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ABSTRACT

Few-shot image classification remains a fundamental challenge, as learning trans-
ferable representations from only a handful of examples often fails to generalize
to unseen concepts. Recent advances benefit pre-trained vision-language models
such as CLIP, yet their inherent biases and limited task adaptability hinder ro-
bust performance. We propose a novel graph-driven cache refinement framework
that improves CLIP’s prior knowledge with task-specific representation learning
while preserving its lightweight inference. The first stage, Inductive Statisti-
cal Subspace Aggregation (ISSA), partitions each feature into subspaces, builds
fully connected intra-sample graphs, and applies statistical aggregation to cap-
ture robust subspace-level dependencies. The second stage, Feature Subspace
Propagation (FSP), globally diffuses contextual signals across subspaces while
preserving their individuality, resulting in enriched embeddings that drive cache-
based retrieval models. In particular, this refinement branch is active only during
training, producing enhanced cache keys while ensuring graph-free, efficient infer-
ence. Across multiple benchmarks, our method consistently outperforms state-of-
the-art approaches, establishing new performance standards in few-shot learning
while retaining computational efficiency. Source code will be released to support
reproducibility and further research.

1 INTRODUCTION

Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021), have redefined representa-
tion learning by aligning images and text on scale (Jia et al., 2021; Yao et al., 2021). Trained with
a contrastive objective on large image-text pairs, they yield powerful multimodal embeddings that
transfer remarkably well across tasks. In this setting, few-shot classification has emerged as a criti-
cal benchmark for testing adaptation under limited supervision. It is usually studied in two settings:
inductive, which independently predicts each test image and includes prompt-, adapter-, and cache-
based methods (Zhou et al., 2022b; Gao et al., 2024; Zhang et al., 2022); and transductive, which
exploits batch-level statistics via label propagation or manifold regularization (Ziko et al., 2020;
Boudiaf et al., 2020; Zhu & Koniusz, 2023). CLIP has proven effective in aligning both image fea-
tures with textual prompts such as “a photo of a [CLASS]”. However, despite its strong zero-shot
performance, it struggles in fine-grained or distribution-shifted scenarios and remains highly sen-
sitive to prompt design (Liu et al., 2023; Brown et al., 2020). These limitations have motivated a
growing set of few-shot adaptation strategies, particularly in the inductive regime, aiming to refine
CLIP’s priors into task-specific representations.

Within the inductive setting, three dominant strategies have emerged. Prompt-learning optimizes
the text branch by replacing hand-crafted prompts with a few learned continuous tokens. This often
outperforms manual prompts with as few as one or two shots (Zhou et al., 2022b; Chen et al., 2023;
Khattak et al., 2023; Zhu et al., 2023). Adapter-based methods add lightweight trainable layers to
image and/or text encoders, achieving competitive or superior performance to prompt tuning with a
little extra computation (Gao et al., 2024). In contrast, training-free retrieval avoids any parameter
updates by constructing a cache of few-shot features and combining k-NN scores with CLIP’s zero-
shot logits (Zhang et al., 2022). This reveals a clear trade-off: prompts and adapters adapt CLIP
more effectively but incur training overhead, while training-free retrieval is efficient and preserves
zero-shot generality but fails to exploit structural relationships within CLIP’s embedding space. We
address this by partitioning each CLIP feature into subspaces and refining them with a lightweight
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Figure 1: Overview of our graph-driven representation learning for CLIP adaptation in few-shot
classification. (a) The CLIP encoder extracts visual features, partitioned into |S| subspace nodes.
(b) ISSA aggregates neighborhood statistics over the fully connected subspace graph. (c) FSP prop-
agates global context while preserving node identity via residual connections. (d) The refined em-
beddings are fused into a key–value cache, enabling efficient few-shot classification.

graph during training. The resulting enriched subspaces are then used to refine cache keys, yielding
graph-free inference that is both efficient and significantly more accurate.

Motivation: In the few-shot setting, CLIP is typically frozen to provide a single global embedding
per image. A key limitation of such embeddings is their inability to capture fine-grained variations
from only a few training images. State-of-the-art few-shot methods treat each embedding as a mono-
lithic vector, overlooking the rich structure hidden within its dimensions. Our objective is to over-
come this bottleneck by subspace modeling, which partitions embeddings into multiple subspaces
that can exchange information and emerge complementary evidence inaccessible through a single
vector. We refine these subspaces with a lightweight graph composed of two steps: (i) a statistical
aggregation that models each subspace as a node and uses message passing to explicitly encode de-
pendencies and adaptively aggregates complementary evidence (Chen et al., 2024; Jiao et al., 2022),
followed by (ii) a propagation step that diffuses global context across subspaces while preserving
their individual identity (Figure 1). Without edges in the graph, refinement becomes equivalent to
independent MLP updates, discarding relational cues. We adopt a simple, contiguous partitioning of
CLIP embeddings. This is not due to the indices being semantically ordered, but because dense ag-
gregation and propagation across subspaces allow the model to discover meaningful relations during
training. More importantly, our graph refinement is applied only in the training phase to enrich the
feature representation that refines cache keys, ensuring that inference remains graph-free, efficient,
and scalable. Empirically, we find that removing inter-subspace edges (relationships) consistently
degrades performance, while refined caches exhibit stronger subspace co-activation and deliver con-
sistent accuracy gains on standard few-shot benchmarks.

2 RELATED WORKS

Vision-Language Model for Few-Shot Learning: Few-shot adaptation of VLMs has converged on
two parameter-efficient directions. Prompt learning freezes CLIP (Radford et al., 2021) and opti-
mizes a small set of continuous tokens: CoOp (Zhou et al., 2022b) learns class-agnostic text prompts,
CoCoOp extends them with instance-conditioned context (Zhou et al., 2022a), PLOT++ formulates
prompt search as optimal transport (Chen et al., 2023), KgCoOp injects knowledge-guided con-
straints (Yao et al., 2023), MaPLe links image- and text-side prompts (Khattak et al., 2023), and
ProGrad regularizes updates via gradient alignment (Zhu et al., 2023). These methods excel in an
extreme few-shot setting (1–4), but saturate as the shots increase. Adapter-based tuning instead
inserts lightweight modules into the vision stream: CLIP-Adapter adds residual bottlenecks (Gao
et al., 2024), and TaskRes learns task-specific side branches (Yu et al., 2023). Adapters generally
require short training, but preserve zero-shot priors better than full fine-tuning. Overall, prompts
and adapters expose a trade-off: a stronger task comes at the cost of additional parameters. In
contrast, our method avoids both by refining frozen CLIP features through graph-based subspace
representation learning and aggregation during training only, resulting in enriched caches that natu-
rally combine with CLIP’s text embeddings for more accurate few-shot retrieval.
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Cache Model: Cache-driven methods (Khandelwal et al., 2020; Orhan, 2018; Zhang et al., 2022)
offer a lightweight alternative to fine-tuning for few-shot adaptation. Instead of updating network
parameters, they store training features as key–value pairs, where keys are embeddings and values
are class labels. In inference, a test feature retrieves the most similar keys, allowing efficient predic-
tion (Khandelwal et al., 2020; Orhan, 2018). Early cache models such as kNN-LMs (Khandelwal
et al., 2020) and Matching Networks (Vinyals et al., 2016) focused on unimodal features and often
suffered from storage overhead or noisy retrieval. Tip-Adapter (Zhang et al., 2022) extended this
idea by encoding few-shot images as cache keys and combining retrieval scores with zero-shot CLIP
logits through a residual connection. Its fine-tuned variant Tip-Adapter-F (Zhang et al., 2022) fur-
ther updates the keys via lightweight SGD, improving accuracy with minimal training. Using CLIP’s
multimodal pre-training, Tip-Adapter retains robustness under distribution shift while remaining ef-
ficient. Our approach builds on this retrieval backbone but redefines how keys are constructed: each
CLIP embedding is partitioned into statistical subspaces and refined once with a lightweight graph
during cache learning. The enriched keys yield higher retrieval accuracy at test time, while inference
remains standalone, fast, and entirely graph-free.

