
Published as a conference paper at ICLR 2022

FINE-GRAINED DIFFERENTIABLE PHYSICS: A
YARN- LEVEL MODEL FOR FABRICS
–SUPPLEMENTARY MATERIAL–

Deshan Gong1, Zhanxing Zhu2,3, Andrew J. Bulpitt1 and He Wang1∗
1School of Computing, University of Leeds
2School of Informatics, University of Edinburgh
3Peking University
{scdg, A.J.Bulpitt, h.e.wang}@leeds.ac.uk, zhanxing.zhu@pku.edu.cn

A APPENDIX

All simulations are available in the accompanied videos:https://youtu.be/pCB8AD9R4Dk

A.1 TRAINING DETAILS

Our ground-truth data is simulated with a piece of cloth hanging at its two corners, blown by a
wind with a constant magnitude (Figure 1). The simulation is conducted with a time step h = 0.001.

Figure 1: A piece of square cloth blown by constant magnitude wind.

In all experiments, we use Stochastic Gradient Descent and run 70 epochs for training, except in
XXX-(1,3) where we trained our model for 90 epochs. The training is conducted on a machine with
Intel(R) Xeon(R) Silver 4216 CPU, 187G memory, NVIDIA TITAN RTX graphics card on Linux.
The main factors of training speed are the cloth size and the training data size. In our experiments,

∗corresponding author

1

 https://youtu.be/pCB8AD9R4Dk

Published as a conference paper at ICLR 2022

Figure 2: The visual learning results of the differentiable sheet-level simulator (Liang et al., 2019)
and our model learns on the data generate by (Narain et al., 2012)

the training takes approximately 68, 133, and 328 seconds per epoch on a 17×17 cloth with training
data containing 5, 10, and 25 frames respectively. The training per epoch takes approximately 13,
106, 328, and 1310 seconds with 25 training frames, on a 5× 5, 10× 10, 17× 17, and 25× 25 cloth
respectively.

Additional experiments. Further, we also conduct comparisons on the data simulated under the
same settings by a sheet-level simulator (Narain et al., 2012), which tends to be stiffer. This is to
compare the performance when the ground-truth does not contain the same level of subtle dynamics.
Since there is no Eulerian coordinates in the sheet-level simulation, we only use Lagragian coordi-
nates in the loss function. The visual comparison is in Figure 2 and the prediction errors are shown
in Table 1. Our model can learn comparable results on 5 frames, and better results on 10 and 25
frames. The slightly worse 5-frame result is mainly because the first 5 frames contain small dynam-
ics and therefore is insufficient for our model to learn the overall stiffness of the cloth. However,
when 10 and 25 frames are given, the learning is significantly improved and even outperforms Liang
et al. (2019). Also, since there is no woven pattern information in the ground truth, we examine our
model across the three woven patterns, all giving more accurate predictions. Overall, the compar-
isons show our model has higher prediction accuracy regardless the granularity of the underlying
physics model.

Parameters. We induce prior knowledge to limit the parameter learning within valid ranges, so that
the multi-solution problem, also met by existing methods, can be mitigated. All cloths we used are
made of two types of yarns. We use the same range, d ∈ [0.001, 0.003], b ∈ [0.00005, 0.00018],
S ∈ [0, 1200] and µ ∈ [0, 1.0] for both yarns, where d, b, S and µ are the density, bending modulus,
shear modulus and friction coefficient respectively. We use s1 ∈ [0, 800000] and s2 ∈ [0, 300000]
for the stretching for both yarns. For other coefficients, we use kf = 1000 and df = 1000 in
the friction force, c = 3 and σ = 0.6 in the shear force, kc = 1 in yarn-to-yarn collision in all
experiments.

When training our model on the data generated by a sheet-level cloth simulator (Narain et al., 2012),
we use a pure woven cloth made of one type of yarn. This is because it is not possible to specify
multiple yarn behaviors in a sheet simulator, so we use a pure yarn cloth for generating the ground
truth. The cloth parameters are from the ‘white-dots-on-black’ cloth in Wang et al. (2011) which
is 100 percent polyester. To learn from it, we employ all three woven patterns in our model as
there is no prior knowledge about the woven pattern of the ‘white-dots-on-black’ cloth. We also fix
the friction coefficient µ = 0.5 and impose the ranges on parameters shown in Table 5. Finally,
we would like to point it out in real-world applications, information such as woven patterns and
yarn materials are easily available so that the ranges of parameter values such as density, bending
and stretching can be obtained. Although the knowledge of shearing and friction cannot be easily
acquired, the ranges we use are general enough.

Note that in all experiments, the prior knowledge we induce is only a weak prior, i.e. using the same
general ranges for multiple experiments across different woven patterns, so that the learning success
still lies in our model’s ability to infer the right parameter values.

2

Published as a conference paper at ICLR 2022

Table 1: Testing errors (×10−6) of our model and (Liang et al., 2019) trained on 5, 10 and 25 frames
generated by (Narain et al., 2012).

fabrics/frames 5 10 25

Plain-(1,2) 6.702 1.167 0.496
Satin-(1,2) 7.972 1.225 0.624
Twill-(1,2) 8.218 1.772 0.776

(Liang et al., 2019) 4.098 4.752 1.716

Table 2: Learning cloth parameters with different initial values (part one).
Size Shear S Friction µ

5× 5 1011.79± 6.12 0.39± 0.08
10× 10 983.41± 6.84 0.44± 0.03
17× 17 962.29± 8.99 0.47± 0.06

Parameter Initialization. The material estimation results are affected by initialization. To test if
our model can learn stably, we report the mean and the standard deviation of multiple experiments
with different parameter initial values. The initial values of the physical parameters are randomly
selected from a range of ±10% of the average of the two yarns. For instance, in learning the stretch
in Plain-(1,2), we only know the ranges of the stretching parameters Y1 and Y2 of Yarn1 and Yarn2
but not the exact values. Therefore, when initializing Y1 and Y2, we randomly sample values
from a range of ±10% of the mean stretch stiffness of the Yarn1 and Yarn2, [mean(Y1, Y2) ×
0.9,mean(Y1, Y2) × 1.1] for initialization. The results of the 5 repetitions are shown Table 2 and
Table 3. Given that the standard deviations are small, it shows that our model can stably learn
reasonable parameter values.

Different Force Magnitude. To evaluate the influence of the wind force, we conduct experiments
using 5N, 10N, and 15N wind force to blow a piece of 17 × 17 Plain-(1,2) cloth. The learning
result is shown in the Table 4 which demonstrate wind force strength has ignorable influence on the
learned parameters.

Table 4: Learning cloth physical parameters with different wind force.
Wind Shear S Friction µ Yarn Density Stretch Bend

5 947 0.402 1 1.969× 10−3 505421 1.323× 10−4

2 2.440× 10−3 171304 1.034× 10−4

10 942 0.520 1 2.026× 10−3 494109 1.311× 10−4

2 2.441× 10−3 168267 1.049× 10−4

15 934 0.586 1 2.029× 10−3 487918 1.341× 10−4

2 2.437× 10−3 167601 1.066× 10−4

Table 3: Learning cloth parameters with different initial values (part two).
Size Yarn Density Stretch Bend

5× 5
1 1.98× 10−3±3.00× 10−5 498595± 8862 1.37× 10−4±1.41× 10−6

2 2.45× 10−3±4.81× 10−5 186710± 3776 1.11× 10−4±4.78× 10−6

10× 10
1 2.03× 10−3±5.04× 10−5 542375± 7099 1.44× 10−4±2.08× 10−6

2 2.47× 10−3±4.73× 10−5 180032± 1848 1.05× 10−4±8.18× 10−6

17× 17
1 2.00× 10−3±6.66× 10−5 519993± 3175 1.43× 10−4±5.55× 10−6

2 2.45× 10−3±5.04× 10−5 176232± 1514 1.19× 10−4±6.50× 10−6

3

Published as a conference paper at ICLR 2022

Figure 3: Three pieces of cloth woven in different patterns show different dynamics.

Table 5: Cloth parameters’ initial values and ranges when ground-truth generated by sheet-level
cloth simulator(Narain et al., 2012)

Name Density(kg/m) Stretch(N/m) Bend(N/m) Shear(N/m)

Value 0.004 1e6 0.0001 20000
Upper limit 0.008 2e6 0.0002 30000
Lower limit 0.001 0 0 0

Influence of Woven Patterns. The investigation on different woven patterns is crucial as they
affect the cloth dynamics significantly. To show this, we conducted simulations of three pieces
of cloths with the same parameters, but with different woven patterns. We shear three pieces of
cloth then release them. The Figure 3 shows three pieces of cloth in the initial state and 10 steps
later. There are obvious differences after merely 10 steps. This demonstrates woven patterns have
considerable influences on the overall mechanical properties.

