
Model Selection for Bayesian Autoencoders:
Supplementary Material

Ba-Hien Tran
EURECOM

(France)

Simone Rossi
EURECOM

(France)

Dimitrios Milios
EURECOM

(France)

Pietro Michiardi
EURECOM

(France)

Edwin V. Bonilla
CSIRO’s Data61

The Australian National University
The University of Sydney

(Australia)

Maurizio Filippone
EURECOM

(France)

A Derivation of Distributional Sliced-Wasserstein Distance

In this section, we review some key results on the Wasserstein distance. Given two probability
measures π, ρ, both defined on RD for simplicity, the p-Wasserstein distance between π and ρ is
given by

W p
p (π, ρ) = inf

γ∈Γ(π,ρ)

∫
‖x− y‖pγ(x,y)dxdy , (1)

where Γ(π, ρ) is the set of all possible distributions γ(x,y) such that the marginals are π(x) and
ρ(y) [32]. While usually analytically unavailable, for D = 1 the distance has the following closed
form solution,

W p
p (π, ρ) =

∫ 1

0

|F−1
π (z)− F−1

ρ (z)|pdz , (2)

where Fπ and Fρ are the cumulative density functions (CDFs) of π and ρ, respectively.

A.1 (Distributional) Sliced-Wasserstein Distance

The main idea underlying the distributional sliced-Wasserstein distance (DSWD) is to project the
challenging estimation of distances for high-dimensional distributions into simpler estimation of
multiple distances in one dimension, which all have closed-form solution (Eq. 2). The projection is
done using the Radon transformR, an operator that maps a density function ϕ defined in RD to the
set of its integrals over hyperplanes in RD,

Rϕ(t,θ) :=

∫
ϕ(z)δ(t− z>θ)dz , ∀t ∈ R , ∀θ ∈ SD−1 , (3)

where SD−1 is the unit sphere in RD and δ(·) is the Dirac delta [11]. Using the Radon transform, for
a given θ we can project the two densities π and ρ into one dimension,

W p
p (π, ρ) =

∫
SD−1

W p
p (Rπ(t,θ),Rρ(t,θ)) dθ ≈ 1

K

K∑
i=1

W p
p

(
Rπ(t,θi),Rρ(t,θi)

)
, (4)

where the approximation comes from using Monte-Carlo integration by sampling θi uniformly
in SD−1 [2]. While having significant computational advantages, this approach might require to

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

draw many unimportant projections that are computationally exhausting and that provide a minimal
improvement on the overall distance approximation.

The distributional sliced-Wasserstein distance (DSW) [25] solves this issue by finding the optimal
probability measure of slices σ(θ) on the unit sphere SD−1 and it’s defined as follows,

DSW p(π, ρ;C) := sup
σ∈MC

(
Eσ(θ)W

p
p

(
Rπ(t,θ),Rρ(t,θ)

))1/p

, (5)

where, for C > 0, MC is the set of probability measures σ such that Eθ,θ′∼σ
[
θ>θ′

]
≤ C (a

constraint that aims to avoid directions to lie in only one small area). Critically, the definition
of DSWD in Eq. 5 does not suffer from the curse of dimensionality, indeed [25] showed that the
statistical error of this estimation scales down with CD · n−

1
2 , where CD is a constant depending on

dimension D. Furthermore, while generally we have that DSWp(π, ρ) ≤Wp(π, ρ), it can be proved
that under mild assumptions on C, the two distances are topological equivalent, i.e. converging in
distribution on DSWp implies the convergence on Wp [see Theorem 2 in 25].

The direct computation of DSWp in Eq. 5 is still challenging but it admits an equivalent dual form,

sup
h∈H

{(
Eσ̄(θ)

[
W p
p

(
Rπ(t, h(θ)),Rρ(t, h(θ))

)])1/p

− λCEθ,θ′∼σ̄
[∣∣h(θ)>h(θ′)

∣∣]}+ λCC , (6)

where σ̄ is a uniform distribution in SD−1,H is a class of all Borel measurable functions SD−1 →
SD−1 and λC is a regularization hyper-parameter. The formulation in Eq. 6 is obtained by employing
the Lagrangian duality theorem and by reparameterizing σ(θ) as push-forward transformation of
a uniform measure in SD−1 via h. Now, by parameterizing h using a deep neural network1 with
parameters φ, defined as hφ, Eq. 6 becomes an optimization problem with respect to the network
parameters. The final step is to approximate the analytically intractable expectations with Monte
Carlo integration,

DSWp(π, ρ) ≈

max
φ

{[
1

K

K∑
i=1

[
W p
p

(
Rπ(t, hφ(θi)),Rρ(t, hφ(θi))

)]]1/p

− λC
K2

K∑
i,j=1

|hφ(θi)
>hφ(θj)|+ λCC

}
,

(7)

where θi are uniform samples from the unit sphere SD−1 and ∀t ∈ R. Finally, we can use stochastic
gradient methods to update φ and then use the resulting optima for the estimation of the original
distance.

B Numerical Implementation of Sliced-Wasserstein Distance

B.1 Wasserstein distance between two empirical 1D distributions

The Wasserstein distance between two one-dimensional distributions π and ρ is defined as in Eq. 2.
The integral in this equation can be numerically estimated by using the midpoint Riemann sum:∫ 1

0

|F−1
π (z)− F−1

ρ (z)|pdz ≈ 1

M

M∑
m=1

|F−1
π (zm)− F−1

ρ (zm)|p, (8)

where zm = 2m−1
M , M is the number of points used to approximate the integral. If we only have

samples from the distributions, xm ∼ π and ym ∼ ρ, we can obtain the empirical densities as follows

π(x) ≈ πM (x) =
1

M

M∑
m=1

δ(x− xm), (9)

ρ(y) ≈ ρM (y) =
1

M

M∑
m=1

δ(y − ym), (10)

1We use a single multi layer perceptron (MLP) layer with normalized output as the h function.

2

where δ is the Dirac delta function. The corresponding empirical cumulative density functions are

Fπ(z) ≈ Fπ,M (z) =
1

M

M∑
m=1

u(z − xm), (11)

Fρ(z) ≈ Fρ,M (z) =
1

M

M∑
m=1

u(z − ym), (12)

where M is the number of samples, u(·) is the step function.

Calculating the Wasserstein distance with the empirical distribution function is computationally
attractive. To do that, we first sort xms in an ascending order, such that xi[m] ≤ xi[m+1], where
i[m] is the index of the sorted xms. It is straightforward to show that F−1

π,M (zm) = xi[m]. Thus, the
Wasserstein distance can be approximated as follows

W p
p (π, ρ) ≈ 1

M

M∑
m=1

|xi[m] − yj[m]|p. (13)

B.2 Slicing empirical distribution

According to the equation Eq. 3, the marginal densities (i.e. slices) of the distribution π can be
obtained as follows

Rπ(t,θ) =

∫
π(x)δ(t− x>θ)dx, ∀t ∈ R. (14)

Because, in practice, only samples from the distributions are available we aim to calculate a Radon
slice of the empirical distribution of M samples πM = 1

M

∑M
m=1 δ(x− xm):

Rπ(t,θ) ≈ 1

M

M∑
m=1

∫
δ(x− xm)δ(t− x>θ)dx (15)

=
1

M

M∑
m=1

δ(t− x>mθ). (16)

By using the approximation in Eq. 16 and the empirical implementation of 1D Wasserstein distance
(Eq. 13), we are able to compute a proxy to the original distance in Eq. 5.

C Pseudocode of Prior Optimization Procedure
Algorithm 1 desribes the procedure of prior optimization for Bayesian autoencoders (BAEs).