Few-shot Graph Learning: Graph-based propagation shares information between the sparse sup-
port sets of few-shot tasks. Early metric learners such as Matching Networks (Vinyals et al., 2016),
Prototypical Networks (Snell et al., 2017), and Relation Networks (Sung et al., 2018) can be viewed
as performing one round of message passing on a similarity graph linking support and query em-
beddings. GNNs make this propagation explicit and enable multi-hop reasoning: GCNs (Kipf &
Welling, 2017) rely on fixed graphs and remain transductive, while GraphSAGE (Hamilton et al.,
2017) learns inductive aggregation functions that generalize to unseen nodes. Few-Shot Learning
with GNN (Garcia & Bruna, 2018) extends this idea with learnable edge functions and stacked prop-
agation, effectively unifying previous metric methods. Subsequent work refined this direction with
task-specific affinity kernels (Liu et al., 2019), Laplacian-regularized clustering (Ziko et al., 2020),
and meta-learned propagation operators (Kim et al., 2019). Our approach differs from these de-
signs: rather than propagating over support–query graphs, we decompose each frozen CLIP embed-
ding into statistical subspaces and refine them via a lightweight graph. A single global propagation
step diffuses contextual cues across subspaces, resulting in higher-quality cache keys for inductive
few-shot adaptation while keeping inference graph-free.

3 PROPOSED METHOD

Problem Formulation: We tackle the few-shot classification via semi-parametric adaptation. Con-
sider a support set Dtrain = {(xi, yi)}Mi=1 consisting of M = N ·K images, representing N classes
with K samples per class, and an unlabeled test set Dtest = {xj} drawn from the same label space.
Our goal is to leverage a pre-trained VLM F (e.g., CLIP (Radford et al., 2021)) and adapt it effi-
ciently to achieve effective inference in Dtest using only the set Dtrain. We introduce a learnable cache
model C = (Θtrain, Ltrain), where Θtrain ∈ RM×C initialized with feature embeddings fi extracted
from Dtrain via F , and Ltrain ∈ RM×N contains the corresponding one-hot class labels. To enhance
the quality of the representation, we incorporate graph-driven representation learning to enrich fi
during training (Figure 1). This enriched fi refines the cache model C during training.

Few-Shot Cache Construction: We construct a key-value cache C from the set Dtrain based on
the concept of the Tip-Adapter (Zhang et al., 2022). Each image xi ∈ Dtrain is passed through
the CLIP’s frozen visual encoder FV isEnc ∈ F to obtain a L2-normalized C-dimensional vector
as fi = FV isEnc(xi) ∈ R1×C . This features set ϕ = {fi}Mi=1 computed from Dtrain are stacked
into the matrix Θtrain ∈ RM×C . Consequently, each label yi ∈ 1, . . . , N is one-hot encoded as
li ∈ RN and stacked to form Ltrain ∈ RM×N . This results in the construction of our key-value cache
model C = (Θtrain, Ltrain). To enhance cache expressiveness, we adopt a learnable cache where the
key matrix Θtrain is refined during fine-tuning with graph-enhanced representations, while the value
matrix Ltrain remains fixed. In inference, prediction reduces to efficient retrieval: the test query
feature is matched against cached keys.

Graph-based Subspace Interaction: A visual feature ftrain ∈ ϕ is divided into S non-overlapping
subspaces {f jtrain}Sj=1, where each f jtrain ∈ R1×C/S denotes a feature subspace. These subspaces
form nodes in a fully connected undirected graph G = (V,E), with |V | = S and |E| =

(S
2

)
=

S(S − 1)/2. The graph G enables each subspace to interact with all others, capturing intra-feature
relationships such as semantic co-activations and contextual dependencies. The interactions among
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subspaces are processed in two stages via our proposed GNN, resulting in updated node embeddings
that are concatenated into an enhanced representation f̃train ∈ R1×C . This subspace-aware represen-
tation enriches cache keys with higher-order semantics during training, while inference relies solely
on the refined cache for prediction.

Graph-driven Representation Learning for Knowledge Incorporation in Cache: Our design
builds on the inductive aggregation philosophy of Hamilton et al. (Hamilton et al., 2017), which
demonstrated that learning transferable aggregation functions for node neighborhoods enables gen-
eralization to unseen graphs and nodes. Inspired by this, we advance it to our subspace graphs
using the ISSA (Inductive Statistical Subspace Aggregation) module. Unlike neighbor sampling
schemes used in large-scale GNNs, ISSA operates on fully connected subspace graphs and applies
complementary statistical functions such as mean, max, and standard deviation over each subspace
neighborhoods. This dense, all-to-all interaction captures fine-grained relational dependencies and
discovers robust feature representations that transfer across diverse few-shot tasks.