Table 6: Testing errors (×10−6) of our model (left) and (Liang et al., 2019) (right) trained on 5, 10
and 25 frames. Ground-truth generated by a yarn-level simulator (Cirio et al., 2014).

fabrics/frames 5 10 25 5 10 25

Plain-(1,2) 1.152× 10−4 1.068× 10−4 3.962× 10−5 1.462 0.7375 0.4124
Plain-(1,3) 1.516× 10−4 1.268× 10−4 3.555× 10−5 1.608 0.7906 0.4567
Plain-(2,3) 5.233× 10−4 1.291× 10−4 2.117× 10−5 1.952 0.5999 0.2294
Satin-(1,2) 1.134× 10−4 1.070× 10−4 4.285× 10−5 1.466 0.7405 0.4146
Satin-(1,3) 1.551× 10−4 1.355× 10−4 4.362× 10−5 1.624 0.8004 0.4445
Satin-(2,3) 6.254× 10−4 1.355× 10−4 4.413× 10−5 2.128 0.5949 0.2265
Twill-(1,2) 1.130× 10−4 1.068× 10−4 4.208× 10−5 1.472 0.7451 0.4160
Twill-(1,3) 1.550× 10−4 1.349× 10−4 4.200× 10−5 1.633 0.8059 0.4577
Twill-(2,3) 6.470× 10−4 1.352× 10−4 4.938× 10−5 2.181 0.5994 0.2278

4

Published as a conference paper at ICLR 2022

Figure 4: The visual results of our model learning on different cloth sizes. From left to right: 5× 5,
10× 10, 17× 17 and 25× 25.

Table 7: Learned parameters by Bayesian Optimization on different kinds of fabrics.
Frames Density Stretch Bend Density Stretch Bend

5 2.483× 10−3 647270 0.636× 10−4 2.125× 10−3 270641 1.576× 10−4

10 2.176× 10−3 577235 0.798× 10−4 2.264× 10−3 217144 1.542× 10−4

25 2.328× 10−3 537434 1.687× 10−4 2.097× 10−3 249896 0.976× 10−4

5 2.202× 10−3 605289 1.403× 10−4 2.349× 10−3 272153 0.868× 10−4

10 1.669× 10−3 257877 1.582× 10−4 2.635× 10−3 268451 0.529× 10−4

25 1.454× 10−3 315715 1.213× 10−4 2.950× 10−3 23702 1.656× 10−4

5 2.514× 10−3 250093 1.611× 10−4 2.363× 10−3 20371 0.985× 10−4

10 2.964× 10−3 164021 0.524× 10−4 2.255× 10−3 49648 1.225× 10−4

25 2.414× 10−3 73734 0.890× 10−4 2.436× 10−3 267452 1.113× 10−4

A.2 VISUAL RESULTS

Here we show some snapshots of our model on cloths of different sizes in Figure 4. As expected,
small cloths tend to show low dynamics and appear to be more ‘rigid’. Bigger cloths tend to have
more subtle dynamics such as wrinkles, even under the same external impact, i.e. gravity and wind
with a constant magnitude. More visual results can be found in the supplementary video.

A.3 YARN-LEVEL VERSUS SHEET-LEVEL

A full comparison between our model and (Liang et al., 2019) is shown in Table 6, where a yarn-
level simulator (Cirio et al., 2016) is used to generate the ground-truth. We exhaustively conduct
comparisons using all combinations of yarns and woven patterns. We can see that our model is con-
sistently better than (Liang et al., 2019) by large margins. Visually, we show snapshots in Figure 5.
The sheet model results are in general more rigid and do not contain as much subtle dynamics as ours
do, across different training frame numbers. Since 5, 10 and 25 frames contain different amounts of
information on (subtle) motion dynamics, Figure 5 shows that there is a lack of granularity in the
sheet model when capturing subtle dynamics compared with ours.

Further, we also show the plots on the data efficiency in Figure 6, under all 9 yarn-woven pattern
combinations, across different amounts of training data. In all settings, our data efficiency is sig-
nificantly higher. By extrapolation, it would take a large number of extra training frames for the
sheet-level model to achieve similar accuracy. More comparisons are also available in the supple-
mentary video.

A.4 OUR MODEL VERSUS BAYESIAN OPTIMIZATION

Table 8 shows the testing errors of the Bayesian Optimization. Although the MSE errors are small,
the learned parameters are far from the ground truth (shown in the Table 7), which is somewhat
surprising. After examining the results, we find that Bayesian Optimization suffers from the multi-
solution problem so that it merely gives a set of working parameters instead of the true parameters.
In other words, although the prediction error is low, physically speaking, the learned parameters
are far from the true materials. This happens even when we use the same parameter ranges as in

5

Published as a conference paper at ICLR 2022

Figure 5: The visual results of Plain-(1, 2) ground-truth, our model, and sheet-level model trained
with different number of frames. The snapshots are the 133th frame of the simulations after learning.

6

Published as a conference paper at ICLR 2022

Figure 6: Prediction error logarithm vs training data.

our model. This is an intrinsic property of Bayesian optimization which is based on sampling, and
therefore difficult to avoid during learning.

Table 8: Testing error (×10−6) of Bayesian Optimization with yarn-level simulator (Cirio et al.,
2016) learned on 5, 10, and 25 frames.

Fabrics/Frames 5 10 25

Plain-(1,2) 0.512 0.176 0.109
Plain-(1,3) 1.280 1.269 0.738
Plain-(2,3) 28.19 19.22 18.16

A.5 CONTROL EXPERIMENT SETTING

The control experiment scenario is illustrated in the Figure 7.

7

Published as a conference paper at ICLR 2022

Figure 7: A square cloth is thrown from the table into the black box by four forces applied on the
four corners of the cloth.

A.6 SIGNIFICANT ERROR IN VISUAL

We discussed the significance of the small error in physics-based simulation. Figure 8 and Figure
9 visually prove our explanations in the main paper: the error accumulates over time and increases
with increasing cloth size.

8

Published as a conference paper at ICLR 2022

Figure 8: Visual differences in long simulations. The grey cloth is ground truth. The blue cloth and
the red cloth are simulated with the parameters learned by our model and BO. The blue cloth shows
smaller visual differences than the red one.

B DIFFERENTIABLE YARN-LEVEL CLOTH SIMULATOR

In this section, we give the full details of our model and mathematical derivation.

B.1 INTRO YARN FORCE MODELS

Figure 10: Blue and red rods denote
warps and wefts respectively. qs are the
crossing nodes.

Representing the cloth as in Figure 10, we employ an EoL
discretization (Sueda et al., 2011) and denote the spatial
positions of crossing nodes in Lagrangian coordinates and
represent the contact sliding movement in Eulerian coor-
dinates, qi ≡ (xi, ui, vi) where xi ∈ R3 implies crossing
node i’s spatial position and (ui, vi) the node’s position in
the material frame. The two end points of yarns are taken
as special crossing nodes as they do not contact with other
yarns and therefore have no Eulerian terms, i.e. qj ≡ xi.
Therefore, on a r(rows) × c(columns) cloth, there are
(r − 2) × (c − 2) crossing nodes with five Degrees of
Freedom (DoFs) and 2r + 2c − 4 crossing nodes with
three DoFs. Every two neighboring crossing nodes on the same warp/weft delimit a warp/weft seg-
ment. A warp segment whose two end points are q0 and q1 is denoted as [q0,q1] and its position is

9

Published as a conference paper at ICLR 2022

Figure 9: Visual differences on larger cloths and long simulation (500 steps). The grey cloth is
ground truth. The blue cloth and the red cloth are simulated with the parameters learned by our
model and BO. The blue cloth shows smaller differences than the red one.

(x0,x1, u0, u1) (shown in 10). This way, a woven cloth is discretized into crossing nodes and seg-
ments which are the primitive units of the simulated cloth. Every segment is assumed to be straight
so that linear interpolation can be employed on the segment, e.g. the spatial position of a point in
the segment [q0,q1] is x(u) = u−u0

∆u x0 +
u1−u
∆u x1, where u is the point’s position in Eulerian coor-

10

Published as a conference paper at ICLR 2022

dinates and ∆u = u1 − u0 is the length of the segment. We use L to denote the distances between
neighbor yarns and R to denote the yarn radius.