Algorithm 1: Prior Optimization
Input: Empirical distribution π̃(y); prior over parameters pψ(w); number of prior samples NS ;

mini-batch size NB ; number of random projections K; regularization coefficient λC .
Output: The optimized prior’s parameters ψ

1 while ψ has not converged do
2 Sample x

def
= y = {yi}

NB
i=1 from π̃(y) // Sample input data

3 SampleW = {wi}NS
i=1 from pψ(w) // Sample parameters from the prior

4 foreach wi ∈ W do
/* Following steps are performed in a batch manner */

5 f i = (fdec ◦ fenc)(x) // Compute the functional outputs from Autoencoder

6 Sample ỹi from p(y | f i) // Sample from the likelihood

7 Gather samples ỹ = ∪{ỹi}
Ns
i=1

8 L = DSW2(y, ỹ;K,λC) // Compute the DSW2 distance using Eq. 7

9 ψ ← Optimizer(ψ,∇ψL) // Update prior’s parameters

10 Return: ψ

3

D Details on Stochastic gradient Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [24] is a highly-efficient Markov Chain Monte Carlo (MCMC)
method used to generate samples from the posterior w ∼ p(w |y). HMC considers the joint log-
likelihood as a pontential energy function U(w) = − log p(y |w)− log p(w), and introduces a set
of auxilary momentum variable r. Samples are generated from the joint distribution p(w, r) based
on the Hamiltonian dynamics: {

dw = M−1rdt,

dr = −∇U(w)dt,
(17)

where, M is an arbitrary mass matrix that plays the role of a preconditioner. In practice, this
continuous system is approximated by means of ε-discretized numerical integration, and followed by
Metropolis steps to accommodate numerical errors stemming from the integration.

However, HMC is not practical for large datasets due to the cost of computing the gradient∇U(w) =
∇ log(y |w) on the entire dataset. To mitigate this issue, [4] proposed stochastic gradient Hamiltonian
Monte Carlo (SGHMC), which uses a noisy, unbiased estimate of the gradient ∇Ũ(w) which is
computed from a mini-batch of the data. The discretized Hamiltonian dynamics are then updated as
follows {

∆w = εM−1r,

∆r = −ε∇Ũ(w)− εCM−1r +N (0, 2ε(C− B̃)),
(18)

where ε is an step size, C is an user-defined friction matrix, B̃ is the estimate for the noise of the
gradient evaluation. To choose these hyper-parameters, we use a scale-adapted version of SGHMC
[28], where the hyper-parameters are adjusted automatically during a burn-in phase. After this period,
all hyperparamteters stay fixed.

Estimating M. We set the mass matrix M−1 = diag
(
V̂
−1/2
w

)
, where V̂w is an estimate of

the uncentered variance of the gradient, V̂w ≈ E[(∇Ũ(w))2], which can be estimated by using
exponential moving average as follows

∆V̂w = −τ−1V̂w + τ−1∇(Ũ(w))2, (19)

where τ is a parameter vector that specifies the moving average windows. This parameter can be
automatically chosen by using an adaptive estimate [28] as follows

∆τ = −g2
wV̂
−1
w τ + 1, and, ∆gw = −τ−1gw + τ−1∇Ũ(w), (20)

where gw is a smoothed estimate of the gradient∇U(w).

Estimating B̃. The estimate for the noise of the gradient evaluation, B̃ should be ideally the
estimate of empirical Fisher information matrix of U(w), which is prohibitively expensive to compute.
Therefore, we use a diagonal approximation, B̃ = 1

2εV̂w, which is already available from the step of
estimating M.

Choosing C. In practice, one can simply set the friction matrix as C = CI, i.e. the same
independent noise for each elements of w.

The discretized Hamiltonian dynamics. By substituting v := εV̂
−1/2
w r, the dynamics Eq. 18

become {
∆w = v,

∆v = −ε2V̂
−1/2
w ∇Ũ(w)− εCV̂ −1/2

w v +N (0, 2ε3CV̂ −1
w − ε4I).

(21)

Following [28], we choose C such that εCV̂ −1/2
w = αI. This is equivalent to using a constant

momentum coefficient of α. The final discretized dynamics are then{
∆w = v,

∆v = −ε2V̂
−1/2
w ∇Ũ(w)− αv +N (0, 2ε2αV̂

−1/2
w − ε4I).

(22)

4

E PCA of the SGD Trajectory

Inspired by [14], we use the subspace spanned by the SGD trajectory to visualize neural network’s
parameters in a low-dimensional space. This subspace is cheap to construct and can capture many
of the sharp directions of the loss surface [14, 20, 23]. More specifically, we perform SGD starting
from a MAP solution with a constant learning rate. Here, the loss function is the negative log joint
likelihood of the BAE:

L(w) = −N
M

M∑
i=1

log p(yi |w)− log p(w), (23)

whereM is the mini-batch size andN is the size of training data. We store the deviations ai = w−wi

for the last M epochs, where w is the running average of the first moment, M is determined by
the amount of memory we can use. Then we perform PCA based on randomized SVD [10] on the
matrix A comprised of vectors a1, ...,aM to construct the subspace. The procedure is summarized in
Algorithm 2.

Algorithm 2: Subspace construction with PCA
Input: Pretrained paremeters wMAP; learning rate η; number of steps τ ; momentum update

frequency c; maximum number of columns M in deviation matrix A.
Output: Shift vector w; projection matrix P for subspace.

1 w← wMAP // Initialize mean

2 for i← 1, 2, ..., T do
3 wi ← wi−1 − η∇wL(wi−1) // Perform SGD update

4 if MOD(i, c) = 0 then
5 n← i/c // Number of models

6 w← nw+wi

n+1 // Update mean

7 if NUM COLS(A) = M then
8 REMOVE COL(A[:, 1])

9 APPEND COL(A,wi −w) // Store deviation

10 U,S,V> ← SV D(A) // Perform truncated SVD

11 Return: w, P = SV>

5

F Additional Details on Experimental Settings

F.1 Experimental environment

In our experiments, we use 4 workstations, which have the following specifications:

• GPU: NVIDIA Tesla P100 PCIe 16 GB.

• CPU: Intel(R) Xeon(R) (4 cores) @ 2.30GHz.

• Memory: 25.5 GiB (DDR3).

F.2 Preprocessing data

• MNIST [19]: The dataset is publicly available at http://yann.lecun.com/exdb/mnist.
We keep the original resolution of 1× 28× 28 of the MNIST dataset.

• FREY-YALE [6]: The FREY and YALE datasets are publicly availaibe at
http://cs.nyu.edu/~roweis/data.html and http://vision.ucsd.edu/
extyaleb/CroppedYaleBZip, respectivey. All the images of FREY and YALE
datasets are resized to the 1× 28× 28 resolution.

• CELEBA [21]: The dataset is publicly available at http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html. According to [7], we pre-process CELEBA images by first
taking a 148× 148 center crop and then resizing to the 3× 64× 64 resolution.

F.3 Network architectures

In our experiments, we use convolutional networks for modeling both encoders and decoders. For a
fair comparison, we employ the same network architecture for all models. The network’s parameters
are initialized by using the default scheme in PyTorch [27].

Table 1 shows details on the network architectures used in our experimental campaign.

