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Abstract

We analyze graph smoothing with mean aggregation, where each node successively
receives the average of the features of its neighbors. Indeed, it has been observed
that Graph Neural Networks (GNNs), which generally follow some variant of
Message-Passing (MP) with repeated aggregation, may be subject to the over-
smoothing phenomenon: by performing too many rounds of MP, the node features
tend to converge to a non-informative limit. At the other end of the spectrum, it is
intuitively obvious that some MP rounds are necessary, but existing analyses do not
exhibit both phenomena at once. In this paper, we consider simplified linear GNNs,
and rigorously analyze two examples of random graphs for which a finite number
of mean aggregation steps provably improves the learning performance, before
oversmoothing kicks in. We identify two key phenomena: graph smoothing shrinks
non-principal directions in the data faster than principal ones, which is useful for
regression, and shrinks nodes within communities faster than they collapse together,
which improves classification.

1 Introduction
In recent years, deep architectures such as Graph Neural Networks (GNNs), along with the availability
of large sets of graph data, have significantly broadened the field of machine learning on graphs
and structured data, see [2, 3, 8, 19] for reviews. Most GNNs rely on the Message-Passing (MP)
framework [7, 11]. At each layer k, for each node i, a representation z(k)

i is computed using the repre-

sentations of the neighbors Ni of i in the graph at the previous layer: z(k)
i = AGG

(
{z(k−1)
j }j∈Ni

)
,

where AGG is an aggregation function that treats {z(k−1)
j }j∈Ni

as an unordered set, to respect the
absence of node ordering in the graph. Here we consider one of the most classical, mean aggregation:

z
(k)
i = 1∑

j aij

∑
j aijΨ

(
z

(k−1)
j

)
(1)

where the aij ∈ R+ are the entries of the adjacency matrix of the graph, and Ψ is some function
(usually a Multi-Layer Perceptron).While MP is a natural and rather general framework, its limitations
were quickly observed by researchers and practitioners. Foremost among them is the so-called
oversmoothing phenomenon [14]: as the GNN gets deeper and many rounds of MP are performed, the
node features z(k)

i tend to become too similar across the graph. To relieve it, researchers have explored
residual mechanisms [6, 13], dropping connections [9], clever normalizations [21] or regularizations
[5], among others. Some works have acknowledged the important role of the aggregation function,
and proposed new exotic diffusion strategies [1] or to optimize it [12].

On the theoretical side, oversmoothing has mostly been analyzed in the infinite-layer limit k →∞.
In this case, classical spectral analysis of graph operators such as the Laplacian can be leveraged
to indeed show that node features will always converge to some limit that carries a limited amount
of information [17]. This is particularly true for mean aggregation (1). However, there has been
little research at the other end of the spectrum. Generally, researchers show the power of GNNs
for a sufficient (unbounded) number of layers, such as the now-famous ability to distinguish graph
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isomorphism as well as the Weisfeiler-Lehman test and all its variants [16, 20]. Since these results
are valid for an unbounded number of layers, the settings adopted in these works are, by definition,
incompatible with non-informative oversmoothing.

In a recent preprint [10]1, we showcase two representative exemples, of regression and classification,
on which linear GNNs (sometimes called SGC [18]) are provably subject to this double phenomenon:
some smoothing is useful for learning, while too much smoothing inevitably leads to oversmoothing.

We adopt on a model of latent space random graphs, with node features. We identify two key
phenomena for this: smoothing shrinks non-principal directions in the data faster than principal ones
(Sec. 4), and shrinks communities faster than they collapse together (Sec. 5). Although our theoretical
settings are obviously simplified, we believe it is a step towards a better comprehension of graph
aggregation, of the relationship between node features and graph structure. All proofs are given in
the full paper [10], of which the present document is an extended abstract.

2 Preliminaries
Notations. The norm ‖·‖ is the Euclidean norm for vectors and spectral norm for (rectangular)
matrices. For a psd matrix Σ, the Mahalanobis norm is ‖x‖2Σ

def.
= x>Σx. The determinant of a matrix

is |S|, and its smallest eigenvalue is λmin(S). The multivariate Gaussian distribution with mean µ
and covariance Σ is denoted by Nµ,Σ(x) = det(2πΣ)−

1
2 e−

1
2‖x−µ‖

2
Σ−1 .