B.2 SYSTEM EQUATION FOR SIMULATION

A cloth’s state at time t, S(t) = {Q(t), Q̇(t)}, includes all its crossing nodes’ positions Q = {qi|i =
1, 2, . . . , N} and velocities Q̇ = {q̇i|i = 1, 2, . . . , N}, where N is the number of crossing nodes.
Knowing the states, then we can calculate the internal and external forces:

F = Mq̈ =
∂T

∂q
− ∂V

∂q
− Ṁq̇ (1)

where q, q̇, and q̈ are the nodes general position, velocity, and acceleration respectively, with a
dimension l = 3× r× c+2× (r− 2)× (c− 2). M ∈ Rl×l is the general mass matrix. The model
assumes mass is distributed homogeneously in one segment, so the mass matrix of a warp segment
[q0,q1] is

M0,1 =
1

6
∆uρ

 2I3 I3 −2w −w
I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w
−w⊤ −2w⊤ w⊤w 2w⊤w

 (2)

where w = x1−x0

∆u , and ρ is yarn density. T and V are the kinetic and potential energy respectively.
As the partial derivative of energy with respect to position is force, the right hand terms in Equation
1 are inertia, conservative forces, and part of the time derivative of Mq̇. Non-conservative forces
are added to the right side of the equation.

We employ implicit Euler for stability in large steps (Baraff & Witkin, 1998). Given the accel-
eration q̈ = M−1F and the change of speed over time step h, ∆q̇ can be approximated by
∆q̇ = hM−1F(t+1), where F(t+1) is the force at t + 1 that can be approximated by first-order

Taylor expansion F(t+1) = F(t) +
∂F(t)

∂q ∆q +
∂F(t)

∂q̇ ∆q̇, where F(t) is the force at t which can be
computed by Equation 1. Then node positions at t+ 1 are q(t+1) = q(t) + h(q̇(t) +∆q̇). Finally,
we have the system equation for simulation:(

M−
∂F(t)

∂q
h2 −

∂F(t)

∂q̇
h

)
q̇(t+1) = h

(
F(t) −

∂F(t)

∂q̇

)
+Mq̇(t) (3)

To solve Equation 3, we explain every term including the general mass matrix M and every force
contained in F(t) below.

B.3 GENERAL MASS MATRIX

The mass matrix of a warp segment [q0,q1] is

M0,1 =
1

6
∆uρ

 2I3 I3 −2w −w
I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w
−w⊤ −2w⊤ w⊤w 2w⊤w

 (4)

where ∆u = u1 − u0 is the distance between the two nodes in Eulerian coordinates, w = x1−x0

∆u ,
and ρ is yarn’s linear density. The partial derivatives of general mass matrix with respect to nodes’
position is (

∂M0,1

∂x0

∂M0,1

∂x1

∂M0,1

∂u0

∂M0,1

∂u1

)⊤
(5)

As x0 and x1 are vectors:

∂M0,1

∂x0
=


∂M0,1

∂x
(1)
0

∂M0,1

∂x
(2)
0

∂M0,1

∂x
(3)
0

 and
∂M0,1

∂x1
=


∂M0,1

∂x
(1)
1

∂M0,1

∂x
(2)
1

∂M0,1

∂x
(3)
1

 (6)

11

Published as a conference paper at ICLR 2022

The component ∂M0,1

∂x
(1)
0

is

∂M0,1

∂x
(1)
0

=
1

6
∆uρ


0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0


and ∂M0,1

∂x
(2)
0

, ∂M0,1

∂x
(3)
0

, ∂M0,1

∂x
(1)
1

, ∂M0,1

∂x
(2)
1

and ∂M0,1

∂x
(3)
1

are in a similar form as ∂M0,1

∂x
(1)
0

. In each term, we have:

∂w

∂x
(1)
0

= −

 1
∆u
0
0

 ,
∂w

∂x
(2)
0

= −

 0
1

∆u
0

 , and
∂w

∂x
(3)
0

= −

 0
0
1

∆u


∂w

∂x
(1)
1

=

 1
∆u
0
0

 ,
∂w

∂x
(2)
1

=

 0
1

∆u
0

 , and
∂w

∂x
(3)
1

=

 0
0
1

∆u


∂w⊤w

∂x
(1)
0

=
∂w⊤

∂x
(1)
0

w +w⊤ ∂w

∂x
(1)
0

= −2
x
(1)
1 − x

(1)
0

∆u2

where ∂w⊤w

∂x
(2)
0

, ∂w⊤w

∂x
(3)
0

, ∂w⊤w

∂x
(1)
1

, ∂w⊤w

∂x
(2)
1

and ∂w⊤w

∂x
(3)
1

have a similar form as ∂w⊤w

∂x
(1)
0

.

Unsurprisingly, we can find that

∂M0,1

∂x
(1)
0

= −∂M0,1

∂x
(1)
1

,
∂M0,1

∂x
(2)
0

= −∂M0,1

∂x
(2)
1

and
∂M0,1

∂x
(3)
0

= −∂M0,1

∂x
(3)
1

After deriving the partial derivatives of M0,1 with respect to the Lagrangian coordinates, we give its
partial derivatives with respect to Eulerian coordinates:

∂M0,1

∂u0
=− 1

6
ρ

 2I3 I3 −2w −w
I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w
−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
∆uρ


0 0 −2 ∂w

∂u0
− ∂w

∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0

 (7)

where ∂M0,1

∂u1
has a similar form as ∂M0,1

∂u0
and:

∂w

∂u0
=

x1 − x0

∆u2
=

w

∆u
and

∂w

∂u1
= −x1 − x0

∆u2
= − w

∆u

∂w⊤w

∂u0
=

∂w⊤

∂u0
w +w⊤ ∂w

∂u0
= 2

w⊤w

∆u

∂w⊤w

∂u1
=

∂w⊤

∂u1
w +w⊤ ∂w

∂u1
= −2

w⊤w

∆u

Likewise, we can find
∂M0,1

∂u0
= −∂M0,1

∂u1

12

Published as a conference paper at ICLR 2022

So far, we have given the full details of M0,1’ s partial derivatives with respect to positions in
Equation 5. Now we give its time derivative:

Ṁ0,1 =
1

6
ρ(u̇1 − u̇0)

 2I3 I3 −2w −w
I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w
−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
ρ∆u


0 0 −2∂w

∂t −∂w
∂t

0 0 −∂w
∂t −2∂w

∂t

−2∂w⊤

∂t −∂w⊤

∂t 2∂w⊤w
∂t

∂w⊤w
∂t

−∂w⊤

∂t −2∂w⊤

∂t
∂w⊤w

∂t 2∂w⊤w
∂t

 (8)

where

∂w

∂t
=

∂

∂t

x1 − x0

∆u
=

(ẋ1 − ẋ0)∆u− (x1 − x0)(u̇1 − u̇0)

∆u2

∂w⊤w

∂t
=

∂w⊤

∂t
w +w⊤ ∂w

∂t

In addition, the derivatives of Ṁ0,1q̇0,1 with respect to the nodes’ positions are:

∂Ṁ0,1q̇0,1

∂x0
=


∂Ṁ0,1

∂x
(1)
0

q̇0,1

∂Ṁ0,1

∂x
(2)
0

q̇0,1

∂Ṁ0,1

∂x
(3)
0

q̇0,1

 ,
∂Ṁ0,1q̇0,1

∂x1
=


∂Ṁ0,1

∂x
(1)
1

q̇0,1

∂Ṁ0,1

∂x
(2)
1

q̇0,1

∂Ṁ0,1

∂x
(3)
1

q̇0,1


∂Ṁ0,1q̇0,1

∂u0
=

∂Ṁ0,1

∂u0
q̇0,1,

∂Ṁ0,1q̇0,1

∂u1
=

∂Ṁ0,1

∂u1
q̇0,1 (9)

The components in Equation 9 are:

∂Ṁ0,1

∂x
(1)
0

=
1

6
ρ(u̇1 − u̇0)


0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0



+
1

6
ρ∆u


0 0 −2 ∂2w

∂t∂x
(1)
0

− ∂2w

∂t∂x
(1)
0

0 0 − ∂2w

∂t∂x
(1)
0

−2 ∂2w

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0



13

Published as a conference paper at ICLR 2022

and

∂Ṁ0,1

∂u0
=

1

6
ρ(u̇1 − u̇0)


