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1 NOTATIONS AND ABBREVIATIONS

Table 1 lists the abbreviations of definitions used in the paper.
Table 2 provides the abbreviations of different components in
PerFRDIiff. Table 3 and 4 list the notations of variables and latent
representations used in the paper. Table 5 lists the notations of
the used loss functions.

Table 1: Abbreviations for definitions

Abbreviations  Descriptions

PMAFRG Personalised Multiple Appropriate Reaction
Generation

MAFRG Multiple Appropriate Reaction Generation

ML Machine learning

GT Ground truth

AFRs Appropriate facial reactions

3DMM 3D Morphable Model

MFCC Mel-frequency Cepstral Coefficients

Table 2: Abbreviations for PerFRDiff components

Abbreviations Components

SBE Speaker Behaviour Encoding

GAFRG Generic Appropriate Facial Reaction
Generator

GAFRG?' An personalised instance of GAFRG

GAFRGp The ky, layer in the GAFRG

GAFRGL The ky, layer in the GAFRG?'

PCSM Personalised Cognitive Style Modelling

PSSL Personalised Style Space Learning

PWSG Personalised Weight Shift Generation

Enc,uq Speaker audio behaviour semantics encoder

Encapp Speaker facial appearance semantics encoder

Encemo Speaker facial emotional semantics encoder

Encp Transformer encoder

2 IMPLEMENTATION DETAILS

Network details: In this study, we adopt: (1) the torchaudio pack-
age! to extract MFCC features from the raw speaker audio signal;
(2) the FaceVerse [7] to extract 58 3DMM coefficients (i.e., 52 coef-
ficients describing facial expression, 3 coefficients describing the
transition and 3 coefficients rotation) from the speaker face video;
and (3) the GraphAU [4, 5] to extract facial emotional represen-
tations, including occurrences of 15 action units (i.e., AU1, AU2,

Uhttps://pytorch.org/audio/stable/index.html

Multiple Appropriate Facial Reaction Generation

Table 3: Notations of variables - Part 1

Notations Descriptions

BS A speaker behaviour

B The speaker behaviour expressed at the time

[1:t—w]

interval [1: ¢ — w]

A? Lit—w] The speaker audio behaviour expressed at
the time interval [1: ¢ — w]

F[sl: t—w] The speaker facial behaviour expressed at
the time interval [1: ¢ — w]

Rl(m) The m-th generated AFR for the [-th listener
in response to the speaker behaviour B

R The m-th generated AFR at the time interval

[t—w+l:t](m)

[t—w+1:t]

R!
i

By

Fl(n)

F(lt-w1:t,d)

F( [t—w+1:£],0)

F([t—w+1:t],0)

Fl

F

pl

pl(F (n))

[t —w + 1: ¢] for the I-th listener in response
to the speaker behaviour Bf Lt w]
A set of predicted personalised AFRs
{Rl[t7w+1:t] (1),--- ,Rl[t7w+1:t] (m) at the time
interval [t — w + 1 : t] for the [-th listener in
response to the speaker behaviour Bfuiw]

A set of predicted personalised AFRs

{RL(1),- -+ ,RI (M)} for the I-th listener in
response to the speaker behaviour B*

A historical facial behaviour of the /-th
listener

The ny, real AFR expressed by the I-th in
response to the speaker behaviour B

A noisy version of an AFR segment expressed
at the time interval [t —w + 1 : t] in response
to Bf Lt w] obtained at the d-th diffusion step
Original clean real AFR segment expressed at
the time interval [t — w + 1 : t] in response to
B? I at the 0-th diffusion step

Predicted original clean AFR segment
expressed at the time interval [t —w + 1 : t]
in response to BEH_W] in the reverse process
A set of real AFRs {F!(1),---,F/(N)}
expressed by the [-th listener in response to
the speaker behaviour B®

A union set of real AFRs {F! UF2 U --- UFL}
expressed by L listeners in response to the B
Personalised cognitive style of the I-th
listener

The personalised cognitive style inferred from
the n-th facial reaction F! (n) expressed

by the I-th listener
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Table 4: Notations of variables - Part 2

Notations Descriptions
Z A latent space
l//}ll Identity-free facial behaviour attributes
extracted from the historical facial behaviour
of the I-th listener
Ep The encoded embedding of 1//2
E?;‘S_W ! MFCC features of the the speaker audio behaviour
S
[1:t—w]
Z[‘ﬁ—w] Speaker audio behavioural semantics at the time
interval [1: ¢ — w]
?ﬁ) g_w] 3DMM coefficients extracted from the speaker
facial behaviour F¥_.
~ [1:2—w]
2[)11)57141] Speaker facial appearance semantics at the time
interval [1: ¢ — w]
Etme Facial emotional representations of the speaker
[1:t—w]
facial behaviour F}
~ [1:2—w]
cmo Speaker facial emotional semantics at the time
[L:t—w]
interval [1:t—w]
d The d-th step in the forward diffusion process
€9 Predicted noise added in the forward diffusion
process
c Conditions of the diffusion model
0 The weights of GAFRG
A Personalised weight shifts for the I-th listener
0! Personalised weights for the [-th listener
W The weight matrix of k-th layer GAFRG,
Ang Personalised weight shift applied to the k-th
layer GAFRGy, in the GAFRG for the I-th
lec The output of the target layer GAFRG?'
b the biases at the target layer GAFRGZ

Table 5: Notations of loss functions

Loss Descriptions

L1 MSE loss for training the GAFRG and PWSG
L,  Contrastive loss for training the PSSL