MNIST FREY-YALE CELEBA

ENCODER: x ∈ R1×28×28

→ CONV32 → LEAKY RELU
→ CONV64 → LEAKY RELU
→ CONV64 → LEAKY RELU
→ CONV128 → LEAKY RELU
→ FLATTEN → FC50×M

x ∈ R1×28×28

→ CONV64 → LEAKY RELU
→ CONV128 → LEAKY RELU
→ CONV128 → LEAKY RELU
→ CONV256 → LEAKY RELU
→ FLATTEN → FC50×M

x ∈ R3×64×64

→ CONV64 → LEAKY RELU
→ CONV128 → LEAKY RELU
→ CONV256 → LEAKY RELU
→ CONV512 → LEAKY RELU
→ FLATTEN → FC50×M

DECODER: z ∈ R50 → FC7×7×128

→ LEAKY RELU
→ CONVT128 → LEAKY RELU
→ CONVT64 → LEAKY RELU
→ CONVT64 → LEAKY RELU
→ CONVT1 → SIGMOID

z ∈ R50 → FC7×7×256

→ LEAKY RELU
→ CONVT256 → LEAKY RELU
→ CONVT128 → LEAKY RELU
→ CONVT128 → LEAKY RELU
→ CONVT1 → SIGMOID

z ∈ R50 → FC8×8×512

→ LEAKY RELU
→ CONVT512 → LEAKY RELU
→ CONVT256 → LEAKY RELU
→ CONVT128 → LEAKY RELU
→ CONVT1 → SIGMOID

Table 1: Convolutional Encoder-Decoder architectures. CONVn denotes a convolutional layer with n filters,
whereas FCn represents a fully-connected layer with n units. All convolutions CONVn and transposed convo-
lutions CONVTn have a filter size of 4×4 for MNIST and FREY-YALE and 5×5 for CELEBA. M = 1 for all
models except for the Variational Autoencoders (VAEs) which have M = 2 as the encoder has to yield both
mean and variance for each input.

F.4 Prior optimiziation

As done in [25], we use a single-layer multilayer perceptron (MLP), hφ, to represent the Borel
measurable function in the dual form of DSWD (Eq. 7). At each iteration of Algorithm 1, to find
a local maxima, we optimize hφ for 30 epochs by using an Adam optimizer [17] with a learning
rate of 0.0005. We use another Adam optimizer with a learning rate of 0.001 to update the prior’s
parameters. We use a mini-batch size of NB = 64 and then generate Ns = 32 prior samples given
each data point. By default, we use K = 1000 random projections with a regularization coefficient
λC = 100 to estimate the 2-Wasserstein distance. The convergences of prior optimization on MNIST,
FREY and CELEBA datasets are illustrated in Fig. 8.

6

http://yann.lecun.com/exdb/mnist
http://cs.nyu.edu/~roweis/data.html
http://vision.ucsd.edu/extyaleb/CroppedYaleBZip
http://vision.ucsd.edu/extyaleb/CroppedYaleBZip
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

F.5 SGHMC hyper-parameters

In Table 2 we report the hyper-parameters used in the experiments on MNIST, YALE and CELEBA
datasets. As seen, we always use a fixed step size of 0.003, a momentum coefficient of 0.05, and a
mini-batch size of 64. The number of collected samples after thinning is 32. The number of burn-in
iterations and the thinning interval are increased according to the size of the training set.

MNIST YALE CELEBA

TRAINING SIZE 200 500 1000 2000 50 100 200 500 500 1000 2000 4000

MINI-BATCH SIZE 64 64 64 64 64 64 64 64 64 64 64 64
STEP SIZE (10−3) 3 3 3 3 3 3 3 3 3 3 3 3
MOMENTUM (10−2) 5 5 5 5 5 5 5 5 5 5 5 5
NUM. BURN-IN STEPS (103) 6 6 6 6 6 6 6 6 6 20 20 20
NUM. SAMPLES 32 32 32 32 32 32 32 32 32 32 32 32
THINNING INTERVAL (103) 1 1 1 2 1 1 1 1 1 2 3 5

Table 2: SGHMC hyper-parameters used in the experiments on MNIST, YALE and CELEBA datasets.

F.6 Competing approaches

• VAE [18]: The vanilla VAE model employed with a Gaussian encoder and a standard
Gaussian prior on the latent space.

• β-VAE [13]: The Kullback-Leibler divergence (KL) term in the VAE’s objective is weighted
by β = 0.1 to reduce the effect of the prior. This helps to avoid the over-regularization
problem of VAEs and improve reconstruction quality.

• VAE + Sylvester Flows [31]: One of the state-of-the-art normalizing flows for the encoder
of VAEs, which has richer expressiveness than VAE’s post-Gaussian encoder. As employed
in [31], we use Orthogonal Sylvester flows with 4 transformations and 32 orthogonal vectors.

• VAE + VampPrior [30]: A flexible prior for VAEs, which is a mixture of variational poste-
riors conditioned on learnable pseudo-observations. This allows the variational posterior
to learn more a potential latent representation. Due to using small training data, we use
100 trainable pseudo-observations in our experiments. We found that increasing more
pseudo-observations may hurt the predictive performance because of overfitting.

• 2-Stage VAE [5]: A simple and practical method to improve the quality of generated images
from VAEs by performing a form of ex-post density estimation via a second VAE. As
employed in [5], for the second-stage VAE, we use a MLP having three 1024-dimensional
hidden layers with ReLU activation function.

• WAE [29] Wasserstein Autoencoder: This model is an alternative of VAEs. By reformulating
the objective function as an optimal transport (OT) problem, Wasserstein Autoencoder (WAE)
regularizes the averaged encoding distribution instead of each data point. This encourages
the encoded training distribution to match the prior while still allowing to learn significant
information from the data. As suggested in [29], we use WAE-MMD with the inverse
multiquadratics kernel and a regularization coefficient λ = 10 due to its stability compared
to WAE-GAN. We impose the standard Gaussian prior on the latent space.

• NS-GAN [9]: a standard Generative Adversarial Network (GAN) with the non-saturating
loss, which has been shown to be robust to the choice of hyper-parameters on CELEBA [22].
For a fair comparison, we reuse the encoder and decoder architectures for the discriminator
and generator, respectively.

• DiffAugment-GAN [37]: a more complex architecture [STYLEGAN2, see 16] com-
bined with a powerful differentiable augmentation scheme, specifically developed for
low data regimes. We refer to the original work of [37] and the implementation in
https://github.com/mit-han-lab/data-efficient-gans for additional details on
the network architecture. We use the same latent size of 50, a maximum of 64 feature maps,
and all available augmentations (color, cutout and translation). The remaining parameters
are left at default value.

7

https://github.com/mit-han-lab/data-efficient-gans

All autoencoder models are trained for 200 epochs with an Adam optimizer [17] using the default
hyper-parameters in PyTorch, i.e. learning rate = 0.001, β1 = 0.9, β2 = 0.999. The NS-GAN
is trained for 200 epochs with a learning rate of 0.0002. The DiffAugment-GAN is trained with
learning rate of 0.001 for 1 million steps (expect for the case of 4 000 training samples, which was
extended for 2 millions steps).

F.7 Performance evaluation

Test log-likelihood. To evaluate the reconstruction quality, we use the mean predictive log-
likelihood evaluated over the test set. This metric tells us how probable it is that the test targets were
generated using the test inputs and our model. Notice that for the case of autoencoder models, the test
targets are exactly the test inputs. The predictive likelihood is a proper scoring rule [8] that depends
on both the accuracy of predictions and their uncertainty.

For BAE, as done in the literature of Bayesian neural networks (BNNs) [15, 26], we can estimate the
predictive likelihood for an unseen datapoint, y∗, as follows

Ep(w |y)[p(y
∗ |w)] ≈ 1

M

M∑
i=1

p(y∗ |wi), wi ∼ p(w |y),

where wi is a sample from the posterior p(w |y) obtained from the SGHMC sampler.