SSL.. In this paper, we consider Semi-Supervised Learning (SSL) [4, 11] on an undirected graph
of size n. We observe a weighted adjacency matrix A = [aij ]

n
i,j=1 ∈ Rn×n+ as well as node features

z1, . . . zn ∈ Rp at each node of the graph. We also observe some labels y1, . . . , yntr ∈ R at training
time and aim to predict the remaining labels yntr+1, . . . , yn. For simplicity, we assume that ntr and
nte are both in O (n). We denote by Z ∈ Rn×p the matrix whose rows contain the node features,
Ztr, Zte respectively its first ntr and last nte rows, and similarly Ytr, Yte the vectors containing the
observed and non-observed labels.

Graph smoothing with mean aggregation. Here we consider a simplified situation of linear GNN
with mean aggregation, often used as a theoretical baseline [18]. A linear GNN with k layers just
corresponds to performing k rounds of mean aggregation on the node features, then learning on the
smoothed features. We denote by dA = [

∑
i aij ]j ∈ Rn+ the vector containing the degrees of the

graph and D = diag(dA). Assuming that all degrees are non-zero, performing one round of mean
aggregation corresponds to multiplying Z by L = D−1A. The smoothed node features after k rounds
of mean aggregation are: Z(k) = LkZ. Each row, denoted by z(k)

i ∈ Rp, contains the smoothed
features of an individual node. Its first ntr and last nte rows are denoted Z(k)

tr , Z
(k)
te .

Learning. In this paper, we consider learning with a Mean Square Error (MSE) loss and Ridge
regularization. For λ > 0, the regression coefficients vector on the smoothed features is

β̂(k) def.
= argminβ

1
ntr

∥∥∥Ytr − Z(k)
tr β

∥∥∥2

+ λ ‖β‖2 =
(

(Z
(k)
tr )>Z

(k)
tr

ntr
+ λId

)−1
(Z

(k)
tr )>Ytr
ntr

(2)

Then, the test risk is defined as

R(k) def.
= n−1

te

∥∥∥Yte − Ŷte
(k)
∥∥∥2

where Ŷte
(k)

= Z
(k)
te β̂(k) (3)

Our goal is to illustrate some situations where a finite amount of smoothing provably improves the
test risk, that is, there is an optimal k? > 0 such thatR(k?) < min(R(0),R(∞)).

Random graph model. We adopt popular latent space random graph models akin to graphons
[15]. In these models, to each node i is associated an unobserved latent variable xi ∈ Rd with
d > p, and edge weights are assumed to be equal to aij = W (xi, xj) where W : Rd × Rd → R+

is a connectivity kernel. Note that edges may also be taken as random Bernoulli variables, but we
do not consider this here for simplicity. Moreover, we consider that the (xi, yi) are drawn iid from

1the reference has been anonymized for review purpose.
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some joint distribution, and the node features are a linear projection of the latent variables to a lower
dimension: zi = M>xi for some unknown M ∈ Rd×p that satisfies M>M = Idp. To summarize:

∀i, j, (xi, yi)
iid∼ P, zi = M>xi, aij = W (xi, xj) (4)

For this model, note that Z(k) = X(k)M where X(k) = LkX . In the rest of the paper, we use the
Gaussian kernel with a small additive term ε > 0:

W (x, y) = ε+Wg(x, y) where Wg(x, y)
def.
= e−

1
2‖x−y‖

2

(5)

The coefficient ε is added to lower-bound the degrees of the graph and avoid degenerate situations.

3 Oversmoothing
In this section, we briefly examine the oversmoothing case, when k →∞ while all other parameters
are fixed. In this case, it is well-known that all node features converge even for general GNNs [17].
For completeness, we state below this result in our settings.

Theorem 1. Define v = Z>d̄ and ȳtr = n−1
tr
∑ntr
i=1 yi. We have Ŷte

(k)
−−−−→
k→∞

(
‖v‖2

λ+‖v‖2 ȳtr

)
1nte .

Hence, in the limit k → ∞, the predicted labels become all equal. Using simple concentration
inequalities, it is generally easy to show that R(∞) ≈ Var(y) + O (1/

√
n) when λ → 0. In most

cases, this leads to situations whereR(0) < R(∞), and oversmoothing occurs.