0 0 −2 ∂w

∂u0
− ∂w

∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



− 1

6
ρ


0 0 −2∂w

∂t −∂w
∂t

0 0 −∂w
∂t −2∂w

∂t

−2∂w⊤

∂t −∂w⊤

∂t 2∂w⊤w
∂t

∂w⊤w
∂t

−∂w⊤

∂t −2∂w⊤

∂t
∂w⊤w

∂t 2∂w⊤w
∂t



+
1

6
∆uρ


0 0 −2 ∂2w

∂t∂u0
− ∂2w

∂t∂u0

0 0 − ∂2w
∂t∂u0

−2 ∂2w
∂t∂u0

−2∂2w⊤

∂t∂u0
−∂2w⊤

∂t∂u0
2∂2w⊤w

∂t∂u0

∂2w⊤w
∂t∂u0

−∂2w⊤

∂t∂u0
−2∂2w⊤

∂t∂u0

∂2w⊤w
∂t∂u0

2∂2w⊤w
∂t∂u0


where

∂2w

∂t∂x
(1)
0

=

 u̇1−u̇0

∆u2

0
0

 ,
∂2w

∂t∂x
(2)
0

=

 0
u̇1−u̇0

∆u2

0

 , and
∂2w

∂t∂x
(2)
0

=

 0
0

u̇1−u̇0

∆u2


∂2w

∂t∂x
(1)
1

= −

 u̇1−u̇0

∆u2

0
0

 ,
∂2w

∂t∂x
(2)
1

= −

 0
u̇1−u̇0

∆u2

0

 , and
∂2w

∂t∂x
(2)
1

= −

 0
0

u̇1−u̇0

∆u2


∂2w

∂t∂u0
=

ẋ1 − ẋ1

(u1 − u0)2
− 2(x1 − x0)(u̇1 − u̇0)

(u1 − u0)3

∂2w

∂t∂u1
= − ẋ1 − ẋ1

(u1 − u0)2
+

2(x1 − x0)(u̇1 − u̇0)

(u1 − u0)3

∂2w⊤w

∂t∂x
(1)
0

=
∂w⊤

∂x
(1)
1

∂w

∂t
+w⊤ ∂2w

∂t∂x
(1)
1

+
∂2w⊤

∂t∂x
(1)
1

w +
∂w⊤

∂t

∂w

∂x
(1)
1

∂2w⊤w

∂t∂u0
=

∂w⊤

∂u0

∂w

∂t
+w⊤ ∂2w

∂t∂u0
+

∂2w⊤

∂t∂u0
w +

∂w⊤

∂t

∂w

∂u0

The derivatives of Ṁ0,1q̇0,1 with respect to the nodes’ velocities are:

∂Ṁ0,1q̇0,1

∂ẋ0
=


∂Ṁ0,1q̇0,1

∂ẋ
(1)
0

∂Ṁ0,1q̇0,1

∂ẋ
(2)
0

∂Ṁ0,1q̇0,1

∂ẋ
(3)
0

 =


∂Ṁ0,1

∂ẋ
(1)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(1)
0

∂Ṁ0,1

∂ẋ
(2)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(2)
0

∂Ṁ0,1

∂ẋ
(3)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(3)
0



∂Ṁ0,1q̇0,1

∂ẋ1
=


∂Ṁ0,1q̇0,1

∂ẋ
(1)
1

∂Ṁ0,1q̇0,1

∂ẋ
(2)
1

∂Ṁ0,1q̇0,1

∂ẋ
(3)
1

 =


∂Ṁ0,1

∂ẋ
(1)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(1)
1

∂Ṁ0,1

∂ẋ
(2)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(2)
1

∂Ṁ0,1

∂ẋ
(3)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(3)
1


∂Ṁ0,1q̇0,1

∂u̇0
=

∂Ṁ0,1

∂u̇0
q̇0,1 + Ṁ0,1

∂q̇0,1

∂u̇0

14

Published as a conference paper at ICLR 2022

∂Ṁ0,1q̇0,1

∂u̇1
=

∂Ṁ0,1

∂u̇1
q̇0,1 + Ṁ0,1

∂q̇0,1

∂u̇1
(10)

where

∂Ṁ0,1

∂ẋ
(1)
1

=
1

6
∆uρ


0 0 −2 ∂2w

∂t∂x
(1)
0

− ∂2w

∂t∂x
(1)
0

0 0 − ∂2w

∂t∂x
(1)
0

−2 ∂2w

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0



∂Ṁ0,1

∂u̇0
= −1

6
ρ

 2I3 I3 −2w −w
I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w
−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
∆uρ


0 0 −2 ∂2w

∂t∂u̇0
− ∂2w

∂t∂u̇0

0 0 − ∂2w
∂t∂u̇0

−2 ∂2w
∂t∂u̇0

−2∂2w⊤

∂t∂u̇0
−∂2w⊤

∂t∂u̇0
2∂2w⊤w

∂t∂u̇0

∂2w⊤w
∂t∂u̇0

−∂2w⊤

∂t∂u̇0
−2∂2w⊤

∂t∂u̇0

∂2w⊤w
∂t∂u̇0

2∂2w⊤w
∂t∂u̇0



∂q̇0,1

∂ẋ
(1)
0

=



1
0
0
0
0
0
0
0


and

∂q̇0,1

∂u0
=



0
0
0
1
0
0
0
0


B.4 INERTIA

Kinetic energy is computed segment-wise, e.g. for a segment [q0,q1]:

T0,1 =
1

2
q̇⊤
0,1M0,1q̇0,1 =

1

2

(
ẋ⊤
0 ẋ⊤

1 u̇0 u̇1

)
M0,1

ẋ0

ẋ1

u̇0

u̇1

 (11)

Its derivatives with respect to each node’s position is the node’s inertia:

∂T0,1

∂q0,1
=

Fx0

Fx1

Fu0

Fu1

 (12)

Fx0 =
∂T0,1

∂x0
=

1

2
q̇⊤
0,1

∂M0,1

∂x0
q̇0,1

Fx1
=

∂T0,1

∂x1
=

1

2
q̇⊤
0,1

∂M0,1

∂x1
q̇0,1

Fu0
=

∂T0,1

∂u0
=

1

2
q̇⊤
0,1

∂M0,1

∂u0
q̇0,1

Fu1
=

∂T0,1

∂u1
=

1

2
q̇⊤
0,1

∂M0,1

∂u1
q̇0,1

15

Published as a conference paper at ICLR 2022

where Fx0
and Fu0

are the inertia of q0 in Lagrangian and Eulerian coordinates respectively. Sim-
ilarly, Fx1

and Fu1
are the inertia of q1. The derivative of the forces with respect to positions

are:

∂2T0,1

∂q0,1∂q0,1
=


∂Fx0

∂x0

∂Fx0

∂x1

∂Fx0

∂u0

∂Fx0

∂u1
∂Fx1

∂x0

∂Fx1

∂x1

∂Fx1

∂u0

∂Fx1

∂u1
∂Fu0

∂x0

∂Fu0

∂x1

∂Fu0

∂u0

∂Fu0

∂u1
∂Fu1

∂x0

∂Fu1

∂x1

∂Fu1

∂u0

∂Fu1

∂u1

 (13)

The derivative of the force in Lagrangian coordinates with respect to Lagrangian coordinates is

∂Fx0

∂x0
=

1

2
q̇⊤
0,1

∂2M0,1

∂x0∂x0
q̇0,1

=
1

2


q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(3)
0

q̇0,1

q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(3)
0

q̇0,1

q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(3)
0

q̇0,1


∂Fx0

∂x1
, ∂Fx1

∂x0
and ∂Fx1

∂x1
are in similar forms as ∂Fx0

∂x0
. Also, the derivative of the force in Lagrangian

coordinate with respect to Eulerian coordinates is:

∂Fx0

∂u0
=

1

2
q̇⊤
0,1

∂2M0,1

∂x0∂u0
q̇0,1

∂Fx0

∂u1
, ∂Fx1

∂u0
and ∂Fx1

∂u1
are in similar forms as ∂Fx0

∂u0
. Correspondingly, the derivative of the force in

Eulerian coordinates with respect to Lagrangian coordinates is:

∂Fu0

∂x0
=

1

2
q̇⊤
0,1

∂2M0,1

∂u0∂x0
q̇0,1

∂Fu0

∂x1
, ∂Fu1

∂x0
and ∂Fu1

∂x1
are in similar forms as ∂Fu0

∂x0
. The derivative of the force in Eulerian coordi-

nates with respect to Eulerian coordinates is:

∂Fu0

∂u0
=

1

2
q̇⊤
0,1

∂2M0,1

∂u0∂u0
q̇0,1

∂Fu0

∂u1
, ∂Fu1

∂u0
and ∂Fu1

∂u1
are in similar forms as ∂Fu0

∂u0
.

