0% 93%@5) |
89((;5) _ ag%,:;@gden(d)) - gnum(gzs)ag%ei;é((ﬁ)
0x3 gﬁen(qb)
The terms 897:‘;m(¢) , ag:i;n((b) , 8g'rgun(¢) , and 894(19@n(¢’) are:
agnum((b) _ &5% _ _ 75 P0,1d0,3
0x1 7 oxy Iy sin ¢
agnum(¢) - _5% _ 75 P0,3d0,1
3X3 N 8X3 - 13 sin(;S
agd671(¢) o T % o 7 % 7 . %
200en(E) — 500 — 006~ 80) (e (6 = 9)(6 = 6) + 6 96— 8) + 906 — 1)
agden(¢) _ Iy a(¢) I 8(25 I 8(}5
= 20006~ (6~ ) (Gl0 06~ 9)+ 6 5 (6 - 8)+ 600~ ) 1 )

8X3
The derivatives of the shear forces with respect to the nodes’ positions in Lagrangian coordinate are:
OFy, 1 0%k, 9 - Oks 0¢ 0 kL(¢p— o)
—— = L(op — —L(¢p—¢p)—7—+ —————Py1d
((b ¢) (¢ ¢) axl axl axl ll Sin ¢ 0,140,3

3x1 _5 8X1X1

OFy, 1 0%k, ., —Oks 09 0 k,L(¢— )
L((b - ¢) - L(¢ - ¢) 3X3 5‘7)(3 + TX:SWPO,SCIOJ

8X3 B _58X3X3
OFy, 1 0%k, . — Oks 00 -, 0¢ Ok, 0 kL(¢p— o)
0x3 __§8X1X3L(¢_¢) _L(¢_¢)8X1 573(3_L( - )37X15X3+37X3 l1sin¢ Podos
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O, _ 1 Ok Ok, 00 06 Ok, O koL(6— )
Ox1 2 Ox3x; L(d) ¢) (¢ d)) Ox3 8X1 gb)aix?, ox1 +37X1WP073d0’1
where
0 ksL(¢— 9) ksL - cos¢
o haing Porden = g (67 9)( ~ Pordoaddy + 5T Po1dnad] P
1
—cospPo1 — d071d(—)|:3P0,1) - simj)PO’ldO’Sd(I?’PO’l)

0 ksL(¢ B (E)

Ox3 I3sing

1
—cospPo 3 — do,Bd(LPo,:s) - Sin(bPO,3do,1d(I1P0,3>

cos ¢

koL _
Posdg = Tend ((¢ _ ¢) ( Py sdo1d] + ¢P0 sdo1d] Pos

9 ksL(¢ — 9) kL cos¢>
ey e Pordns = s ((0-0) (g PordosddaPos + PosPo;

— Py 1dosd] Py -
sin ¢ 0,1d0,3d¢ 1 0,3)

0 kiL(¢— o) ksL cosqS
EWPOB&M = Iilasing ((b ¢> ¢Po 3dp 1do 3Po1 +PosPon

1
- Pysdgqd] P
sin ¢ 0,3d0,1dq 3 0,1>

Moreover, the other terms are

OFy, <3FX1 anl) OF s, (an3 an3>
= - + ) - — +

8x0 8x1 8x;3

OFy, (anl

ang) OF ., (6FX1 OF,, )
+ s - — +
8x1

5‘x1 8x1

OFx, _ (anl . an3>

8X0

B.9 YARN-TO-YARN COLLISION

1
Voi = 5kcLReLU(d — Au)? (50)
The yarn-to-yarn collision forces are:
Vo1
Fy=—"F"=kL(Au—d 1
0= "o (Au—d) (51)
A%
Fy, = - 8;;1 — —k L(Au — d) (52)

The derivatives of the forces with respect to the nodes’ position in Eulerian coordiates:

OF, oF, OF, oF,
0 _ 1 0o _ _ L — kL
Buo 8”1 811,1 8u0 k(‘ (53)
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Figure 11: Treat a square hold in 4 segments as two triangles.

B.10 GRAVITY

We define a gravitational energy which is computed segment-wise. To a warp segment [qg, q1], it
gravitational energy is defined as

T X0 + X1

Vo1 = pAug 5 (54)
where g € Rj is the gravity of earth which is approximately set to (0,0,9.8). The gravity at the
nodes are v .