4 Finite smoothing: Linear Regression
In this section, we consider a problem of linear regression on Gaussian data. We consider x ∼ N0,Σ

for some positive definite covariance matrix Σ, and y = x>β?, without noise for simplicity. For a
symmetric positive semi-definite matrix S ∈ Rd×d, we define the following function

Rreg.(S)
def.
= (Σ

1
2 β?)>

(
Id− S 1

2M(λId +M>SM)−1M>S
1
2

)2

(Σ
1
2 β?) ∈ R+ (6)

where we recall that M is the projection matrix to obtain the node features z = M>x. Note that it
satisfies 0 6 R(S) 6 ‖β?‖2Σ. We additionally define Σ(k) = (Id + Σ−1)−2kΣ. The main result of
this section is the following.
Theorem 2 (Regression risk without smoothing.). With probability at least 1− ρ,

R(0) = Rreg.(Σ) +O
(
‖Σ‖‖β?‖2d

√
log(1/ρ)

(λ+λ
(0)
min)
√
n

)
(7)

and

R(1) = Rreg.(Σ
(1)) +O

(
Cε1/5

)
+O

(
C′ logn

√
d+log(1/ρ)

(λ+λ
(1)
min)
√
n

)
(8)

where C = poly(‖Σ‖ , ed, |Id + Σ|), C ′ = poly(ε−1, ‖Σ‖ , ‖β?‖) and λ(k)
min = λmin(M>Σ(k)M).

This theorem gives a limiting expression of R(0) and R(1) with additional error terms. Since it is
easy to show that for n large enoughR(0) 6 R(∞) ≈ Var(y), we obtain the following result.
Corollary 1. Take any ρ > 0, and suppose Rreg.(Σ

(1)) < Rreg.(Σ). If ε is sufficiently small and n is
sufficiently large, then with probability 1− ρ, there is k? > 0 such thatR(k?) < min(R(0),R(∞)).

In other words, under some hypothesis on Rreg., there is indeed coexistence of beneficial finite
smoothing and oversmoothing. Below we exhibit a simple example where this hypothesis is satisfied.

As expected in linear regression, the covariance of the x(k)
k is key in the expression of the risk. It can

be seen in the proof of Theorem 2 (available at [10]) that x(1) behaves like (Id + Σ−1)−1x, whose
covariance is Σ(1), hence the consequence thatR(1) ≈ Rreg.(Σ

(1)). Similarly, by applying repeated
smoothing we can extrapolate that x(k) behaves like (Id + Σ−1)−kx, such thatR(k) ≈ Rreg.(Σ

(k)).
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Figure 1: Illustration of mean aggregation smoothing on the 2D example described in the text. First three
figures on the left, top: unobserved latent variables X(k) in dimension d = 2 where the colors are the Y ;
bottom: observed node features Z(k) = X(k)M in dimension p = 1 on the x-axis, labels Y on the y-axis.
From left to right, three order of smoothing k = 0, 1 and 2 are represented. Figure on the right: comparison
of empirical and theoretical MSE (details in [10]) with respect to order of smoothing k.

3 2 1 0 1 2 3

4
3
2
1
0
1
2
3
4

3 2 1 0 1 2 3

4
3
2
1
0
1
2
3
4

3 2 1 0 1 2 3

4
3
2
1
0
1
2
3
4

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

De
ns

ity

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

De
ns

ity

3 2 1 0 1 2 3
0.0

0.5

1.0

1.5

De
ns

ity

100 101 102

Order of smoothing

0.2

0.4

0.6

0.8

1.0

M
SE

Empirical
Theory

Figure 2: Illustration of mean aggregation smoothing on a classification task with two Gaussians with dimensions
d = 2, p = 1, where M projects on the first coordinate. First three figures on the left, top: density of
unobserved latent variables X(k) in dimension d = 2; bottom: density of observed node features Z(k) =

X(k)M in dimension p = 1. From left to right, three order of smoothing k = 0, 1 and 2 are represented.
Figure on the right: comparison of empirical and theoretical MSE with respect to order of smoothing k.

The matrix Σ(k) has the same eigendecomposition as Σ, but where every λi is replaced by λ(k)
i =

(1 + 1/λi)
−2kλi. This can be interpreted as follows: when λi � 1 is large, λ(k)

i ∼ λi, while if
λi � 1 is small, λ(k)

i ∼ λ2k+1
i . Hence smoothing shrinks the directions of the small eigenvalues

faster than that of the large ones. Thus, if β? is mostly aligned with the eigenvectors of large
eigenvalues, smoothing may reduce unwanted noise in the node features z = M>x.