To further enhance global coherence, we introduce Feature Subspace Propagation (FSP), inspired
by personalized propagation frameworks such as APPNP (Klicpera et al., 2019). FSP diffuses con-
textual information across the entire subspace graph to enhance the semantic consistency and ro-
bustness of the representations by iteratively mixing node features while retaining their original
identity through controlled residual connections. Together, ISSA and FSP form a lightweight re-
finement pipeline: ISSA provides strong local relational cues, while FSP enforces semantic con-
sistency and robustness across subspaces. Formally, let v denote a subspace node with embedding
h
(k−1)
v at layer k − 1, and let N (v) denote its neighbors. h(0)

v is the original subspace features i.e.,
h
(0)
v ∈ {f jtrain}Sj=1. ISSA applies three statistical aggregation functions (mean, max, and standard

deviation) to summarize the neighborhood information, followed by a self-attention mechanism to
adaptively weight these aggregated signals:

AGG(k−1)({h(k−1)
u }u∈N (v)) =

1

|ψ|
∑
ψ

(
softmax

(
(HuWQ)(HuWK)⊤√

F

)
HuWV

)
WO (1)

where ψ = {mean(·),max(·), std(·)}, and Hu =
[
Wmeanh

(k−1)
mean , Wmaxh

(k−1)
max , Wstdh

(k−1)
std

]
∈

R3×F with h
(k−1)
mean ,h

(k−1)
max ,h

(k−1)
std computed over {h(k−1)

u }u∈N (v), and Wmean,Wmax,Wstd ∈
RF×F are learnable projection matrices on each statistical node. F = C/S denotes the feature
dimension of each node. Here, WQ,WK ,WV ∈ RF×F are learnable weight matrices for the
query, key, and value projections in the self-attention mechanism, and WO ∈ RF×F is the learn-
able output projection matrix. This aggregated neighborhood context for node v is then passed
through a learnable linear transformation W

(k−1)
u and combined with a linearly transformed ver-

sion of the node’s own embedding W
(k−1)
self h

(k−1)
v . The result is then passed through a nonlinearity

σ (e.g., ReLU), which results in the ISSA update at the layer k:

h(k)
v = σ

(
W

(k−1)
self h(k−1)

v︸ ︷︷ ︸
self-feature

+W(k−1)
u AGG(k)

(
{(h(k−1)

u ) : u ∈ N (v)}
)︸ ︷︷ ︸

neighbor context

+b(k−1)
u

)
(2)

The subspace-aware local representations produced by ISSA are further refined through FSP, which
injects high-order semantic context to produce enriched feature representations and higher-quality
cache keys. Let H(k) ∈ RS×F denote the matrix of subspace representation by ISSA, where each
row h

(k)
v corresponds to node v. FSP performs T propagation steps and incorporates a teleport

mechanism to preserve the original node’s features. At iteration t = 1, . . . , T , the nodes’ represen-
tations are updated as:

H(k)(0) = H(k); H(k)(t) = γH(k)(0) + (1− γ)ÃH(k)(t−1); H(k+1) = H(k)(T ), (3)

where γ ∈ [0, 1] controls the strength (teleport probability) of the residual connections compared to
the initial subspace embedding. The matrix Ã = D̂−1/2ÂD̂−1/2 is the symmetrically normalized
adjacency matrix with self-loops, where Â = A+ I and D̂ is the diagonal matrix. Eq. (3) combines
two key components: (1) a reset term γH(k)(0) that preserves the initial subspace representations,
and (2) a propagation term (1−γ)ÃH(k)(t−1) that iteratively diffuses contextual information across
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nodes. In T iterations, this process injects higher-order semantic dependencies into each subspace,
resulting in globally enriched representations. The final output H(k+1) ∈ RS×F contains refined
subspace representations H = {hi,:}Si=1, with hi,: ∈ R1×(C/S). These are then concatenated to
form the enhanced representation f̃train =

⊕S
i=1 hi,: ∈ R1×C , where

⊕
denotes concatenation. It

serves as an enriched representation that encodes relational cues for cache adaptation.

Following the Tip-Adapter (Zhang et al., 2022), we represent the cache as a set of key–value pairs:
the keys Θtrain ∈ RM×C are initialized with the L2-normalized CLIP visual features from the support
set Dtrain, and updated via gradient during training, while the values Ltrain ∈ RM×N are fixed one-
hot label vectors. To generate predictions, we combine two complementary streams: (i) cache-
based retrieval: the query feature ftrain is matched against cache keys Θtrain using cosine similarity,
producing affinity weights that retrieve class information from Ltrain. (ii) CLIP-based classification:
the refined embedding f̃train is projected onto CLIP’s pre-trained textual prototypes Wc ∈ RN×C .
The final logits combine both streams:

logits = αφ(ftrainΘ
⊤
train)Ltrain + f̃trainW

⊤
c , (4)

where α ∈ R+ is a balancing coefficient and φ(x) = exp(−β(1 − x)) is a temperature-controlled
(β) affinity function that computes similarity weights between the query and the keys. The larger β
values sharpen the similarity weighting, amplifying closer matches. Since both ftrain and Θtrain are
L2-normalized, the similarity reduces to cosine distance. The corresponding affinity matrix is:

A = exp
(
−β

(
1− ftrainΘ

⊤
train

))
, (5)

which, when multiplied with the fixed label matrix Ltrain, yields the cache-based predictionALtrain ∈
R1×N , representing the first term in Eq. (4) as the few-shot prediction component based on the
learned cache. This residual-style formulation ensures that gradients from the CLIP classifier stream
guide the adaptation of cache keys, aligning them with the relational structure captured by the graph-
driven representation. In effect, cache retrieval remains lightweight, while the keys themselves are
strengthened by subspace-aware relational knowledge.

Final Prediction and Inference Pipeline: At test time, inference relies solely on the refined cache
learned during training without using our graph-driven subspace modeling. Given a test image,
its feature ftest ∈ R1×C is extracted using the frozen CLIP visual encoder, following the same
process as for ftrain. The prediction combines two complementary streams: (1) Zero-shot stream:
the test feature is projected onto CLIP’s textual prototypes, producing zCLIP = ftestW

⊤
c . (2) Few-

shot stream: the query interacts with the learned cache C = (Θtrain, Ltrain), where keys Θtrain have
been updated through GNN-guided refinement during training. The cosine affinity is computed
as A = exp

(
−β(1 − ftestΘ

⊤
train)

)
, producing few-shot logits zfewshot = ALtrain. The final output

combines both streams in a residual formulation:

zfinal = softmax
(
zCLIP + α zfewshot

)
, (6)

with α the same scaling factor from Eq. (4). This design preserves CLIP’s zero-shot generalization
while enriching predictions with relational knowledge distilled into the cache. As a result, even
support examples that are not exact visual matches can guide classification through shared subspace
patterns, improving few-shot adaptation without incurring additional inference cost.

4 EXPERIMENTAL RESULTS AND DISCUSSION

Dataset and Experimental Setup: We evaluate our method on 11 standard benchmarks span-
ning diverse visual domains: FGVC-Aircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisser-
man, 2008), SUN397 (Xiao et al., 2010), ImageNet (Deng et al., 2009), Food101 (Bossard et al.,
2014), CalTech101 (Fei-Fei et al., 2004), UCF101 (Soomro et al., 2012), StanfordCars (Krause
et al., 2013), OxfordPets (Parkhi et al., 2012), DTD (Cimpoi et al., 2014), and EuroSAT (Helber
et al., 2019). Following standard few-shot protocols, we train with 1, 2, 4, 8, and 16 labeled samples
per class. Optimization is performed with AdamW, starting from a learning rate of 0.001 and sched-
uled by cosine annealing. We follow the protocols in (Zhang et al., 2022; Zhou et al., 2022b) and
repeat the training runs independently three times for each shot configuration and report the average
classification accuracy. All experiments were executed on a NVIDIA A40 GPU (48 GB).