For VAEs, because the randomness comes from the latent code not the network’s parameters, we can
use MC approximation to estimate the predictive likelihood as follows

Eq(z |x∗)[p(y∗ | z)] ≈ 1

N

N∑
i=1

p(y∗ | zi), zi ∼ q(z |x∗),

where x∗
def
= y∗, and q(z |x∗) is the amortized approximate posterior. In our experiments, we use

N = 200.

For completeness, we also report the test marginal log-likelihood p(y) of VAEs, which is estimated
by the importance weighted sampling (IWAE) method [3]. More specifically,

IWAE = log

(
1

K

K∑
i=1

p(y∗, zi)

q(zi |x∗)

)
, zi ∼ q(z |x∗).

It can be shown that IWAE lower bounds log p(y∗) and can be arbitrarily close to the target as the
number of samples K grows. We use K = 1000 in the experiments. The full results of test marginal
log-likelihood are reported in Tables 7, 8 and 9.

FID score. To assess the quality of the generated images, we employed the widely used Fréchet
Inception Distance [12]. This metric is the Fréchet distance between two multivariate Gaussians, the
generated samples and real data samples are compared through their distribution statistics:

FID = ‖µreal − µgen‖2 + Tr(Σreal + Σgen − 2
√

ΣrealΣgen). (24)

Two distribution samples are calculated from the 2048-dimensional activations of pool3 layer of
Inception-v3 network 2. In our experiments, the statistics of generated and real data are computed
over 10000 generated images and test data, respectively.

2We use the original TensorFlow implementation of FID score which is available at https://github.com/
bioinf-jku/TTUR.

8

https://github.com/bioinf-jku/TTUR.
https://github.com/bioinf-jku/TTUR.

G Additional Results of Comparison with Temperature Scaling

In Bayesian deep learning, temperature scaling is a practical technique to improve predictive perfor-
mance [36, 14, 33]. There are two main approaches to tempering the posterior, namely (1) partial
tempering and (2) full tempering [1, 35]. In this section, we investigate rigorously the posteriors
induced by theN (0, 1) prior and optimized prior under different tempering settings. We use the same
setup of MNIST as in the main paper, with 200 examples for inference. For the optimized prior, we
use 100 training samples for learning prior. For the N (0, 1) prior, we use the union of 200 training
samples and the data used to optimized prior for training.

G.1 Partial Tempering

The partially tempered posterior is defined as follows [14, 34]

pτpartial(w |y) ∝ p(y |w)︸ ︷︷ ︸
likelihood

1/τ
p(w)︸ ︷︷ ︸

prior

,

where τ > 0 is a temperature value. This parameter controls how the prior and likelihood interact
in the posterior. When τ = 1 the true posterior is recovered, and as τ becomes large, the tempered
posterior approaches the prior. In the case of small training data and using a misspecified prior such
as N (0, 1), we would use a small temperature value (e.g. τ < 1) to reduce the effect of the prior.
This corresponds to artificially sharpening the posterior by overcounting the data by a factor of τ .

Fig. 1a shows the test log-likelihood (LL) on MNIST for BAE with N (0, 1) prior and different
temperature values. As expected, the predictive performance of the posterior obtained via low
temperatures τ < 1 is much better than those at high temperatures τ > 1. However, cooling the
posterior only shows slight improvement compared to the true posterior induced from the optimized
prior. In addition, in case τ > 1, where the influence of the posterior becomes stronger, the tempered
posterior w.r.t. the optimized prior is significantly better than using the N (0, 1) prior. This again
shows clearly that N (0, 1) is a poor prior for a deep BAE.

Fig. 2a illustrates samples from priors and posteriors in a low-dimensional space. We also consider
the posterior obtained from the entire training data and the N (0, 1) prior as “oracle” posterior. In
this case, the choice of the prior does not strongly affect the posterior as this is dominated by the
likelihood. It can be seen that, for high-temperature values τ > 1, the warm posteriors w.r.t. N (0, 1)
prior are stretched out as the prior effect is too strong. These posteriors are mismatched with the
“oracle” posterior as further confirmed by very low test log-likelihood. Meanwhile, due to the good
inductive bias from the optimized prior, the corresponding tempered posterior is still located in
regions nearby the “oracle” posterior. For low temperature values τ < 1, the cold posteriors are
more concentrated by overcounting evidence. However, if we use a very small temperature (e.g.
τ = 10−5), the resulting posterior overly concentrates around the maximum likelihood estimation
(MLE), becoming too constrained by the training data.

10−5 0.1 1 10 104

500

1000

1500

Temperature τ

Lo
g-

lik
el

ih
oo

d
(→

)

10−5 10−3 0.10.5 1

1500

1600

1700

1800

τ ≤ 1

(a) Partial tempering.

10−510−3 0.1 1 5 10

500

1000

1500

Temperature τ

Lo
g-

lik
el

ih
oo

d
(→

)

10−5 10−3 0.10.5 1

1500

1600

1700

1800

τ ≤ 1

(b) Full tempering.

BAE +N (0, 1) Prior BAE + Optim. Prior

Figure 1: Test LL as a function of temperature on MNIST using BAE with N (0, 1) prior. The dotted lines
indicate the best performance of LL.

9

G.2 Full Tempering

For the fully tempered posterior, instead of scaling the likelihood term only, we scale the whole
posterior as follows

pτfull(w |y) ∝
(
p(y |w)︸ ︷︷ ︸
likelihood

p(w)︸ ︷︷ ︸
prior

)1/τ
.

The only difference between partial and full tempering is whether we scale the prior. If we place
Gaussian priors on the parameters, this scaling can be absorbed into the prior variance, σ2

full =
σ2

partial/τ .

Recently, [33] argues that BNNs require a cold posterior, where a τ < 1 is employed, to obtain a
good performance. However, we hypothesize that the cold posterior effect may originate from using a
poor prior. In this case, as shown in Fig. 1b, the results of full tempering are similar to those of partial
tempering. Cooling the posterior only helps to increase slightly predictive performance for N (0, 1)
prior. We also observe that the Markov chain Monte Carlo (MCMC) sampling is not converged if a
very large τ is employed, thus we only consider small values of τ (e.g. τ ∈ {5, 10}). In these cases,
as depicted in Fig. 2b, the samples from the posterior may be outside of the hypothesis space of the
optimized prior.

In sum, the true posterior induced from our optimized prior is remarkably better than any types of
tempered posteriors. These results suggest that, in the small-data regime, we should choose carefully
a more sensible prior rather than simply using a vague prior and overcounting the data.

10

τ = 104 τ = 103 τ = 102

τ = 10 τ = 5 τ = 1

τ = 0.5 τ = 0.1 τ = 10−2

τ = 10−3 τ = 10−4 τ = 10−5

(a) Partial tempering.

τ = 10 τ = 5 τ = 1

τ = 0.5 τ = 0.1 τ = 10−2

τ = 10−3 τ = 10−4 τ = 10−5

(b) Full tempering.

Optim. Prior Posterior (Optim. Prior + �)
N (0, 1) Prior Posterior (N (0, 1) Prior +F) Posterior (N (0, 1) Prior + �)

Figure 2: Visualization of samples from priors and posteriors of BAE’s parameters in the plane spanned by
eigenvectors of the SGD trajectory. � indicates using 200 samples for training; F indicates using the union of
these samples and 100 samples used for learning the prior; � denotes using all 60000 training samples. Here, τ
is the temperature value used for the � and F cases. All plots are produced using convolutional BAE on MNIST.