We illustrate this on a toy situation (Fig. 1). Consider the following settings: d = 2, p = 1, Σ
has two eigenvalues λ1 = 2 and λ2 = 1/2, with respective eigenvectors u1 = [1, 1]/

√
2 and

u2 = [−1, 1]/
√

2, and β? = bu1. Finally, M> = [1, 0] is the projection on the first coordinate.

In this case, we can compute explicitely: R(k) ≈ Rreg.(Σ
(k)) = λ1b

2 (2λ+λ
(k)
2 )2+λ

(k)
2 λ

(k)
1

(2λ+λ
(k)
1 +λ

(k)
2 )2

. So, if

λ
(k)
2 decreases faster than λ(k)

1 , this function will first decrease to a minimum of approximately
λ1b

2( 2λ

2λ+λ
(k?)
1

)2 (when λ(k)
2 ≈ 0), before increasing again to λ1b

2 = ‖β?‖2Σ = limn→∞R(∞).

5 Finite smoothing: classification
In this last section, we examine a simple classification problem for two balanced classes with Gaussian
distribution: (x, y) ∼ (1/2)(Nµ,Id ⊗ {1} + N−µ,Id ⊗ {−1}). We note that this is not a difficult
problem per se, and that linear regression is certainly not the method of choice to solve it. Our main
goal is to illustrate the smoothing phenomenon. Our main result is the following.
Theorem 3. Take any ρ > 0. If ε is sufficiently small, and ‖µ‖ , n are sufficiently large, and∥∥M>µ∥∥ > 0, then with probability 1− ρ, there is k? > 0 such thatR(k?) < min(R(0),R(∞)).

Note that we have assumed ‖µ‖ to be sufficiently large here. However, we do not assume that∥∥M>µ∥∥ is large (just non-zero), and the classification problem on the zi alone may be very difficult.
As seen in the proof [10] and Fig. 2 on a d = 2 example, the interpretation here is the following: in
the proper regime, communities will initially concentrate in the latent space faster than they get
closer from each other, which helps learning on the z(k). Then, they eventually collapse together.
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Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021. 1

[3] Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam, and Pierre Vandergheynst.
Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. 1

[4] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning. 2010. 2
[5] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the

over-smoothing problem for graph neural networks from the topological view. AAAI 2020 -
34th AAAI Conference on Artificial Intelligence, pages 3438–3445, 2019. 1

[6] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. 37th International Conference on Machine Learning, ICML 2020,
PartF16814:1703–1713, 2020. 1

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
Message Passing for Quantum Chemistry. In International Conference on Machine Learning
(ICML), pages 1–14, 2017. 1

[8] William L. Hamilton. Graph Representation Learning. 2020. 1
[9] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling Over-

Smoothing for General Graph Convolutional Networks. 14(8):1–14, 2020. 1
[10] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing.

Advances in Neural Information Processing Systems (NeurIPS), 2022. 2, 3, 4
[11] Thomas N Kipf and Max Welling. Semi-Supervised Learning with Graph Convolutional

Networks. In International Conference on Learning Representations (ICLR), 2017. 1, 2
[12] Kwei Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. Policy-GNN: Aggregation

Optimization for Graph Neural Networks. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 461–471, 2020. 1

[13] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go
as deep as CNNs? Proceedings of the IEEE International Conference on Computer Vision,
2019-Octob:9266–9275, 2019. 1

[14] Qimai Li, Zhichao Han, and Xiao Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
pages 3538–3545, 2018. 1

[15] László Lovász. Large networks and graph limits. Colloquium Publications, 60:487, 2012. 2
[16] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful

Graph Networks. In Advances in Neural Information Processing Systems (NeurIPS), pages
1–12, 2019. 2

[17] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power
for Node Classification. In International Conference on Learning Representation (ICLR), 2020.
1, 3

[18] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks. 36th International Conference on
Machine Learning, ICML 2019, 2019-June:11884–11894, 2019. 2

[19] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–21, 2020. 1

[20] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In ICLR, pages 1–15, 2019. 2

[21] Lingxiao Zhao and Leman Akoglu. PairNorm: Tackling Oversmoothing in GNNs. pages 1–17,
2019. 1

5


	1 Introduction
	2 Preliminaries
	3 Oversmoothing
	4 Finite smoothing: Linear Regression
	5 Finite smoothing: classification