Implementation Details: Our model is implemented in PyTorch. We use CLIP with ViT-
B/16 (Radford et al., 2021) as the visual encoder and Transformer (Vaswani et al., 2017) as the
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Table 1: Few-shot classification accuracy (%) across 11 benchmark datasets for various state-of-the-
art (SOTA) adapter-based approaches. Best are shown in Bold.

Shots Method Venue ImageNet SUN Aircraft EuroSAT Cars Food Pets Flowers102 Caltech DTD UCF101 Average

0 CLIP (Radford et al., 2021) ICML’22 60.3 58.5 17.1 37.5 55.7 77.3 89.1 66.0 85.9 42.2 61.5 59.2

1

TIP-Adapter-F (Zhang et al., 2022) ECCV’22 61.1 62.5 20.2 59.5 58.9 77.5 87.0 80.0 89.3 49.6 64.9 64.6
TaskRes (Yu et al., 2023) CVPR’23 61.9 62.3 21.4 61.7 59.1 74.0 83.6 79.2 88.8 50.2 64.8 64.3
GraphAdapter (Li et al., 2024) NeurIPs’23 61.5 61.9 20.9 63.3 59.7 75.4 84.4 80.0 88.9 51.8 64.9 64.8
CLIP-Adapter (Gao et al., 2024) IJCV’24 61.2 61.3 17.5 61.4 55.1 76.8 86.0 73.5 88.6 45.8 62.2 62.7
CLAP(Silva-Rodriguez et al., 2024) CVPR’24 58.5 61.1 20.6 59.2 56.3 73.0 83.6 79.9 88.4 47.5 62.5 62.8
Proposed - 69.2 65.6 28.1 63.7 64.5 86.0 89.1 83.2 94.0 52.4 71.7 69.8

2

TIP-Adapter-F (Zhang et al., 2022) ECCV’22 61.7 63.6 23.2 66.1 61.5 77.8 87.0 82.3 89.7 53.7 66.4 66.6
TaskRes (Yu et al., 2023) CVPR’23 61.9 64.9 24.1 65.8 63.7 75.2 84.6 86.6 90.3 55.1 70.0 67.5
GraphAdapter (Li et al., 2024) NeurIPs’23 62.3 64.6 23.8 67.3 63.2 76.3 86.3 85.6 90.2 55.7 69.5 67.7
CLIP-Adapter (Gao et al., 2024) IJCV’24 61.5 63.3 20.1 63.9 58.7 77.2 86.7 81.6 89.4 51.5 67.1 65.5
CLAP(Silva-Rodriguez et al., 2024) CVPR’24 58.5 63.3 23.2 65.6 61.4 74.9 84.9 84.2 89.8 53.0 67.8 66.1
Proposed - 69.7 67.9 31.2 67.4 64.5 86.1 90.0 88.7 94.5 55.3 75.5 71.9

4

TIP-Adapter-F (Zhang et al., 2022) ECCV’22 62.5 66.2 25.8 74.1 64.6 78.2 87.5 88.8 90.6 57.4 70.6 69.7
TaskRes (Yu et al., 2023) CVPR’23 63.6 67.3 25.7 73.8 67.4 76.1 86.3 90.2 91.0 60.7 70.9 70.3
GraphAdapter (Li et al., 2024) NeurIPs’23 63.1 66.7 27.0 75.2 66.5 76.8 86.6 89.9 91.0 59.6 71.5 70.3
CLIP-Adapter (Gao et al., 2024) IJCV’24 62.7 66.0 22.6 73.4 62.4 77.9 87.5 87.2 90.0 56.9 69.1 68.7
CLAP (Silva-Rodriguez et al., 2024) CVPR’24 60.7 65.9 25.6 73.1 65.5 75.9 86.5 87.6 90.6 58.8 69.8 69.1
Proposed - 70.5 71.5 36.0 78.1 65.5 86.3 89.7 95.6 95.7 62.3 80.2 75.6

8

TIP-Adapter-F (Zhang et al., 2022) ECCV’22 64.0 68.9 30.2 77.9 69.2 78.6 88.1 91.5 91.4 62.7 74.2 72.4
TaskRes (Yu et al., 2023) CVPR’23 64.7 68.7 31.5 79.3 71.8 76.4 87.2 94.7 92.4 64.8 75.3 73.3
GraphAdapter (Li et al., 2024) NeurIPs’23 64.2 68.9 31.4 80.2 70.5 77.7 87.6 94.1 92.4 64.5 75.7 73.4
CLIP-Adapter (Gao et al., 2024) IJCV’24 62.7 67.5 26.2 77.9 67.9 78.0 87.6 91.7 91.4 61.0 73.3 71.4
CLAP(Silva-Rodriguez et al., 2024) CVPR’24 62.9 68.6 28.9 76.7 70.3 77.4 87.7 92.1 91.4 63.2 73.3 72.1
Proposed - 70.8 74.1 42.3 81.9 71.4 86.5 91.6 96.3 95.5 68.9 82.6 78.4

16

TIP-Adapter-F (Zhang et al., 2022) ECCV’22 65.5 71.5 35.6 84.5 75.7 79.4 89.7 94.8 92.9 65.6 78.0 75.7
TaskRes (Yu et al., 2023) CVPR’23 63.7 70.7 36.3 84.0 76.8 77.6 87.8 96.0 93.4 67.1 78.0 75.8
GraphAdapter (Li et al., 2024) NeurIPs’23 65.7 71.2 36.9 85.3 76.2 78.6 88.6 96.2 93.3 67.6 78.8 76.2
CLIP-Adapter (Gao et al., 2024) IJCV’24 63.6 69.6 32.1 84.4 74.0 78.2 87.8 93.9 92.5 66.0 76.8 74.4
CLAP (Silva-Rodriguez et al., 2024) CVPR’24 65.0 70.8 33.6 80.1 75.1 78.5 88.5 94.2 91.9 66.4 76.3 74.6
Ta-Adapter (Zhang et al., 2024) PR’24 74.7 77.0 54.5 91.7 86.4 87.6 93.2 97.9 96.4 73.6 86.3 83.6
Proposed - 73.1 75.8 47.2 87.2 77.0 86.8 92.5 97.9 96.1 73.4 84.4 81.0
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Figure 2: Accuracy plots of few-shot classification on 11 benchmark datasets. We compare our
graph-based feature representation against SOTA adapter-based methods (CLAP, CLIP-Adapter,
GraphAdapter, TaskRes and Tip-Adapter-F) and the zero-shot CLIP baseline.

text encoder. Following prior work (Gao et al., 2024; Zhang et al., 2022), preprocessing includes
random cropping, resizing, and horizontal flipping. Our model depends on two hyperparameters, α
and β (see Section 3), whose values are tuned empirically; detailed sensitivity analysis is provided
in appendix B.