Fry = — 2l = —ZpgA 55

0 axo ng u ( )

Vo1 1
Fy, = ——— = ——pgA 56
1 axl 2pg u ( )

Vo1 1 <
F,, =- === 57
0 dug  2"8 (x1 +x0) (57)
F., =— == 58
: s 5P8 (X1 +X0) (58)

The derivative of the force with respect to the nodes’ position are:

OFy 1 OF, 1

= — — 5
Do 5P8 By 58 (59)

OFx, 1 OF, 1

S == 60
Do P8 Buy 58 (60)
oF,, 1 + OF, 1 -+

L Yo — _ 61

%, L %0 P8 (61)
OF,, + OF,, 1+

_z == 62

%, L %0 58 (62)

B.11 WIND FORCE

To apply wind force to the surface of the cloth, we need to compute an area-based force. Every
square composed of four segments can be split into two triangles when computing wind force(
shown in[TT). The wind force has three properties affecting its influence on the cloth: velocity v,
density p,,, and drag d,,. v, = (0,5,0), density p,, = 2, and drag d,, = 0.5. The wind force
imposed on a triangle face [qo, q1, qs] is:

F, = pwalvp|vpny + dy,vy (63)
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where a is face area, ny is face normal, and

X + X1 + X3
Up =Ny | Vo — — )
_ Xo+ X1 + X3
v = — 5 - Uphy.
The forces on the nodes are 1
Fxo = Fx1 = Fx3 = ng (64)

B.12 COLLISION RESPONSE

We adopt a collision handling method originally designed for triangular meshes stored in bounding
volume hierarchy (Tang et al.| 2010) where continuous collision detection (CCD) can detect edge-
edge and vertex-face collision. The detected vertices, edges, and faces are grouped into non-rigid
impact zones (Harmon et al.,2008) for computing collision response. We treat collision response as
a constrained optimization problem to prevent penetrations (Liang et al.,[2019):

. 1
minimize i(xcom —x) "W (Xcoui — x)

subjectto GX.o; +h <0

where W is a weight matrix, x is the Lagrangian part of q, X.;;; is the updated x where no collision
can be detected. GG and h are constraint parameters. We assume neither self-collision nor cloth-object
collision can generate considerable yarn-sliding motions, so we exclude the Eulerian terms.

C DERIVATIVES OF THE SIMULATOR

Now we have a fully differentiable cloth simulator. We then compute the loss £ that indicates the
difference between the predicted and ground truth cloth states. The loss gradients with respect to the
parameters % can help learn the right physics parameters via back-propagation. For simplicity, we
use A¢ = b to represent Equation[3] The differential of Aq = b is (Magnus & Neudecker, [2019):

Adg =db — dAq (65)

We can form the Jacobians of ¢ with respect to A or b with Equation [65] For example, to compute

the g—g, we need to set dA = I and db = 0, then solve the equation and the result is g—g. As
pointed out by |[Amos & Kolter] (2017), it is unnecessary to explicitly compute these Jacobians in

back-propagation. We want to compute the product of the vector passed from back-propagation, 2=

> 9q
and the Jacobians of ¢, i.e.%g—g and %g—g. Assume A € R3%3, ¢ € R3, and b € R3, then

o941 941 dau T

. ob ob ob

0L _0LOq _ (8 2 #%) bas 04 oas 66)
- : - Bl Bl oq: ob ob ob
ab aq ab q1 q2 qs3 aqé 3(':1§ 8(':12
8b1 abg abg

[T _ (A 1abi+ (A )by + (A7 )iabs
8b1 8b1
and similarly for gg" , Equation can be represented as:

.
(A1 (A ™12 (A7 or

oL oL oL 1 -1 -1 T
%a b4 o4 ) [(ADaa (AThaa (AThas | | =(ATHTSZ (6]
( wome . ) A Y31 (A3 (A7l)ss d

After computing g—ﬁ, we need to compute g—ﬁ. The b in Equation |65(can be set to 0 because it is

irrelevant when computing g—ﬁ. Then we have

Adg = —dAgq (68)

26



Published as a conference paper at ICLR 2022

The derivative of ¢ with respect to A ;, the entry in the ith row and jth column of the matrix A, is

. 0
oq . o
OA;; A < (();l J) ©

According to chain rule,

oL oL oq _ocT . (9N _ rocy .
O0A,; ; _37('18Ai7j ~ b AA ( (?J = b i% (70)

The more general form is
oL oL .+

oA~ obd D
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