Specially, the entries in ∂Fx0

∂x0
are:

∂2M0,1

∂x
(1)
0 ∂x

(1)
0

=
1

6
∆uρ


0 0 0 0
0 0 0 0

0 0 2 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

0 0 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

2 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0



∂2M0,1

∂x
(2)
0 ∂x

(2)
0

=
1

6
∆uρ


0 0 0 0
0 0 0 0

0 0 2 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

0 0 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

2 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0



∂2M0,1

∂x
(3)
0 ∂x

(3)
0

=
1

6
∆uρ


0 0 0 0
0 0 0 0

0 0 2 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

0 0 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

2 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0


16

Published as a conference paper at ICLR 2022

where
∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

=
2

∆u2
,

∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

=
2

∆u2
,and

∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

=
2

∆u2

The other components are
∂2M0,1

∂x
(1)
0 ∂x

(2)
0

=
∂2M0,1

∂x
(1)
0 ∂x

(3)
0

= 0

∂2M0,1

∂x
(2)
0 ∂x

(1)
0

=
∂2M0,1

∂x
(2)
0 ∂x

(3)
0

= 0

∂2M0,1

∂x
(3)
0 ∂x

(1)
0

=
∂2M0,1

∂x
(3)
0 ∂x

(2)
0

= 0

Moreover, as

∂2w⊤w

∂x
(1)
0 ∂x

(1)
1

= − 2

∆u2
,

∂2w⊤w

∂x
(2)
0 ∂x

(2)
1

= − 2

∆u2
,and

∂2w⊤w

∂x
(3)
0 ∂x

(3)
1

= − 2

∆u2

∂2M0,1

∂x
(1)
0 ∂x

(2)
1

=
∂2M0,1

∂x
(1)
0 ∂x

(3)
1

= 0

∂2M0,1

∂x
(2)
0 ∂x

(1)
1

=
∂2M0,1

∂x
(2)
0 ∂x

(3)
1

= 0

∂2M0,1

∂x
(3)
0 ∂x

(1)
1

=
∂2M0,1

∂x
(3)
0 ∂x

(2)
1

= 0

We can find that
∂2M0,1

∂x
(1)
0 ∂x

(1)
0

= − ∂2M0,1

∂x
(1)
0 ∂x

(1)
1

∂2M0,1

∂x
(2)
0 ∂x

(2)
0

= − ∂2M0,1

∂x
(2)
0 ∂x

(2)
1

∂2M0,1

∂x
(3)
0 ∂x

(3)
0

= − ∂2M0,1

∂x
(3)
0 ∂x

(3)
1

Therefore,
∂Fx0

∂x0
= −∂Fx0

∂x1

∂Fx1

∂x1
= −∂Fx1

∂x0
=

∂Fx0

∂x0

To compute the derivatives of the forces in Lagrangian coordinates with respect to Eulerian coordi-
nates, we need to compute:

∂2M0,1

∂x0∂u0
=


∂2M0,1

∂x
(1)
0 ∂u0

∂2M0,1

∂x
(2)
0 ∂u0

∂2M0,1

∂x
(3)
0 ∂u0

 and
∂2M0,1

∂x0∂u1
=


∂2M0,1

∂x
(1)
0 ∂u1

∂2M0,1

∂x
(2)
0 ∂u1

∂2M0,1

∂x
(3)
0 ∂u1



∂2M0,1

∂x1∂u0
=


∂2M0,1

∂x
(1)
1 ∂u0

∂2M0,1

∂x
(2)
1 ∂u0

∂2M0,1

∂x
(3)
1 ∂u0

 and
∂2M0,1

∂x1∂u1
=


∂2M0,1

∂x
(1)
1 ∂u1

∂2M0,1

∂x
(2)
1 ∂u1

∂2M0,1

∂x
(3)
1 ∂u1


17

Published as a conference paper at ICLR 2022

Take one component ∂2M0,1

∂x
(1)
0 ∂u0

as example:

∂2M0,1

∂x
(1)
0 ∂u0

= −1

6


0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0



+
1

6
∆uρ


0 0 −2 ∂2w

∂x
(1)
0 ∂u0

− ∂2w

∂x
(1)
0 ∂u0

0 0 − ∂2w

∂x
(1)
0 ∂u0

−2 ∂2w

∂x
(1)
0 ∂u0

−2 ∂2w⊤

∂x
(1)
0 ∂u0

− ∂2w⊤

∂x
(1)
0 ∂u0

2 ∂2w⊤w

∂x
(1)
0 ∂u0

∂2w⊤w

∂x
(1)
0 ∂u0

− ∂2w⊤

∂x
(1)
0 ∂u0

−2 ∂2w⊤

∂x
(1)
0 ∂u0

∂2w⊤w

∂x
(1)
0 ∂u0

2 ∂2w⊤w

∂x
(1)
0 ∂u0


in which

∂2w

∂x
(1)
0 ∂u0

= −

 1
∆u2

0
0

 ,
∂2w

∂x
(2)
0 ∂u0

= −

 0
1

∆u2

0

 ,
∂2w

∂x
(3)
0 ∂u0

= −

 0
0
1

∆u2



∂2w

∂x
(1)
0 ∂u1

=

 1
∆u2

0
0

 ,
∂2w

∂x
(2)
0 ∂u1

=

 0
1

∆u2

0

 ,
∂2w

∂x
(3)
0 ∂u1

=

 0
0
1

∆u2



∂2w

∂x
(1)
1 ∂u0

= −

 1
∆u2

0
0

 ,
∂2w

∂x
(2)
1 ∂u0

= −

 0
1

∆u2

0

 ,
∂2w

∂x
(3)
1 ∂u0

= −

 0
0
1

∆u2



∂2w

∂x
(1)
1 ∂u0

=

 1
∆u2

0
0

 ,
∂2w

∂x
(2)
1 ∂u0

=

 0
1

∆u2

0

 ,
∂2w

∂x
(3)
1 ∂u0

=

 0
0
1

∆u2



It should be easy to compute ∂2M0,1

∂x0∂u0
, ∂2M0,1

∂x0∂u1
, ∂2M0,1

∂x1∂u0
, ∂2M0,1

∂x1∂u1
and then compute ∂Fx0

∂u0
, ∂Fx0

∂u1
, ∂Fx1

∂u0
,

∂Fx1

∂u1
. The derivatives of the forces in Eulerain coordinates with respect to Lagrangian coordinates

are the transpose of the forces in Lagrangian coordinates with respect to Eulerian coordinates:

∂Fu0

∂x0
=

(
∂Fx0

∂u0

)⊤
∂Fu0

∂x1
=

(
∂Fx1

∂u0

)⊤

∂Fu1

∂x0
=

(
∂Fx0

∂u1

)⊤
∂Fu1

∂x1
=

(
∂Fx1

∂u1

)⊤

18

Published as a conference paper at ICLR 2022

To compute the derivatives of the forces in Eluerian coordinates with respect to Eulerian coordinates,
we need to compute: ∂2M0,1

∂u0∂u0
, ∂2M0,1

∂u0∂u1
, ∂2M0,1

∂u1∂u0
, and ∂2M0,1

∂u1∂u1
. For example,

∂2M0,1

∂u0∂u0
=− 1

6
ρ


0 0 −2 ∂w

∂u0
− ∂w

∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



− 1

6
ρ


0 0 −2 ∂w

∂u0
− ∂w

∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



+
1

6
∆uρ


0 0 −2 ∂2w

∂u0∂u0
− ∂2w

∂u0∂u0

0 0 − ∂2w
∂u0∂u0

−2 ∂2w
∂u0∂u0

−2 ∂2w⊤

∂u0∂u0
− ∂2w⊤

∂u0∂u0
2∂2w⊤w
∂u0∂u0

∂2w⊤w
∂u0∂u0

− ∂2w⊤

∂u0∂u0
−2 ∂2w⊤

∂u0∂u0

∂2w⊤w
∂u0∂u0

2∂2w⊤w
∂u0∂u0


in which

∂2w

∂u0∂u0
= 2

w

∆u2
and

∂2w⊤w

∂u0∂u0
= 6

w⊤w

∆u2

Similarly, we can compute

∂2w

∂u0∂u1
= −2

w

∆u2

∂2w⊤w

∂u0∂u1
= −6

w⊤w

∆u2

∂2w

∂u1∂u0
= −2

w

∆u2

∂2w⊤w

∂u1∂u0
= −6

w⊤w

∆u2

∂2w

∂u1∂u1
= 2

w

∆u2

∂2w⊤w

∂u1∂u1
= 6

w⊤w

∆u2

to compute ∂2M0,1

∂u0∂u1
, ∂2M0,1

∂u1∂u0
, and ∂2M0,1

∂u1∂u1
. The derivatives of the inertia with respect to nodes’ veloc-

ities are:

∂Fx0

∂ẋ0
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(1)
0

1
2

∂q̇⊤
0,1

∂ẋ
(2)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(2)
0

1
2

∂q̇⊤
0,1

∂ẋ
(3)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(3)
0



∂Fx0

∂ẋ1
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(1)
1

1
2

∂q̇⊤
0,1

∂ẋ
(2)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(2)
1

1
2

∂q̇⊤
0,1

∂ẋ
(3)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(3)
1



∂Fx1

∂ẋ0
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(1)
0

1
2

∂q̇⊤
0,1

∂ẋ
(2)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(2)
0

1
2

∂q̇⊤
0,1

∂ẋ
(3)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(3)
0



19

Published as a conference paper at ICLR 2022

∂Fx1

∂ẋ1
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(1)
1

1
2

∂q̇⊤
0,1

∂ẋ
(2)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(2)
1

1
2

∂q̇⊤
0,1

∂ẋ
(3)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(3)
1



∂Fx0

∂u̇0
=

1

2

∂q̇⊤
0,1

∂u̇0

∂M0,1

∂x0
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂u̇0

∂Fx1

∂u̇0
=

1

2

∂q̇⊤
0,1

∂u̇0

∂M0,1

∂x1
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂u̇0

∂Fx0

∂u̇1
=

1

2

∂q̇⊤
0,1

∂u̇1

∂M0,1

∂x0
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂u̇1

∂Fx1

∂u̇1
=

1

2

∂q̇⊤
0,1

∂u̇1

∂M0,1

∂x1
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂u̇1

B.5 STRETCHING

Stretch force resists length changes of segments (with the rest length ∥w∥ = 1). Therefore, the
stretching energy is generated when the length changes. We compute the energy of segment [q0,q1],
in a similar way as (Loock et al., 2001; Spillmann & Teschner, 2007) :

V0,1 =
1

2
Y πR2∆u(∥w∥ − 1)2 (14)

where Y is yarn’s elastic modulus and R is yarns’ radius. The stretching forces at the two nodes are:

Fx1 = −Fx0 = −∂V0,1

∂x1
= −Y πR2(∥w∥ − 1)d0,1 (15)

Fu1
= −Fu0

= −∂V0,1

∂u1
=

1

2
Y πR2(∥w∥2 − 1) (16)

where d0,1 is the unit vector points from q0 to q1, d0,1 = x1−x0

∥x1−x0∥ . The derivatives of the stretching
forces with respect to nodes’ positions are:

∂Fx1

∂x1
=

∂Fx0

∂x0
= −∂Fx1

∂x0
= −∂Fx0

∂x1
= Y πR2(

1

l1
P0,1 −

1

∆u
I) (17)

∂Fu1

∂u1
=

∂Fu0

∂u0
= −∂Fu1

∂u0
= −∂Fu0

∂u1
= −Y πR2 ∥w∥2

∆u
(18)

∂Fx1

∂u1
=

∂Fx0

∂u0
= −∂Fx1

∂u0
= −∂Fx0

∂u1
= Y πR2 ∥w∥2

∆u
d0,1 (19)

∂Fu1

∂x1
=

∂Fu0

∂x0
= −∂Fu1

∂x0
= −∂Fu0

∂x1
=

Y πR2

∆u
w⊤ (20)

where P0,1 = I3 − d0,1d
⊤
0,1

20

Published as a conference paper at ICLR 2022

B.6 BENDING

We adopt the discrete differential geometry method (Sullivan, 2008) to define the curvature at the
common crossing node of two adjacent segments. Bending energy is defined as the integration of
bending energy density along the two segments. The bending energy on the two connected warp
segments [q2,q0] and [q0,q1] is

V2,0,1 = BπR2 θ2

u1 − u2
(21)

where B is yarn bending modulus and θ = arcsin(−d⊤
0,1d0,2) is the angle between the two seg-

ments. Its derivatives with respective to the node position are the bending forces:

Fx1
= − 2BπR2θ

l1(u1 − u2) sin θ
P0,1d0,2 (22)

Fx2
= − (2BπR2θ)

l2(u1 − u2) sin θ
P0,2d0,1 (23)

Fx0
= −(Fx1

+ Fx2
) (24)

Fu1
= −Fu2

=
2BπR2θ2

(u1 − u2)2
(25)

Fu0 = 0 (26)

The derivatives of the bending forces with respected to the nodes’ position are

∂Fx1

∂x1
=

2BπR2

l21(u1 − u0) sin θ

(
θ

(
P0,1d0,2d

⊤
0,1 +

cos θ

sin2 θ
P0,1d0,2d

⊤
0,2P0,1 + cos θP0,1

+ d0,1d
⊤
0,2P0,1

)
− 1

sin θ
P0,1d0,2d

⊤
0,2P0,1

)
(27)

∂Fx2

∂x2
=

2BπR2

l22(u1 − u0) sin θ

(
θ

(
P0,2d0,1d

⊤
0,2 +

cos θ

sin2 θ
P0,2d0,1d

⊤
0,1P0,2 + cos θP0,2

+ d0,2d
⊤
0,1P0,2

)
− 1

sin θ
P0,2d0,1d

⊤
0,1P0,2

)
(28)

∂Fx1

∂x2
= − 2BπR2

l2l1(u1 − u2) sin θ

(
θ

(
P0,1−

cos θ

sin2 θ
P0,1d0,2d

⊤
0,1

)
+

1

sin θ
P0,1d0,2d

⊤
0,1

)
P0,2 (29)

∂Fx2

∂x1
= − 2BπR2

l1l2(u1 − u2) sin θ

(
θ

(
P0,2−

cos θ

sin2 θ
P0,2d0,1d

⊤
0,2

)
+

1

sin θ
P0,2d0,1d

⊤
0,2

)
P0,1 (30)

∂Fx1

∂x0
= −

(
∂Fx1

∂x1
+

∂Fx1

∂x2

)
(31)

∂Fx2

∂x0
= −

(
∂Fx2

∂x1
+

∂Fx2

∂x2

)
(32)

∂Fx0

∂x1
= −

(
∂Fx1

∂x1
+

∂Fx2

∂x1

)
(33)

∂Fx0

∂x2
= −

(
∂Fx1

∂x2
+

∂Fx2

∂x2

)
(34)

21

Published as a conference paper at ICLR 2022

∂Fx0

∂x0
= −

(
∂Fx1

∂x0
+

∂Fx2

∂x0

)
(35)

∂Fu1

∂u1
=

∂Fu2

∂u2
=

∂Fu1

∂u2
=

∂Fu2

∂u1
= − 2BπR2θ2

(u1 − u2)2
(36)

∂Fx1

∂u1
= −∂Fx1

∂u2
=

2BπR2θ

l1(u1 − u2)2 sin θ
P0,1d0,2 (37)

∂Fx2

∂u1
= −∂Fx2

∂u2
=

2BπR2θ

l2(u1 − u2)2 sin θ
P0,2d0,1 (38)

∂Fx0

∂u1
= −∂Fx0

∂u2
= −

(
∂Fx1

∂u1
+

∂Fx2

∂u1

)
(39)

∂Fu1

∂x1
= −∂Fu2

∂x1
=

2BπR2θ

l1(u1 − u2)2 sin θ
d⊤
0,2P0,1 (40)

∂Fu1

∂x2
= −∂Fu2

∂x2
=

2BπR2θ

l2(u1 − u2)2 sin θ
d⊤
0,1P0,2 (41)

∂Fu1

∂x0
= −∂Fu2

∂x0
= −

(
∂Fu1

∂x1
+

∂Fu1

∂x2

)
(42)

B.7 SLIDE FRICTION

The slide friction at a crossing node q0 along warp u direction is

FSlide = −
(kfδu−K(δu)µFn

2
K(µFn − Fu) +

kfδu+K(δu)µFn

2

)
− df u̇0 (43)

The derivative of friction force with respect to node position in Eulerian coordinate is

∂FSlide

∂u0
=−

kf − ((1− tanh2 δu)µFn + tanh δuµ∂Fn

∂u0
)