Comparison with the state-of-the-art methods: We compare our method with recent adapter-
based approaches on 11 benchmarks (Table 1), including Tip-Adapter-F (Zhang et al., 2022),
TaskRes (Yu et al., 2023), GraphAdapter (Li et al., 2024), CLIP-Adapter (Gao et al., 2024), and
CLAP (Silva-Rodriguez et al., 2024)). Across all 1-, 2-, 4-, 8-, and 16-shot settings, our model
consistently outperforms prior methods.
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Table 2: Accuracy (%) with varying CLIP visual encoder backbones with fixed subspaces of |S| = 8
and the number of subspaces |S| with our best performing ViT-B/16 backbone for 16-shots.

Different Backbones for Visual Encoder Varying Number of Graph Nodes |S|
Dataset RN50 RN101 ViT-B/32 ViT-B/16 4 8 16 32 64

Aircraft 39.7 41.7 40.4 47.2 46.5 47.2 46.7 46.9 45.8
Flowers 95.6 96.3 95.9 97.9 97.6 97.9 97.8 97.8 97.8
UCF101 78.5 81.2 81.9 84.4 84.4 84.4 84.3 84.2 84.2

In the extremely low-data regime (1-shot), we obtain an average accuracy of 69.8%, substan-
tially outperforming the strongest competitor GraphAdapter (64.8%). Notable gains include 83.2%
on Flowers102 and 63.7% on EuroSAT. As the number of shots increases, our model contin-
ues to demonstrate a robust generalization. With 2 shots, our model achieves 71.9%, surpass-
ing GraphAdapter (67.7%) and TaskRes (67.5%), with especially large improvements on Food101
(+8.0%), Aircraft (+7.0%), and UCF101 (+5.0%). In the 4-shot setting, we reach 75.6%, outper-
forming GraphAdapter (70.3%), TaskRes (70.3%), and Tip-Adapter-F (69.7%), and setting new
highs on Flowers102 (95.6, +5.4% over TaskRes), EuroSAT (78.1% vs. 75.2% for GraphAdapter),
and ImageNet 70.5%. Performance remains strong with 8-shot, where we achieve 78.4%, leading
on Aircraft (42.3%), Food101 (86.5%), and UCF101 (82.6%).

In the high-data regime (16-shot), our approach reaches an average of 81.0%, surpassing
GraphAdapter (76.2%) and CLAP (74.6%), and approaching Ta-Adapter (Zhang et al., 2024)
(83.6%). The performance gap to Ta-Adapter is expected, as it combines prompt- and adapter-
tuning scheme with additional trainable layers in both the vision and text branches of CLIP that
remain active during inference. This results in stronger performance, but at the cost of added com-
plexity and test-time overhead. Importantly, the difference is small on most datasets (Caltech 96.1%
vs. 96.4%; Pets 92.5% vs. 93.2%; DTD 73.4% vs. 73.6%; UCF101 84.4% vs. 86.3%).

In general, our method delivers state-of-the-art average performance in 1–8 shots and remains highly
competitive at 16 shots (see appendix A for higher shots), while it does not require additional com-
putation during testing. The gains generalize across diverse domains, including fine-grained (Air-
craft, Pets, Cars, Food, Flowers102), satellite (EuroSAT), texture (DTD), and general-object (Cal-
tech101, ImageNet) benchmarks. Figure 2 further illustrates that our graph-refined model consis-
tently achieves higher accuracy as shots increase, confirming the effectiveness of cache refinement
without inference overhead.

Ablation Study: We conduct ablation study on FGVC-Aircraft (Maji et al., 2013), Flowers102
(Nilsback & Zisserman, 2008), and UCF101 (Soomro et al., 2012) to evaluate the contribution of
each component of our model. Specifically, we analyze the effect of the visual backbone, subspace
granularity, intra-sample modeling (ISSA), feature subspace propagation (FSP), and key graph hy-
perparameters. Results are summarized in Tables 2-3.

Effect of Visual Backbone Architecture: Table 2 (left) reports results with different CLIP visual en-
coders: ResNet-50 (He et al., 2016), ResNet-101 (He et al., 2016), ViT-B/32 (Dosovitskiy et al.,
2021), and ViT-B/16 (Dosovitskiy et al., 2021). Accuracy improves consistently with backbone
strength: on Aircraft, from 39.7% (ResNet-50) to 41.7% (ResNet-101) and 47.2% (ViT-B/16); on
UCF101 from 78.5% to 84.4% and on Flowers102 from 95.6% to 97.9%. These gains indicate that
stronger backbones provide more discriminative features, which our graph refinement further ampli-
fies. This explains why most SOTA methods in Table 1 adopt transformer-based CLIP backbones.
More importantly, the consistent improvement across all architectures highlights the generality of
our approach. Regardless of the backbone, our graph-driven refinement yields superior performance.

Effect of Graph Node (subspace) Granularity: We analyze the impact of subspace granularity by
varying the number of graph nodes |S| ∈ {4, 8, 16, 32, 64} with ViT-B/16 as the backbone (Table 2,
right). An intermediate value of |S| = 8 provides the best balance between feature detail and
complexity, achieving the highest accuracy in all datasets. On Aircraft, accuracy increases from 46.
5% (|S| = 4) to 47.2% (|S| = 8), but degrades as |S| increases further. Similar trends appear, though
less pronounced, for Flowers102 and UCF101. In particular, fine-grained domains like Aircraft are
more sensitive to subspace resolution, while broader domains (UCF101) remain relatively robust.
This suggests that appropriately chosen subspace granularity is critical for maximizing performance.

Effect of ISSA and FSP: We evaluate the contribution of the Inductive Statistical Subspace Aggre-
gation (ISSA) and Feature Subspace Propagation (FSP) modules in our graph-driven represen-
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Table 3: Impact of varying model hyperparmeters on Accuracy (%) for 16-shots. From left to right:
Teleport Probability γ, Propagation Steps T, and Aggregation modes. Best are shown in Bold.

Dataset Teleport Probability γ Propagation Steps T Aggregation Mode
0.1 0.3 0.5 0.7 0.9 1 3 5 7 9 attn cat proj mean max sum

Aircraft 47.2 47.0 46.9 46.8 46.8 47.2 46.9 46.3 46.3 46.1 47.2 46.6 46.7 46.5 46.7 46.6
Flowers 97.9 97.5 97.5 97.1 97.0 97.9 97.7 97.2 96.4 96.8 97.9 97.3 97.2 97.4 97.6 97.7

Table 4: Accuracy (%) of our key GNN modules with
varying K-shots on three datasets.