11

H Ablation Studies

H.1 Additional results of ablation study on the size of the dataset to optimize priors

In this experiment, we demonstrate that we can obtain a sensible result by using a small number of
training instances to optimize the prior. Here, we use a set of 200 samples of 0-9 digits for inference,
and another dataset also consisting of 0-9 digits for optimizing the prior. Fig. 5 shows the predictive
performance and samples from the posterior. We observe that the performance gain by using more
data is not significant. We can achieve sensible results by using only about 10-50 samples for each
class. In addition, as illustrated in the low-dimensional space (Fig. 5), the hypothesis space of the
prior is not collapsed as we increase the size of the dataset used to optimize the prior. As a result, the
predictive posterior is also not concentrated to the MLE solutions as further demonstrated in Fig. 4.
This behavior is very different from overcounting the data by using temperature scaling, where the
posterior becomes more concentrated as the temperature is decreased. This again demonstrates the
practicality of our proposed method in the small-data regime.

H.2 Effect of the dimensionality of latent space

Fig. 3 illustrates the predictive performance of VAEs and BAEs in terms test LL on MNIST for
different size of the latent space and training size. It is clear that BAEs with optimized prior
consistently outperforms other competitors across all dimensionalities of the latent space and training
sizes.

10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

1600

1700

1800

1900

Dimension of latent space

Te
st

lo
g-

lik
el

ih
oo

d
(→

)

200 500 1000 2000

1600

1700

1800

1900

Training size

WAE VAE β-VAE
VAE + Sylvester Flows VAE + Vamp Prior
BAE +N (0, 1) Prior BAE + Optim. Prior

Figure 3: Ablation study on the test LL on MNIST dataset for different sizes of the latent space and training
sizes.

H.3 Visualizing 2-dimensional latent space

We run several experiments with a low latent space (K = 2) to test the efficacy of VAEs and BAEs as
dimensionality reduction techniques. Fig. 6 shows the results, where each color represents an MNIST
digit. As seen, BAE with optimized prior produces a more well-defined class structure in comparision
with other methods.

We also consider the 2D latent space to visualize that ex-post density estimation with Dirichlet
Process Mixture Model (DPMM) helps to reduce the mismatch between the aggregated posterior
and the prior. As can be seen from Fig. 7, there are large mismatches between aggregated posterior
of VAEs and the N (0, 1) prior. We can reduce this problem by using a more expressive prior like
VampPrior, or performing ex-post density estimation with a second VAE. For BAEs, it is clear that
the flexible DPMM estimator effectively fixes the mismatch and this results in better sample quality
as reported in the main paper.

12

102 5 · 102 103 5 · 103 104 5 · 104
0

10

20

Num. data points |M|
A

vg
.

va
ria

nc
e

Optimizing Prior

(a)

10−510−410−310−210−1 0.5 1

0

10

20

Temperature τ

A
vg

.
va

ria
nc

e

Tempering Posterior

(b)

Figure 4: The average predictive variance computed over test datapoints as a function of (a) the number of
data points used to optimize prior, and (b) the temperature used for cooling the posterior. Here, we use 200
datapoints from MNIST dataset for inference. In figure (a), we use the optimized prior and consider the true
poserior without any tempering. In figure (b), we use the standard Gaussian prior and employ partial tempering
for the posterior.

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 100
|M| = 100; LL = 1721.3

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 500
|M| = 500; LL = 1760.1

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 1000 |M| = 1000; LL = 1778.4

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 5000 |M| = 5000; LL = 1807.2

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 10000 |M| = 10000; LL = 1813.2

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 50000 |M| = 50000; LL = 1821.1

Optim. Prior Posterior (Optim. Prior + �) Posterior (N (0, 1) Prior + �)

Figure 5: Visualization of convergence Wasserstein optimization, and samples from priors and posteriors of
BAE’s parameters in the plane spanned by eigenvectors of the SGD trajectory corresponding to the first and
second largest eigenvalues. Here, |M| is the size of dataset used for optimizing the prior; � indicates using 200
training samples for inference; � denotes using all 60000 training samples for inference; LL denotes the test
log-likelihood performance of the posterior w.r.t. the optimized prior. All plots are produced using convolutional
BAE on MNIST.

13

Figure 6: Visualization of 2D latent spaces of variants of autoencoders on MNIST test set where each color
represents a digit classs. We consider only 5 classes for easier visualization and comparison. All models are
trained on 1000 training samples from MNIST dataset.

Figure 7: Diffrent priors and density estimations on the 2-dimensional latent space of VAEs and BAEs. All
models are trained on 1000 training samples from MNIST dataset. The gray points are test set samples while the
red ones are samples from priors / density estimators. Here, we employ the isotropic Gaussian prior on the latent
space of WAE, VAE, β-VAE and VAE with Sylveser Flows. The VampPrior is learned to explicitly model the
aggregated posterior while 2-Stage VAE uses another VAE to estimate the density of the learned latent space.
Meanwhile, for BAEs, we use DPMMs for ex-post density estimation.

14

I Additional Results

I.1 Convergence of Wasserstein optimization

Fig. 8 depicts the progressions of Wasserstein optimization in the MNIST, FREY-YALE and CELEBA
experiments.

0 500 1000 1500 2000

0

100

200

Time≈ 16m 27s

Iteration

W
as

se
rs

te
in

di
st

.

MNIST

0 500 1000 1500 2000

0

100

200

Time≈ 18m 32s

Iteration

FREY

0 500 1000 1500 2000
0

100

200

300

Time≈ 2h 27m

Iteration

CELEBA

Figure 8: Convergence of Wasserstein optimization. The shaded areas represent the standard deviation computed
over 4 random data splits.

15

I.2 Tabulated results

Detailed results on MNIST, YALE and CELEBA datasets are reported from Table 3 to Table 9.

LOG LIKELIHOOD (↑)
TRAINING SIZE 200 500 1000 2000

WAE 1590.0 (11.0) 1732.7 (19.2) 1809.5 (11.1) 1857.4 (4.8)
F WAE 1675.2 (10.6) 1779.6 (10.2) 1839.3 (6.1) 1871.1 (3.1)

VAE 1635.1 (8.0) 1744.6 (4.5) 1805.5 (4.8) 1847.1 (3.7)
F VAE 1697.0 (9.9) 1776.2 (6.8) 1829.5 (2.8) 1849.9 (4.4)

β-VAE 1626.2 (10.3) 1749.7 (9.2) 1812.8 (3.8) 1862.3 (4.9)
F β-VAE 1698.2 (8.0) 1780.2 (9.3) 1841.2 (3.4) 1871.9 (4.4)

VAE + SYLVESER FLOWS 1635.4 (6.1) 1743.5 (1.5) 1799.1 (5.5) 1836.3 (7.2)
F VAE + SYLVESER FLOWS 1711.4 (3.0) 1781.0 (2.9) 1816.7 (6.2) 1848.1 (6.5)

VAE + VAMPPRIOR 1543.0 (12.6) 1669.9 (22.0) 1756.8 (2.6) 1818.6 (3.6)
F VAE + VAMPPRIOR 1609.6 (14.4) 1732.1 (14.2) 1798.1 (5.4) 1839.3 (4.0)

BAE + N (0, 1) PRIOR 1609.0 (10.6) 1761.0 (9.1) 1837.6 (18.4) 1827.9 (5.7)
F BAE + N (0, 1) PRIOR 1681.2 (24.5) 1798.6 (22.8) 1827.0 (35.9) 1842.2 (37.4)

BAE + OPTIM. PRIOR (OURS) 1743.5 (12.0) 1845.1 (1.2) 1879.1 (6.3) 1906.8 (1.1)

Table 3: Evaluation of all methods in terms of test log-likelihood (the higher, the better) on MNIST. The
parentheses are the standard deviations. F indicates that we use the union of the training data and the data used
to optimize prior to train the model.