2
tanh (µFn − Fu)

− kfδu− tanh δuµFn

2
(1− tanh2 (µFn − Fu))

(
∂Fu

∂u0
− µ

∂Fn

∂u0

)
−

kf + (1− tanh2 δu)µFn + tanh δuµ∂Fn

∂u0

2
(44)

The derivative of friction force with respect to node velocity in Eulerian coordinate is

∂FSlide

∂u̇0
=

kfδu− tanh δuµFn

2
(1− tanh2(µFn − Fu))

∂Fu

∂u̇0
− df (45)

B.8 SHEARING

The potential energy over the segments [q0,q1] and [q0,q3] caused by shearing deformation is

V1,0,3 =
1

2
ksL(ϕ− ϕ̄)2 (46)

ks =
1

2
(Fn + 1)SR2

(
(1 + γc) + (1− γc) tanh

(
ϕ̄5(ϕ− ϕl)

(ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

))
The shear forces at those crossing nodes are

Fx1
= −∂V1,0,3

∂x1
= −1

2

∂ks
∂x1

L(ϕ− ϕ̄)2 +
ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 (47)

22

Published as a conference paper at ICLR 2022

Fx3
= −∂V1,0,3

∂x3
= −1

2

∂ks
∂x3

L(ϕ− ϕ̄)2 +
ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 (48)

Fx0
= −(Fx1

+ Fx3
) (49)

For the sake of simplicity, we define:

g(ϕ) =
ϕ̄5(ϕ− ϕl)

(ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

f(ϕ) = tanh g(ϕ)

The numerator and denominator of g(ϕ) are

gnum(ϕ) = ϕ̄5(ϕ− ϕl)

and
gden(ϕ) = (ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

Then, we have:

∂ks
∂x3

=
1

2
(Fn + 1)SR2

(
cγc−1 ∂γ

∂x3
− cγc−1 ∂γ

∂x3
f(ϕ) + (1− γc)(1− f(ϕ)2)

∂g(ϕ)

∂x3

)
∂ks
∂x1

=
1

2
(Fn + 1)SR2

(
cγc−1 ∂γ

∂x1
− cγc−1 ∂γ

∂x1
f(ϕ) + (1− γc)(1− f(ϕ)2)

∂g(ϕ)

∂x1

)
where

∂γ

∂x1
= −L

R
cos

ϕ

2

∂ϕ

∂x1
,
∂γ

∂x3
= −L

R
cos

ϕ

2

∂ϕ

∂x3
,

∂g(ϕ)

∂x1
=

∂gnum(ϕ)
∂x1

gden(ϕ)− gnum(ϕ)∂gden(ϕ)∂x1

g2den(ϕ)
,

∂g(ϕ)

∂x3
=

∂gnum(ϕ)
∂x3

gden(ϕ)− gnum(ϕ)∂gden(ϕ)∂x3

g2den(ϕ)
.

The terms ∂gnum(ϕ)
∂x1

, ∂gden(ϕ)
∂x1

, ∂gnum(ϕ)
∂x3

, and ∂gden(ϕ)
∂x3

are:

∂gnum(ϕ)

∂x1
= ϕ̄5 ∂ϕ

∂x1
= −ϕ̄5P0,1d0,3

l1 sinϕ

∂gnum(ϕ)

∂x3
= ϕ̄5 ∂ϕ

∂x3
= −ϕ̄5P0,3d0,1

l3 sinϕ

∂gden(ϕ)

∂x1
= 2(ϕ(ϕ− ϕl)(ϕ− ϕ̄))

(
∂ϕ

∂x1
(ϕ− ϕl)(ϕ− ϕ̄) + ϕ

∂ϕ

∂x1
(ϕ− ϕ̄) + ϕ(ϕ− ϕl)

∂ϕ

∂x1

)
∂gden(ϕ)

∂x3
= 2(ϕ(ϕ− ϕl)(ϕ− ϕ̄))

(
∂(ϕ)

∂x3
(ϕ− ϕl)(ϕ− ϕ̄) + ϕ

∂ϕ

∂x3
(ϕ− ϕ̄) + ϕ(ϕ− ϕl)

∂ϕ

∂x3

)
The derivatives of the shear forces with respect to the nodes’ positions in Lagrangian coordinate are:

∂Fx1

∂x1
= −1

2

∂2ks
∂x1x1

L(ϕ− ϕ̄)2 − L(ϕ− ϕ̄)
∂ks
∂x1

∂ϕ

∂x1
+

∂

∂x1

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3

∂Fx3

∂x3
= −1

2

∂2ks
∂x3x3

L(ϕ− ϕ̄)2 − L(ϕ− ϕ̄)
∂ks
∂x3

∂ϕ

∂x3
+

∂

∂x3

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1

∂Fx1

∂x3
= −1

2

∂2ks
∂x1x3

L(ϕ−ϕ̄)2−L(ϕ−ϕ̄)
∂ks
∂x1

∂ϕ

∂x3
−L(ϕ−ϕ̄)

∂ϕ

∂x1

∂ks
∂x3

+
∂

∂x3

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3

23

Published as a conference paper at ICLR 2022

∂Fx3

∂x1
= −1

2

∂2ks
∂x3x1

L(ϕ−ϕ̄)2−L(ϕ−ϕ̄)
∂ks
∂x3

∂ϕ

∂x1
−L(ϕ−ϕ̄)

∂ϕ

∂x3

∂ks
∂x1

+
∂

∂x1

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1

where

∂

∂x1

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 =

ksL

l21 sinϕ

((
ϕ− ϕ̄

)(
−P0,1d0,3d

⊤
0,1 +

cosϕ

sin2 ϕ
P0,1d0,3d

⊤
0,3P0,1

− cosϕP0,1 − d0,1d
⊤
0,3P0,1

)
− 1

sinϕ
P0,1d0,3d

⊤
0,3P0,1

)

∂

∂x3

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 =

ksL

l23 sinϕ

((
ϕ− ϕ̄

)(
−P0,3d0,1d

⊤
0,3 +

cosϕ

sin2 ϕ
P0,3d0,1d

⊤
0,1P0,3

− cosϕP0,3 − d0,3d
⊤
0,1P0,3

)
− 1

sinϕ
P0,3d0,1d

⊤
0,1P0,3

)

∂

∂x3

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 =

ksL

l3l1 sinϕ

((
ϕ− ϕ̄

)(cosϕ

sin2 ϕ
P0,1d0,3d

⊤
0,1P0,3 +P0,1P0,3

)
− 1

sinϕ
P0,1d0,3d

⊤
0,1P0,3

)

∂

∂x1

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 =

ksL

l1l3 sinϕ

((
ϕ− ϕ̄

)(cosϕ

sin2 ϕ
P0,3d0,1d

⊤
0,3P0,1 +P0,3P0,1

)
− 1

sinϕ
P0,3d0,1d

⊤
0,3P0,1

)
Moreover, the other terms are

∂Fx1

∂x0
= −

(
∂Fx1

∂x1
+

∂Fx1

∂x3

)
,
∂Fx3

∂x0
= −

(
∂Fx3

∂x1
+

∂Fx3

∂x3

)

∂Fx0

∂x1
= −

(
∂Fx1

∂x1
+

∂Fx3

∂x1

)
,
∂Fx0

∂x3
= −

(
∂Fx1

∂x3
+

∂Fx3

∂x3

)
∂Fx0

∂x0
= −

(
∂Fx1

∂x0
+

∂Fx3

∂x0

)
B.9 YARN-TO-YARN COLLISION

V0,1 =
1

2
kcLReLU(d−∆u)2 (50)

The yarn-to-yarn collision forces are:

Fu0
= −∂V0,1

∂u0
= kcL(∆u− d) (51)

Fu1 = −∂V0,1

∂u1
= −kcL(∆u− d) (52)

The derivatives of the forces with respect to the nodes’ position in Eulerian coordiates:

∂Fu0

∂u0
=

∂Fu1

∂u1
= −∂Fu0

∂u1
= −∂Fu1

∂u0
= −kcL (53)

24

Published as a conference paper at ICLR 2022

Figure 11: Treat a square hold in 4 segments as two triangles.