Dataset ISSA FSP K = 16 K = 8 K = 4 K = 2 K = 1

Aircraft
× × 35.6 30.2 25.8 23.2 20.2
× ✓ 46.4 41.6 35.5 30.6 28.1
✓ × 46.9 42.1 35.2 30.8 28.2
✓ ✓ 47.2 42.3 36.0 31.2 28.1

Flowers
× × 94.8 91.5 88.8 82.3 80.0
× ✓ 97.6 96.2 95.2 87.8 81.9
✓ × 97.3 96.1 95.4 88.1 82.6
✓ ✓ 97.9 96.3 95.6 88.7 83.2

UCF101
× × 78.0 74.2 70.6 66.4 64.9
× ✓ 83.6 82.1 79.9 75.2 72.0
✓ × 83.3 82.2 79.2 75.4 71.1
✓ ✓ 84.2 82.6 80.2 75.5 71.7

Table 5: Impact of modeling relations be-
tween subspaces: with (w) vs. without
(w/o) edges.

Shot Edges Aircraft Flowers102 UCF101

1-shot w/o 26.7 76.41 70.65
w 28.1 83.2 71.7

4-shot w/o 30.5 84.5 75.7
w 36.0 95.6 80.2

16-shot w/o 37.9 83.47 73.4
w 47.2 97.9 84.4

tation learning for knowledge incorporation framework (Table 4). At 16 shots, ISSA consistently
improves performance: on Aircraft, it alone achieves 46.9%, outperforming FSP-only (46.4%), and
reaches 47.2% when combined. On UCF101, ISSA (83.3%) is comparable to FSP (at 83.6%) but
increases to 84. 2% with both. On Flowers102, ISSA trails FSP (97.3% vs. 97.6%) yet achieves the
best result when combined (97.9%). These findings highlight ISSA’s role in capturing intra-sample
dependencies, while FSP contributes complementary global context. Removing both modules re-
duces the model to Tip-Adapter-F (no graph-driven refinement), causing sharp drops at 16-shot:
Aircraft falls from 47.2% to 35.6%, UCF101 from 84.2% to 78.0%, and Flowers102 from 97.9% to
94.8%. It is worth mentioning that under extremely limited data (e.g., 1-shot on UCF101), FSP-only
slightly outperforms the combined model (72.0% vs 71.7%), suggesting that global propagation may
introduce noise when support evidence is minimal.

Overall, combining ISSA and FSP consistently yields the highest accuracy across datasets, con-
firming their complementary roles in improving feature representation for cache refinement. This
is further supported by the t-SNE visualizations in Figure 3, which show more compact and well-
separated class clusters when both modules are active. More plots are provided in the Appendix D.

(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA only (d) FSP only (e) ISSA + FSP

Figure 3: t-SNE (Van Der Maaten, 2014) visualizations of different approaches on the FGVC-
Aircraft dataset, illustrating class separability and compactness of logits (see Eq. (4)), computed
over 8 randomly selected classes. (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang
et al., 2022), (c) ISSA only, (d) FSP only, (e) ISSA + FSP.

Impact of Modeling Relations Between Subspaces: Table 5 shows that explicitly modeling inter-
subspace relations consistently outperforms the edge-free variant (MLP) across datasets and shot
settings. On Flowers102 at 1-shot, accuracy improves from 76.41% to 83.2%; on Aircraft, from
26.7% to 28.1%; and on UCF101, from 70.65% to 71.7%. The gap widens with more shots, for
example, on Aircraft, our method achieves 47.2% versus 37.9% (+9.3%). These results confirm that
subspace graph refinement, which enables subspace interactions, yields consistent improvements,
especially for fine-grained categories and in lower-shot regimes.
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Table 6: Left: Inter-slice cosine similarity before and after graph refinement. Right: Few-shot
classification accuracy (%) with contiguous vs. random partitioning. See full table in appendix C.

Dataset # Splits Inter-slice Similarity (16-shot) # Shot Partitioning Strategy (8-splits)
Before After Contiguous Random

Aircraft 4 −0.0001 0.9963 4 36.0 35.5
16 −0.0066 0.9982 16 47.2 47.0

Flowers102 4 0.0214 0.9965 4 95.6 95.5
16 0.0194 0.9977 16 97.9 97.8

Impact of Graph Hyperparameters: We further analyze key hyperparameters on Aircraft (16-shot,
Table 3). A low teleport probability (γ = 0.1) achieves the best accuracy (47.2%), highlighting the
importance of the propagation term for modeling subspace relationships. As Eq. (3) shows, smaller
γ increases the weight (1 − γ) of the propagation term, justifying the importance of relational
modeling. For propagation step T , a single iteration is optimal: deeper propagation (T > 3) leads
to oversmoothing and accuracy degradation. For ISSA aggregation in Eq. (1), attention achieves
the highest accuracy (47.2%), outperforming concatenation, linear projection, and various pooling
(max, mean, and sum). Overall, higher importance to propagation term with adaptive attention
maximizes the quality of the representation while avoiding over-smoothing.
Effect of Graph Refinement on Inter-slice Similarity: We measure the impact of graph refinement
(ISSA + FSP) by computing the average cosine similarity between partitioned subspaces (“slices”)
of CLIP embeddings before and after refinement in 16-shot settings. As shown in Table 6, refine-
ment drives from low or even negative values to nearly ≈ 0.99, indicating strong semantic alignment
and coherence. Gains persist as the number of partitions increases; for example, on Aircraft, simi-
larity improves from 0.9963 (|S| = 4) to 0.9982 (|S| = 16), demonstrating that graph refinement
consistently enhances intra-feature context modeling.

Effect of Partitioning Strategy: We compare contiguous versus random partitioning of subspaces.
Table 6 shows that the contiguous strategy consistently outperforms random splits, for example,
on Aircraft (4-shot) 36.0% vs. 35.5%, and on Flowers102 (16-shot) 97.9% vs. 97.8%. Contigu-
ous partitioning ensures complete, non-overlapping coverage of the feature space, whereas random
sampling may omit important dimensions, slightly degrading few-shot accuracy.