LOG LIKELIHOOD (↑)
TRAINING SIZE 50 100 200 500

WAE 689.7 (10.4) 724.8 (4.4) 754.5 (3.9) 787.0 (0.7)
F WAE 718.4 (0.9) 740.6 (4.6) 765.7 (2.2) 794.3 (1.6)

VAE 692.3 (8.4) 723.5 (2.8) 738.4 (3.2) 774.1 (1.3)
F VAE 701.2 (5.9) 728.2 (3.5) 749.4 (2.0) 774.8 (2.1)

β-VAE 707.1 (5.7) 733.8 (8.5) 761.1 (3.4) 791.8 (0.7)
F β-VAE 712.1 (7.6) 737.8 (4.7) 763.4 (1.3) 790.8 (1.5)

VAE + SYLVESTER FLOWS 705.4 (4.8) 729.3 (4.4) 738.2 (1.6) 766.8 (0.9)
F VAE + SYLVESTER FLOWS 682.1 (11.7) 716.3 (4.3) 739.6 (2.1) 765.3 (1.2)

VAE + VAMPPRIOR 690.0 (6.9) 722.8 (1.9) 740.6 (1.8) 766.8 (2.7)
F VAE + VAMPPRIOR 691.7 (6.1) 716.9 (4.7) 737.8 (5.3) 764.2 (2.2)

BAE + N (0, 1) PRIOR 426.1 (27.6) 668.8 (12.8) 724.9 (21.2) 775.5 (4.6)
F BAE + N (0, 1) PRIOR 388.0 (13.6) 570.4 (9.1) 688.2 (5.1) 752.5 (1.0)

BAE + OPTIM. PRIOR (OURS) 730.3 (3.0) 754.3 (3.1) 771.6 (3.0) 793.5 (2.0)

Table 4: Evaluation of all methods in terms of test log-likelihood (the higher, the better) on YALE. The same
interpretation as Table 3.

16

LOG LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

WAE 5732.6 (35.3) 6266.4 (73.4) 6703.6 (24.9) 6928.3 (32.5)
F WAE 6509.7 (49.2) 6659.8 (30.4) 6864.0 (23.7) 7021.6 (24.3)

VAE 5914.2 (78.3) 6406.4 (39.6) 6683.6 (87.5) 6976.4 (11.9)
F VAE 6460.1 (33.7) 6694.1 (63.1) 6831.8 (97.2) 7039.5 (36.5)

β-VAE 5710.2 (49.0) 6192.5 (91.9) 6640.6 (139.4) 7000.9 (7.9)
F β-VAE 6445.3 (94.0) 6654.6 (44.5) 6859.0 (39.8) 7007.7 (86.3)

VAE + SYLVESTER FLOWS 5481.6 (108.4) 5984.2 (37.4) 6415.5 (33.5) 6699.9 (46.9)
F VAE + SYLVESTER FLOWS 6241.3 (149.2) 6437.2 (58.2) 6519.9 (88.5) 6831.5 (121.2)

VAE + VAMPPRIOR 5776.6 (95.9) 6242.2 (92.2) 6691.5 (24.4) 6999.7 (15.9)
F VAE + VAMPPRIOR 6531.7 (61.5) 6591.6 (97.4) 6868.3 (27.8) 6990.7 (37.3)

2-STAGE VAE 5914.2 (78.3) 6406.4 (39.6) 6683.6 (87.5) 6976.4 (11.9)
F 2-STAGE VAE 6460.1 (33.7) 6694.1 (63.1) 6831.8 (97.2) 7039.5 (36.5)

BAE + N (0, 1) PRIOR 5581.9 (70.8) 6273.3 (54.2) 6848.3 (15.1) 7154.5 (15.6)
F BAE + N (0, 1) PRIOR 6574.1 (46.6) 6826.5 (31.0) 7038.3 (17.8) 7223.1 (13.2)

BAE + OPTIM. PRIOR (OURS) 6781.3 (32.4) 7065.8 (15.0) 7244.7 (8.7) 7370.0 (13.2)

Table 5: Evaluation of all methods in terms of test log-likelihood (the higher, the better) on CELEBA. The same
interpretation as Table 3.

FID (↓)
TRAINING SIZE 500 1000 2000 4000

WAE 342.14 (19.02) 309.79 (12.58) 275.10 (8.71) 253.06 (5.52)
F WAE 294.26 (8.41) 276.24 (10.49) 261.64 (6.08) 246.92 (3.28)

VAE 271.70 (5.12) 240.69 (3.44) 230.61 (7.05) 209.08 (6.28)
F VAE 248.18 (12.20) 237.29 (12.48) 231.50 (14.17) 206.92 (9.91)

β-VAE 323.00 (10.88) 295.54 (12.45) 276.71 (15.61) 250.61 (5.30)
F β-VAE 285.81 (5.58) 277.44 (12.97) 271.82 (6.69) 262.72 (17.92)

VAE + SYLVESTER FLOWS 221.71 (10.50) 214.94 (12.01) 207.86 (9.93) 198.94 (10.10)
F VAE + SYLVESTER FLOWS 210.24 (3.48) 215.00 (5.79) 204.42 (11.86) 179.26 (49.53)

VAE + VAMPPRIOR 144.41 (16.61) 131.02 (2.22) 112.82 (4.05) 96.20 (2.79)
F VAE + VAMPPRIOR 120.02 (8.62) 120.23 (7.16) 102.67 (7.61) 95.95 (4.86)

2-STAGE VAE 78.23 (2.56) 69.37 (2.39) 67.69 (1.55) 74.47 (4.52)
F 2-STAGE VAE 72.21 (3.05) 69.25 (3.32) 72.64 (4.62) 84.95 (3.91)

NS-GAN 252.33 (27.03) 171.18 (15.51) 205.05 (97.46) 128.29 (3.81)
F NS-GAN 151.28 (2.27) 150.74 (4.39) 137.64 (4.14) 139.43 (8.77)

F DIFFAUGMENT-GAN 66.09 (0.27) 58.76 (0.17) 50.22 (2.62) 45.14 (0.13)

BAE + N (0, 1) PRIOR 89.36 (4.56) 81.31 (2.50) 72.50 (1.37) 71.85 (0.17)
F BAE + N (0, 1) PRIOR 86.03 (3.53) 75.86 (0.45) 71.21 (1.41) 70.72 (0.39)

BAE + OPTIM. PRIOR (OURS) 68.59 (3.08) 66.11 (0.96) 68.34 (0.86) 67.18 (0.80)

Table 6: Evaluation of all methods in terms of FID (the lower, the better) on CELEBA. The same interpretation
as Table 3.

17

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 200 500 1000 2000

VAE 1648.2 (10.1) 1744.0 (5.6) 1795.1 (2.6) 1829.7 (2.5)
F VAE 1702.4 (8.9) 1771.0 (6.7) 1816.2 (4.6) 1832.2 (4.8)

β-VAE 1497.1 (12.5) 1625.9 (7.7) 1687.3 (3.8) 1734.4 (4.2)
F β-VAE 1570.1 (7.8) 1655.7 (7.9) 1715.2 (2.9) 1747.1 (5.6)

VAE + SYLVESTER FLOWS 1627.0 (6.9) 1709.8 (1.8) 1755.4 (4.6) 1783.3 (5.5)
F VAE + SYLVESTER FLOWS 1688.0 (3.2) 1741.8 (2.5) 1771.4 (3.2) 1794.8 (5.0)

VAE + VAMPPRIOR 1545.6 (10.5) 1681.7 (20.2) 1758.4 (4.1) 1810.7 (2.2)
F VAE + VAMPPRIOR 1616.3 (15.3) 1737.5 (11.4) 1795.6 (4.8) 1829.1 (2.6)

Table 7: Evaluation of all methods in terms of test log marginal likelihood of VAE models (the higher, the
better) on MNIST. The same interpretation as Table 3.