B.10 GRAVITY

We define a gravitational energy which is computed segment-wise. To a warp segment [q0,q1], it
gravitational energy is defined as

V0,1 = ρ∆ug⊤x0 + x1

2
(54)

where g ∈ R3 is the gravity of earth which is approximately set to (0, 0, 9.8). The gravity at the
nodes are

Fx0
= −∂V0,1

∂x0
= −1

2
ρg∆u (55)

Fx1
= −∂V0,1

∂x1
= −1

2
ρg∆u (56)

Fu0 = −∂V0,1

∂u0
=

1

2
ρg⊤(x1 + x0) (57)

Fu1 = −∂V0,1

∂u1
= −1

2
ρg⊤(x1 + x0) (58)

The derivative of the force with respect to the nodes’ position are:

∂Fx0

∂u0
=

1

2
ρg

∂Fx0

∂u1
= −1

2
ρg (59)

∂Fx1

∂u0
=

1

2
ρg

∂Fx1

∂u1
= −1

2
ρg (60)

∂Fu0

∂x1
=

1

2
ρg⊤ ∂Fu0

∂x0
=

1

2
ρg⊤ (61)

∂Fu1

∂x1
= −1

2
ρg⊤ ∂Fu1

∂x0
= −1

2
ρg⊤ (62)

B.11 WIND FORCE

To apply wind force to the surface of the cloth, we need to compute an area-based force. Every
square composed of four segments can be split into two triangles when computing wind force(
shown in 11). The wind force has three properties affecting its influence on the cloth: velocity vw,
density ρw, and drag dw. vw = (0, 5, 0), density ρw = 2, and drag dw = 0.5. The wind force
imposed on a triangle face [q0,q1,q3] is:

Fw = ρwa|vn|vnnf + dwvt (63)

25

Published as a conference paper at ICLR 2022

where a is face area, nf is face normal, and

vn = nf

(
vw − ẋ0 + ẋ1 + ẋ3

3

)
,

vt =
ẋ0 + ẋ1 + ẋ3

3
− vnnf .

The forces on the nodes are
Fx0 = Fx1 = Fx3 =

1

3
Fw. (64)

B.12 COLLISION RESPONSE

We adopt a collision handling method originally designed for triangular meshes stored in bounding
volume hierarchy (Tang et al., 2010) where continuous collision detection (CCD) can detect edge-
edge and vertex-face collision. The detected vertices, edges, and faces are grouped into non-rigid
impact zones (Harmon et al., 2008) for computing collision response. We treat collision response as
a constrained optimization problem to prevent penetrations (Liang et al., 2019):

minimize
z

1

2
(xcolli − x)⊤W(xcolli − x)

subject to Gxcolli + h ≤ 0

where W is a weight matrix, x is the Lagrangian part of q, xcolli is the updated x where no collision
can be detected. G and h are constraint parameters. We assume neither self-collision nor cloth-object
collision can generate considerable yarn-sliding motions, so we exclude the Eulerian terms.

C DERIVATIVES OF THE SIMULATOR

Now we have a fully differentiable cloth simulator. We then compute the loss L that indicates the
difference between the predicted and ground truth cloth states. The loss gradients with respect to the
parameters ∂L

∂w can help learn the right physics parameters via back-propagation. For simplicity, we
use Aq̇ = b to represent Equation 3. The differential of Aq̇ = b is (Magnus & Neudecker, 2019):

Adq̇ = db− dAq̇ (65)

We can form the Jacobians of q̇ with respect to A or b with Equation 65. For example, to compute
the ∂q̇

∂A , we need to set dA = I and db = 0, then solve the equation and the result is ∂q̇
∂A . As

pointed out by Amos & Kolter (2017), it is unnecessary to explicitly compute these Jacobians in
back-propagation. We want to compute the product of the vector passed from back-propagation, ∂L

∂q̇

and the Jacobians of q̇, i.e.∂L∂q̇
∂q̇
∂A and ∂L

∂q̇
∂q̇
∂b . Assume A ∈ R3×3, q̇ ∈ R3, and b ∈ R3, then

∂L
∂b

=
∂L
∂q̇

∂q̇

∂b
=

(∂L
∂q̇1

∂L
∂q̇2

∂L
∂q̇3

)
∂q̇1

∂b1

∂q̇1

∂b2

∂q̇1

∂b3
∂q̇2

∂b1

∂q̇2

∂b2

∂q̇2

∂b3
∂q̇3

∂b1

∂q̇3

∂b2

∂q̇3

∂b3




⊤

(66)

As
∂q̇1

∂b1
=

∂ (A−1)1,1b1 + (A−1)1,1b2 + (A−1)1,1b3

∂b1
= A−1

1,1

and similarly for ∂q̇i

∂bj
, Equation 66 can be represented as:(∂L

∂q̇1

∂L
∂q̇2

∂L
∂q̇3

)(A−1)1,1 (A−1)1,2 (A−1)1,3
(A−1)2,1 (A−1)2,2 (A−1)2,3
(A−1)3,1 (A−1)3,2 (A−1)3,3

⊤

= (A−1)⊤
∂L
∂q̇

(67)

After computing ∂L
∂b , we need to compute ∂L

∂A . The b in Equation 65 can be set to 0 because it is
irrelevant when computing ∂L

∂A . Then we have

Adq̇ = −dAq̇ (68)

26

Published as a conference paper at ICLR 2022

The derivative of q̇ with respect to Ai,j , the entry in the ith row and jth column of the matrix A, is

∂q̇

∂Ai,j
= A−1

(
0

−q̇j

0

)
(69)

According to chain rule,

∂L
∂Ai,j

=
∂L
∂q̇

∂q̇

∂Ai,j
=

∂L
∂b

⊤
AA−1

(
0

−q̇j

0

)
= −

(
∂L
∂b

)
i

q̇j (70)

The more general form is
∂L
∂A

= −∂L
∂b

q̇⊤ (71)

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 43–54, New
York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919998. doi: 10.1145/
280814.280821. URL https://doi.org/10.1145/280814.280821.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. Yarn-level simulation of
woven cloth. ACM Trans. Graph., 33(6), November 2014. ISSN 0730-0301. doi: 10.1145/2661
229.2661279. URL https://doi.org/10.1145/2661229.2661279.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A Otaduy. Yarn-level cloth simulation with sliding
persistent contacts. IEEE transactions on visualization and computer graphics, 23(2):1152–1162,
2016.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. Robust treatment of simul-
taneous collisions. SIGGRAPH (ACM Transactions on Graphics), 27(3):1–4, 2008.

Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse problems.
2019.

Achim Loock, Elmar Schömer, and Im Stadtwald. A virtual environment for interactive assembly
simulation: From rigid bodies to deformable cables. In 5th World Multiconference on Systemics,
Cybernetics and Informatics (SCI’01), volume 3, pp. 325–332. Citeseer, 2001.

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2019.

Rahul Narain, Armin Samii, and James F O’brien. Adaptive anisotropic remeshing for cloth simu-
lation. ACM transactions on graphics (TOG), 31(6):1–10, 2012.

Jonas Spillmann and Matthias Teschner. Corde: Cosserat rod elements for the dynamic simulation
of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pp. 63–72, 2007.

Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. Large-scale dynamic
simulation of highly constrained strands. ACM Trans. Graph., 30(4), July 2011. ISSN 0730-
0301. doi: 10.1145/2010324.1964934. URL https://doi.org/10.1145/2010324.19
64934.

John M Sullivan. Curves of finite total curvature. In Discrete differential geometry, pp. 137–161.
Springer, 2008.

27

https://doi.org/10.1145/280814.280821
https://doi.org/10.1145/2661229.2661279
https://doi.org/10.1145/2010324.1964934
https://doi.org/10.1145/2010324.1964934

Published as a conference paper at ICLR 2022

Min Tang, Dinesh Manocha, and Ruofeng Tong. Fast continuous collision detection using de-
forming non-penetration filters. In Proceedings of the 2010 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’10, pp. 7–13, New York, NY, USA, 2010. Associa-
tion for Computing Machinery. ISBN 9781605589398. doi: 10.1145/1730804.1730806. URL
https://doi.org/10.1145/1730804.1730806.

Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. Data-driven elastic models for cloth:
modeling and measurement. ACM transactions on graphics (TOG), 30(4):1–12, 2011.

28

https://doi.org/10.1145/1730804.1730806

	Appendix
	Training Details
	Visual results
	Yarn-level versus Sheet-level
	Our model versus Bayesian Optimization
	Control Experiment Setting
	Significant Error in Visual

	Differentiable Yarn-level Cloth Simulator
	Intro yarn force models
	System Equation for Simulation
	General Mass Matrix
	Inertia
	Stretching
	Bending
	Slide Friction
	Shearing
	Yarn-to-yarn collision
	Gravity
	Wind Force
	Collision Response

	Derivatives of the simulator