Computational efficiency: We benchmark the overhead of our graph-driven refinement (ISSA +
FSP) against Tip-Adapter-F (Zhang et al., 2022). Tip-Adapter-F has ∼ 0.82M parameters and re-
quires 1.64 × 10−3 GFLOPs per sample, while our graph adds only ∼ 0.037M parameters and
1.12× 10−3 GFLOPs. This yields a total of ∼ 0.86M and 2.75× 10−3 GFLOPs on ImageNet with
8 subspaces. In a 16-shot setting with 512-d CLIP features and batch size 256, Tip-Adapter-F uses
2932 MB GPU memory during training, compared to 2940 MB for our model, a negligible ∼0.3%
overhead on an NVIDIA A40. Training time per epoch increases modestly (13s vs. 6s), which re-
mains practical given the accuracy gains. More importantly, at inference we discard the GNN and
rely solely on the refined cache, matching the test-time efficiency of Tip-Adapter-F.

5 CONCLUSION

We introduced a graph-driven framework for few-shot adaptation of CLIP, addressing the limita-
tions of frozen embeddings in capturing fine-grained variation under scarce supervision. Our de-
sign partitions CLIP features into statistical subspaces and refines them through Inductive Statistical
Subspace Aggregation (ISSA) and Feature Subspace Propagation (FSP), resulting in enriched cache
keys that encode both local and global contextual cues. Importantly, this refinement operates only
during training, so inference remains graph-free, lightweight, and as efficient as existing cache-based
methods. Extensive experiments across 11 benchmarks demonstrate consistent state-of-the-art per-
formance in the 1–8 shot regime and competitive results at 16 shots, with negligible computational
overhead. Ablations further validate the complementary roles of ISSA and FSP, the importance of
subspace granularity, and the robustness of our method across backbones and domains.

By showing how intra-feature graph refinement can be distilled into cache representations, our work
bridges representation learning and semi-parametric adaptation, opening new directions for exploit-
ing structure in frozen vision–language models. Although the method scales well on standard few-
shot benchmarks, it remains to be tested on larger support sets or higher-resolution inputs, where
graph-based training steps may pose memory or runtime challenges. Future extensions could ex-
plore task-aware subspace partitioning, integration with other large-scale multimodal models, and
broader applications beyond classification.
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APPENDIX

This appendix presents extended results and analyses supporting the main paper, including evalua-
tions for 32- and 64-shot settings, hyperparameter studies, and additional t-SNE visualizations. We
also disclose the use of LLMs as an assisting tool.

A EXTENDED EVALUATION UNDER HIGH-SHOT SETTINGS

Table 7: Few-shot performance (%) across varying shots on 3 datasets, including extended results
for 32- and 64-shot settings.

Dataset 1-shot 2-shot 4-shot 8-shot 16-shot 32-shot 64-shot
Flowers102 83.2 88.7 95.6 96.3 97.9 98.2 98.5
UCF101 71.7 75.5 80.2 82.6 84.4 86.1 87.3
FGVC-Aircraft 28.1 31.1 36.0 42.3 47.2 54.8 52.3

To further assess the scalability and robustness of our graph-refined cache model, we extend our
evaluation beyond the standard 1–16 shot regime to include 32-shot and 64-shot settings. Table 7
presents the classification performance across seven shot levels on three representative datasets:
FGVC-Aircraft, Flowers102, and UCF101. We observe that our method continues to exhibit strong
performance trends with increasing data availability. On Flowers102, accuracy rises from 83.2%
at 1-shot to 98.5% at 64-shot, demonstrating near-saturation and confirming the model’s ability
to fully exploit additional supervision in fine-grained domains. UCF101, a dynamic and diverse
action recognition dataset, shows a steady gain from 71.7% at 1-shot to 87.3% at 64-shot, reflect-
ing effective generalization over a wide range of motion patterns and classes. Interestingly, while
FGVC-Aircraft improves significantly up to 32-shot (from 28.1% at 1-shot to 54.8%), we observe
a slight dip at 64-shot (52.3%). This plateau suggests that very fine-grained tasks may benefit more
from moderate support sizes where overfitting is minimized and inter-class similarity does not over-
shadow cache discriminability. We hypothesize that beyond a certain point, adding more examples
may introduce noise or redundancy in the support set for datasets with high intra-class similarity
and subtle inter-class variation. Overall, these results affirm that our method scales reliably with
increasing supervision, while maintaining high retrieval quality across low- and high-shot regimes.
The performance stability beyond 16-shot further supports the general applicability of our model to
both constrained and data-rich few-shot scenarios.

B HYPERPARAMETER ANALYSIS
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Figure 4: Accuracy heatmaps from grid search over α and β on (a) Flowers102, (b) FGVC-Aircraft,
and (c) UCF101, illustrating the impact of residual weighting and affinity sharpness on cache per-
formance.

We analyze the effect of cache hyperparameters (α, β) on performance. We visualize the effect
of the two key cache hyperparameters, α and β, using heatmaps in Figure 4, which show classi-
fication accuracy across grid search on three representative datasets: Flowers102, FGVC-Aircraft,
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and UCF101. These datasets cover fine-grained, structural, and dynamic domains, respectively.
On Flowers102, a visually discriminative and fine-grained dataset, accuracy improves steadily with
higher values of both α and β, reaching a peak of 97.9% at α = 9 and β = 1.5. For FGVC-Aircraft,
which demands fine structural detail recognition, the optimal accuracy of 47.2% is observed at α
= 5 and β = 5.5, reflecting a more balanced reliance between CLIP priors and support features.
UCF101, which includes motion-rich action classes, benefits from sharper affinity (β = 3.5) and a
moderately weighted cache (α = 5), achieving a peak of 84.4%. These observed trends motivate our
approach to hyperparameter tuning. In our GNN-based cache framework, α controls the residual
weighting between zero-shot CLIP logits and cache-based retrieval, while β determines the sharp-
ness of similarity weighting during affinity computation. To make this interaction both expressive
and generalizable, we follow a two-stage procedure. During training, we use fixed initial values
for the hyperparameters: α is set to 10 for Flowers102, 5 for FGVC-Aircraft, and 3 for UCF101,
while β is uniformly set to 1 across all datasets. After training, a grid search is conducted on the
validation set to identify the optimal (α, β) pair, which is then used for final evaluation on the test
set. This post-training tuning process introduces no additional inference-time overhead and enables
the model to flexibly adapt to the characteristics of each dataset. Overall, the cache model’s robust-
ness hinges on these interpretable and tunable parameters. Their complementary influence enables
our framework to flexibly balance prior knowledge and task specificity, consistently yielding high
accuracy across fine-grained, structured, and dynamic classification scenarios.

C ADDITIONAL RESULTS RELATED TO INTER-SLICE COSINE SIMILARITY
AND RANDOM PARTITION

Effect of Graph Refinement on Inter-slice Cosine Similarity: We assess the effect of our graph-
based refinement (ISSA + FSP) by computing average pairwise cosine similarity between partitioned
CLIP subspaces before and after refinement. Table 8 shows pre-refinement similarities are weak or
negative (e.g., Aircraft: −0.0066 at 2 splits, −0.0021 at 8 splits; Flowers102: −0.0074 at 2 splits,
−0.0041 at 8 splits), indicating poor alignment. Post-refinement values rise sharply toward 0.99
across all splits and datasets (e.g., Aircraft: 0.9960 at 2 splits to 0.9982 at 16 splits; Flowers102:
0.9810 at 2 splits to 0.9977 at 16 splits), reflecting strong semantic coherence.