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 50 100 200 500

VAE 693.8 (7.8) 720.8 (3.4) 734.5 (2.8) 767.2 (0.6)
F VAE 704.2 (5.6) 723.7 (3.1) 742.4 (1.9) 765.1 (1.2)

β-VAE 628.1 (2.7) 655.2 (9.9) 683.0 (3.9) 712.5 (1.6)
F β-VAE 658.5 (13.4) 683.9 (5.4) 707.2 (2.7) 731.5 (2.3)

VAE + SYLVESTER FLOWS 668.6 (5.2) 686.5 (3.4) 695.1 (1.5) 718.0 (0.8)
F VAE + SYLVESTER FLOWS 655.6 (4.9) 677.2 (3.8) 695.7 (0.7) 717.2 (0.7)

VAE + VAMPPRIOR 672.7 (7.9) 697.4 (6.8) 733.4 (3.2) 759.0 (1.2)
F VAE + VAMPPRIOR 703.9 (4.2) 721.5 (4.0) 736.8 (4.1) 760.0 (2.2)

Table 8: Evaluation of all methods in terms of test log marginal likelihood (the higher, the better) of VAE models
on YALE. The same interpretation as Table 3.

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

VAE 5973.4 (66.7) 6416.6 (36.6) 6673.7 (82.6) 6943.4 (8.7)
F VAE 6470.0 (30.7) 6676.7 (57.4) 6807.6 (89.3) 7001.2 (37.5)

β-VAE 5496.0 (52.9) 6007.8 (89.8) 6457.8 (147.2) 6820.1 (7.4)
F β-VAE 6294.4 (98.1) 6472.2 (46.1) 6680.5 (42.8) 6844.6 (93.9)

VAE + SYLVESTER FLOWS 5545.8 (97.8) 5988.2 (40.9) 6387.9 (37.8) 6649.9 (47.1)
F VAE + SYLVESTER FLOWS 6226.9 (140.3) 6406.2 (53.7) 6485.3 (85.4) 6787.9 (126.9)

VAE + VAMPPRIOR 5842.2 (82.8) 6273.8 (86.3) 6682.6 (16.8) 6984.6 (7.4)
F VAE + VAMPPRIOR 6538.3 (62.4) 6595.9 (93.8) 6852.3 (18.6) 6966.1 (28.0)

Table 9: Evaluation of all methods in terms of test log marginal likelihood (the higher, the better) of VAE models
on CELEBA. The same interpretation as Table 3.

18

LOG LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

WAE 7418.8 (123.3) 8342.0 (73.8) 8840.3 (26.7) 9230.2 (0.0)
F WAE 8644.3 (72.7) 8889.5 (58.5) 9033.6 (97.5) 9257.9 (68.2)

VAE 7575.3 (60.1) 8343.9 (42.3) 8817.6 (124.7) 9251.8 (23.9)
F VAE 8608.2 (15.8) 8855.1 (65.7) 9079.7 (50.0) 9276.7 (12.2)

β-VAE 7632.0 (115.3) 8220.7 (161.7) 8910.7 (33.9) 9305.2 (14.2)
F β-VAE 8647.3 (30.1) 8768.6 (60.4) 9132.0 (22.1) 9290.8 (87.5)

VAE + SYLVESTER FLOWS 6976.7 (162.5) 7898.8 (106.1) 8430.5 (58.6) 8939.1 (53.5)
F VAE + SYLVESTER FLOWS 8240.8 (45.2) 8446.7 (40.6) 8700.4 (65.6) 9045.1 (48.8)

VAE + VAMPPRIOR 7447.5 (77.9) 8251.2 (39.5) 8775.4 (40.9) 9261.8 (14.0)
F VAE + VAMPPRIOR 8466.2 (50.7) 8814.3 (61.2) 9069.2 (41.1) 9355.3 (9.5)

2-STAGE VAE 7575.3 (60.1) 8343.9 (42.3) 8817.6 (124.7) 9251.8 (23.9)
F 2-STAGE VAE 8608.2 (15.8) 8855.1 (65.7) 9079.7 (50.0) 9276.7 (12.2)

BAE + N (0, 1) PRIOR 7097.4 (75.0) 8299.5 (7.6) 9009.8 (11.4) 9326.9 (8.4)
F BAE + N (0, 1) PRIOR 8562.8 (43.8) 8770.5 (158.6) 9219.2 (9.2) 9380.2 (97.2)

BAE + OPTIM. PRIOR (OURS) 8975.1 (32.4) 9244.3 (15.2) 9424.8 (7.2) 9629.5 (3.9)

Table 10: Evaluation of all methods in terms of test log-likelihood (the higher, the better) on CELEBA. Here,
all models are employ with the truncated Gaussian likelihood. The same interpretation as Table 5.

FID (↓)
TRAINING SIZE 500 1000 2000 4000

WAE 328.85 (17.16) 296.43 (7.93) 291.25 (12.45) 247.82 (0.00)
F WAE 287.16 (22.87) 273.54 (6.44) 279.81 (17.56) 255.96 (13.60)

VAE 299.73 (5.21) 271.97 (5.50) 248.95 (13.13) 235.11 (6.48)
F VAE 255.93 (12.86) 256.20 (4.28) 242.79 (9.26) 231.78 (7.74)

β-VAE 334.00 (9.85) 322.93 (14.36) 295.70 (7.74) 283.72 (4.58)
F β-VAE 307.30 (9.06) 301.14 (8.67) 286.14 (7.51) 276.94 (9.99)

VAE + SYLVESTER FLOWS 238.95 (16.95) 239.26 (19.51) 229.78 (8.82) 217.97 (9.79)
F VAE + SYLVESTER FLOWS 231.82 (9.54) 243.18 (2.56) 221.53 (5.51) 206.25 (6.18)

VAE + VAMPPRIOR 127.05 (6.18) 126.32 (4.19) 105.52 (3.60) 97.56 (1.08)
F VAE + VAMPPRIOR 110.61 (1.29) 113.03 (1.67) 101.26 (3.58) 88.87 (1.50)

2-STAGE VAE 97.77 (1.01) 92.52 (2.81) 95.63 (3.19) 101.73 (5.24)
F 2-STAGE VAE 90.01 (11.92) 95.29 (6.39) 100.32 (2.41) 105.47 (3.99)

BAE + N (0, 1) PRIOR 84.11 (4.09) 72.54 (2.21) 67.87 (0.61) 67.00 (0.44)
F BAE + N (0, 1) PRIOR 78.06 (1.42) 78.13 (6.90) 66.55 (0.87) 70.47 (6.95)

BAE + OPTIM. PRIOR (OURS) 62.75 (3.61) 62.42 (1.20) 62.17 (0.89) 58.84 (1.26)

Table 11: Evaluation of all methods in terms of FID (the lower, the better) on CELEBA. Here, all models are
employed with the truncated Gaussian likelihood. The same interpretation as Table 6.

19

I.3 More qualitative results

Figure 9: Qualitative evaluation for sample quality for autoencoders and GANs on CELEBA. Here, we use 500
samples for training/inference.

(a) WAE (b) VAE (c) β-VAE

(d) VAE + Sylvester Flows (e) VAE + VampPrior (f) 2Stage-VAE

(g) NS-GAN (h) StyleGAN2 + DiffAugment (i) BAE +N (0, 1) Prior

(j) BAE + Optim. Prior (Ours)

20

Figure 10: Qualitative evaluation for sample quality for autoencoders with the truncated Gaussian likelihood
on CELEBA. Here, we use 500 samples for training/inference.