This trend is consistent across both datasets and improves with finer subspace granularity, for in-
stance, on Aircraft, similarity increases from 0.9960 (2 splits) to 0.9982 (16 splits), and on Flow-
ers102 from 0.9810 to 0.9977. These results confirm that our graph-driven refinement effectively
models intra-feature context, enhancing few-shot discriminability.

Effect of Partitioning Strategy: We compare contiguous and random partitioning for dividing the
feature vector into 8 subspaces. Contiguous chunks and non-overlapping, covering the entire vector,
while random chunks are sampled from arbitrary start positions and may overlap or leave gaps.

Table 9 show contiguous partitioning provides a consistent gain (e.g., Aircraft 1-shot: 28.1% vs.
28.0%, 4-shot: 36.0% vs. 35.5%, Flowers102 16-shot: 97.9% vs. 97.8%) over random partitioning
strategy. The performance drop with random chunks may result from uneven coverage, potentially
missing important dimensions needed for few-shot discriminability.

Table 8: Average inter-slice cosine similarity before and after graph refinement

Dataset # Splits Before After

FGVC-Aircraft

2 splits −0.0066 0.9960
4 splits −0.0001 0.9963
8 splits −0.0021 0.9969
16 splits −0.0066 0.9982

Flowers102

2 splits −0.0074 0.9810
4 splits 0.0214 0.9965
8 splits −0.0041 0.9972
16 splits 0.0194 0.9977
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Table 9: Comparison of few-shot classification accuracy (%) using contiguous vs. random parti-
tioning into 8 subspaces. Results are shown for 1-, 4-, and 16-shot settings on FGVC-Aircraft and
Flowers102. Random chunking performs comparably, indicating robustness to partition strategy.

Setting Contiguous Chunk Random Chunk
FGVC-Aircraft (1-shot) 28.1 28.0
FGVC-Aircraft (4-shot) 36.0 35.5
FGVC-Aircraft (16-shot) 47.2 47.0

Flowers102 (1-shot) 83.2 83.3
Flowers102 (4-shot) 95.6 95.5
Flowers102 (16-shot) 97.9 97.8

D ADDITIONAL VISUALIZATIONS

This appendix further provides additional visualizations to qualitatively support our findings. Fig-
ure 5-9 presents t-SNE visualizations on five datasets: Flowers102, UCF101, CalTech101, DTD,
and EuroSAT, to qualitatively assess the impact of ISSA and FSP. We compare the feature dis-
tributions of our model variants against baselines such as Tip-Adapter (Zhang et al., 2022) and
Tip-Adapter-F (Zhang et al., 2022). Across most datasets, Tip-Adapter and Tip-Adapter-F exhibit
loosely grouped clusters with noticeable class overlap. Applying ISSA or FSP individually leads to
more compact and structured representations. Their combination yields the clearest class separation,
reflecting the complementary effects of ISSA and FSP.

Interestingly, on CalTech101 (see Figure 9), both Tip-Adapter and Tip-Adapter-F already produce
well-separated clusters, likely due to the dataset’s visually distinctive object categories. This ob-
servation aligns with the high accuracy achieved by all methods in Table 1. However, our method
further enhances cluster compactness and class separability, offering a consistent improvement even
over these already strong-performing approaches. These visualizations confirm that ISSA and FSP
not only benefit challenging datasets but also strengthen representations when initial clustering is
already well-structured.

(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA (d) FSP (e) ISSA+FSP

Figure 5: t-SNE visualizations of feature distributions for 8 randomly selected classes from the
UCF101 dataset using (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang et al., 2022),
(c) ISSA, (d), FSP (e) and Ours combined ISSA+FSP method (e). Compared to the Tip-Adapter vari-
ants, ISSA and FSP individually result in more compact clusters, while their combination achieves
the most distinct class separation. The bottom row displays representative video frames from each
of the 8 selected classes, illustrating the visual diversity and complexity present in the dataset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA (d) FSP (e) ISSA+FSP

Figure 6: t-SNE visualizations of feature distributions for 8 randomly selected classes from the
EuroSAT dataset using (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang et al., 2022),
(c) ISSA, (d) FSP, and (e) our combined ISSA+FSP method. The combined approach yields more
distinct and compact clusters, indicating improved spatial feature discrimination. The bottom row
displays representative satellite images from the selected classes, illustrating the diversity in terrain
and land cover types.

(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA (d) FSP (e) ISSA+FSP

Figure 7: t-SNE visualizations of feature distributions for 8 randomly selected classes from the
Flowers102 dataset using (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang et al.,
2022), (c) ISSA, (d) FSP, and (e) our combined ISSA+FSP method. The combined approach pro-
duces the most compact and well-separated clusters, reflecting enhanced class discriminability in
this fine-grained setting. The bottom row shows representative flower images from the selected
classes, illustrating subtle variations in color, shape, and structure that challenge few-shot recogni-
tion.
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(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA (d) FSP (e) ISSA+FSP

Figure 8: t-SNE visualizations of feature distributions for 8 randomly selected classes from the DTD
dataset using (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang et al., 2022), (c) ISSA,
(d) FSP, and (e) our combined ISSA+FSP method. The combined model produces the most distinct
and compact clusters, indicating improved discrimination of fine-grained texture patterns. The bot-
tom row displays representative texture images from the selected classes, capturing the diversity in
structural and material properties across the dataset.

(a) Tip-Adapter (b) Tip-Adapter-F (c) ISSA (d) FSP (e) ISSA+FSP

Figure 9: t-SNE visualizations of feature distributions for 8 randomly selected classes from the
CalTech101 dataset using (a) Tip-Adapter (Zhang et al., 2022), (b) Tip-Adapter-F (Zhang et al.,
2022), (c) ISSA, (d) FSP, and (e) our combined ISSA+FSP method. Even with Tip-Adapter variants
showing relatively clean separation, our combined approach achieves the most compact and distinct
clusters. The bottom row shows representative images from each class, reflecting the visual diversity
and object-centric nature of the dataset.
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E LLM USAGE

We used a large language model (LLM) as a general-purpose assist tool only for light copyediting
(fixing grammar, spelling, and phrasing) to improve readability. It did not help with research ideas,
methods, experiments, analysis, or substantive writing and should not be considered a contributor or
author. All text and results were written and checked by the authors, and any edits suggested by the
LLM were accepted only after human review.
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