(a) WAE (b) VAE (c) β-VAE

(d) VAE + Sylvester Flows (e) VAE + VampPrior (f) 2Stage-VAE

(g) BAE +N (0, 1). Prior (h) BAE + Optim. Prior (Ours)

21

CELEBA - RECONSTRUCTIONS

GROUND TRUTH

F WAE

F VAE

F β-VAE

F VAE + SYLVESTER FLOWS

F VAE + VAMPPRIOR

F 2-STAGE VAE

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 12: Qualitative evaluation for reconstructed samples on CELEBA. F indicates that we use the union of
the training data and the data used to optimize prior to train the model. Here, the training size is 1000.

CELEBA - RECONSTRUCTIONS

GROUND TRUTH

F WAE

F VAE

F β-VAE

F VAE + SYLVESTER FLOWS

F VAE + VAMPPRIOR

F 2-STAGE VAE

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 13: Qualitative evaluation for reconstructed samples on CELEBA with the truncated Gaussian likelihood.
F indicates that we use the union of the training data and the data used to optimize prior to train the model.
Here, the training size is 1000.

22

MNIST - RECONSTRUCTIONS

GROUND TRUTH

WAE

F WAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 14: Qualitative evaluation for reconstructed samples on MNIST. F indicates that we use the union of the
training data and the data used to optimize prior to train the model. Here, the training size is 200.

23

MNIST - GENERATED SAMPLES

WAE

F WAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 15: Qualitative evaluation for generated samples on MNIST. F indicates that we use the union of the
training data and the data used to optimize prior to train the model. Here, the training size is 200.

24

YALE - RECONSTRUCTIONS

GROUND TRUTH

WAE

F WAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 16: Qualitative evaluation for reconstructed samples on YALE. F indicates that we use the union of the
training data and the data used to optimize prior to train the model. Here, the training size is 500.

25

YALE - GENERATED SAMPLES

WAE

F WAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table 17: Qualitative evaluation for generated samples on YALE. F indicates that we use the union of the
training data and the data used to optimize prior to train the model. Here, the training size is 500.

26

References
[1] L. Aitchison. A Statistical Theory of Cold Posteriors in Deep Neural Networks. In International Conference

on Learning Representations, 2021.

[2] N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and Radon Wasserstein Barycenters of Measures.
Journal of Mathematical Imaging and Vision, 51(1):22–45, 2015.

[3] Y. Burda, R. B. Grosse, and R. Salakhutdinov. Importance Weighted Autoencoders. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[4] T. Chen, E. Fox, and C. Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In Proceedings of the 31st
International Conference on Machine Learning, ICML 2014, Proceedings of Machine Learning Research,
pages 1683–1691, Bejing, China, 22–24 Jun 2014. PMLR.

[5] B. Dai and D. Wipf. Diagnosing and Enhancing VAE Models. In International Conference on Learning
Representations, 2019.

[6] Z. Dai, A. C. Damianou, J. González, and N. D. Lawrence. Variational Auto-encoded Deep Gaussian
Processes. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[8] T. Gneiting and A. E. Raftery. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the
American statistical Association, 102(477):359–378, 2007.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative Adversarial Nets. In Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

[10] N. Halko, P. Martinsson, and J. A. Tropp. Finding Structure with Randomness: Probabilistic Algorithms
for Constructing Approximate Matrix Decompositions. SIAM Rev., 53(2):217–288, 2011.

[11] S. Helgason. Integral Geometry and Radon Transforms. Springer Science & Business Media, 2010.

[12] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained by a Two Time-
Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 6626–6637, 2017.

[13] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[14] P. Izmailov, W. Maddox, P. Kirichenko, T. Garipov, D. P. Vetrov, and A. G. Wilson. Subspace Inference
for Bayesian Deep Learning. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, volume 115 of Proceedings of Machine Learning
Research, pages 1169–1179. AUAI Press, 2019.

[15] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson. What Are Bayesian Neural Network Posteriors
Really Like? In Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 June 2021, Virtual Event, 2021.

[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and Improving the Image
Quality of StyleGAN. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 8107–8116. IEEE, 2020.

[17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International Conference on
Learning Representations, 2015.

[18] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference on Learning
Representations, 2014.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

27

[20] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the Loss Landscape of Neural Nets.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 6391–6401,
2018.

[21] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
3730–3738. IEEE Computer Society, 2015.

[22] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are GANs Created Equal? A Large-
Scale Study. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
698–707, 2018.

[23] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A Simple Baseline for Bayesian
Uncertainty in Deep Learning. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 13132–13143, 2019.

[24] R. M. Neal. MCMC Using Hamiltonian Dynamics, chapter 5. CRC Press, 2011.

[25] K. Nguyen, N. Ho, T. Pham, and H. Bui. Distributional Sliced-Wasserstein and Applications to Generative
Modeling. In International Conference on Learning Representations, 2021.

[26] K. Osawa, S. Swaroop, M. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R. Yokota. Practical
Deep Learning with Bayesian Principles. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 4289–4301, 2019.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems, volume 32, pages 8026–8037. Curran Associates,
Inc., 2019.

[28] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian Optimization with Robust Bayesian
Neural Networks. In Advances in Neural Information Processing Systems, volume 29, pages 4134–4142.
Curran Associates, Inc., 2016.

[29] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein Auto-Encoders. In International
Conference on Learning Representations, 2018.

[30] J. M. Tomczak and M. Welling. VAE with a VampPrior. In International Conference on Artificial
Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain, volume 84 of Proceedings of Machine Learning Research, pages 1214–1223. PMLR, 2018.

[31] R. van den Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester Normalizing Flows for Varia-
tional Inference. In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 393–402. AUAI Press, 2018.

[32] C. Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business Media, 2008.

[33] F. Wenzel, K. Roth, B. S. Veeling, J. Świa̧tkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans, R. Jenatton,
and S. Nowozin. How Good is the Bayes Posterior in Deep Neural Networks Really? In Proceeding of the
37th International Conference on Machine Learning, ICML 2020, Virtual, 25-30 June 2020.

[34] A. G. Wilson and P. Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[35] C. Zeno, I. Golan, A. Pakman, and D. Soudry. Why Cold Posteriors? On the Suboptimal Generalization of
Optimal Bayes Estimates. In Third Symposium on Advances in Approximate Bayesian Inference, 2021.

[36] G. Zhang, S. Sun, D. Duvenaud, and R. B. Grosse. Noisy Natural Gradient as Variational Inference. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
5847–5856. PMLR, 2018.

[37] S. Zhao, Z. Liu, J. Lin, J. Zhu, and S. Han. Differentiable Augmentation for Data-Efficient GAN Training.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

28

	Derivation of Distributional Sliced-Wasserstein Distance
	(Distributional) Sliced-Wasserstein Distance

	Numerical Implementation of Sliced-Wasserstein Distance
	Wasserstein distance between two empirical 1D distributions
	Slicing empirical distribution

	Pseudocode of Prior Optimization Procedure
	Details on Stochastic gradient Hamiltonian Monte Carlo
	PCA of the SGD Trajectory
	Additional Details on Experimental Settings
	Experimental environment
	Preprocessing data
	Network architectures
	Prior optimiziation
	SGHMC hyper-parameters
	Competing approaches
	Performance evaluation

	Additional Results of Comparison with Temperature Scaling
	Partial Tempering
	Full Tempering

	Ablation Studies
	Additional results of ablation study on the size of the dataset to optimize priors
	Effect of the dimensionality of latent space
	Visualizing 2-dimensional latent space

	Additional Results
	Convergence of Wasserstein optimization
	Tabulated results
	More qualitative results