AU4, AU6, AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU23,
AU24, AU25, AU26), 8 facial expression probabilities (i.e., Neutral,
Happy, Sad, Surprise, Fear, Disgust, Anger and Contempt), valence
and arousal intensities from every frame of the input speaker fa-
cial behaviour. The speaker audio semantic encoder Enc,,4 and
the speaker appearance semantic encoder Enc,pp within the SBE
module are implemented as a fully-connected layer (linear layer),
while the speaker emotional semantics encoder Encepo is an RNN-
based VAE [1]. The PCSM module comprises a PSSL block and a
PWSG block. The PSSL block adopts FaceVerse [7] as the identity-
free attribute extractor to extract 3DMM coefficients from each
frame of listeners’ historical face video. The transformer encoder

Anonymous Authors

Enc;, in PSSL consists of four transformer encoder layers, where
the number of heads in the multi-head attention block of each en-
coder layer is set to 4. Finally, a fully-connected layer is attached
at the top of the transformer encoder to output the personalised
cognitive style representation. Meanwhile, the PWSG block is a
multi-branch network with the number of branches depending on
the number of layers in the GAFRG module (i.e., the number of
layers that need to be edited). The PWSG block starts with two
fully-connected layers followed by multiple branches. Each branch
is implemented as a fully-connected layer to produce the weight
shift matrices corresponding to the layers of the GAFRG module.
The transformer decoder within the GAFRG module consists of
seven transformer decoder layers, where the number of heads in
the multi-head attention block of each decoder layer is also set to
4. The cross-attention operation in each decoder layer takes the
concatenation of the speaker audio behavioural semantics, facial
appearance semantics and facial emotional semantics encoded by
the SBE module as the key and value, which is considered as a
condition to guide the reverse (denoising) process for appropriate
facial reaction generation. Unless specifically noted, the three types
of speaker behavioural semantics are used by default. We employ
learnable positional embeddings to maintain the positional infor-
mation within the transformer decoder. Then, a fully-connected
mapping layer is finally employed after the transformer decoder to
map the latent representations to facial reactions.

Training details: The first training stage individually trains
the GAFRG and PSSL, where the maximum training epochs for
both GAFRG and PSSL are set to 500 and 50, respectively. During
GAFRG training, the batch size is set to 4 (speaker behaviors). To
generate generic appropriate facial reactions, we randomly select n
real AFRs that can be expressed by various listeners in response to
each speaker behavior, where n is empirically set to 10. If an input
speaker behavior is associated with fewer than 10 available real
AFRs in the training set, we randomly replicate the provided real
AFRs until the total reaches 10. We set the batch size to 3 (speaker
behaviours) to train PSSL which models personalised cognitive style.
Differently, for each speaker behaviours, all of its corresponding real
AFRs are used in the training. The parameters of GAFRG and PSSL
are optimised by two separate AdamW optimiser [3] with an initial
learning rate of 10~* and weight decay of 10~%. The temperature
parameter 7 in the contrastive loss [2] for training PSSL is set to
0.07. In the experiments, unless specifically noted, classifier-free
guidance which enhances the balance between the quality and
diversity of the generated facial reactions is employed in GAFRG’s
training by default. The second training stage trains the PWSG
block with the pre-trained GAFRG. In particular, the PSSL block is
kept frozen at this stage, while the weights of the GAFRG are only
updated (edited) by the PWSG block in the forward propagation
process. The SGD optimiser with an initial learning rate of 1073,
weight decay of 107 and momentum of 0.9 is employed to optimise
the weights of the PWSG block. The batch size is set to 1 (speaker
audio-visual behaviour). The maximum number of training epochs
is set to 100. The default length of the listener’s historical facial
behaviour used for personalised cognitive style modelling is 30
seconds.
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Table 6: Influence of different speaker behavioural modalities.

Behavioural semantics FRCorr T

FRdist |

FRDivT FRDvsT FRVar? FRRea| FRSyn |

Encayp Encemo Enc,y MAFRG PMAFRG MAFRG PMAFRG (x1072)
v 0.32 0.28 109.99  112.18 15.39 25.63 1079 4741 4534
v 0.21 0.16 10333 104.51 3.39 6.19 2.54 56.51 45.32
v 0.32 0.28 17147 17471 0.01 39.24 1110 4868  45.05
v v 0.33 0.29 15831  160.65 0.01 32.39 1103 4644 4540
v v 0.34 0.30 10534  108.10 15.75 26.78 1033 48.92 45.80
v v 0.32 0.27 101.13  109.87 16.31 26.06 1021 49.32 45.52
v v v 0.35 0.31 10557  107.46  17.14  23.46 9.38 4594 4541

Table 7: Results achieved by directly generating personalised weights for the GAFRG module and generating personalised
weight shifts for editing a pre-trained GAFRG module in personalised facial reaction generation.

Method FRCorr T FRdist | FRDivT FRDvsT FRVarl FRRea | FRSyn |
MAFRG PMAFRG MAFRG PMAFRG (x10~ 2 )
Weight generation 0.36 0.32 97.28 100.48 8.44 13.95 5.44 46.89 45.31
Weight editing 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

Table 8: Results achieved by predicting the added noise and predicting the original clean facial reactions in the reverse (denoising)

process.

Prediction FRCorr T FRdist | FRDivT FRDvsT FRVarT FRRea | FRSyn |
MAFRG PMAFRG MAFRG PMAFRG (x10~ 2)
Added noise 0.36 0.31 110.24 112.84 18.63 27.12 10.84 47.83 45.06
Facial reaction 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

3 INFLUENCE OF DIFFERENT SPEAKER
BEHAVIOURAL MODALITIES

Table 6 evaluates the importance of different speaker behavioural
semantics contributing to multiple diverse and appropriate facial
reaction generation. It is worth noting that the results are obtained
by the GAFRG without weight editing. The best performance over
the appropriateness of the generated facial reactions in terms of
correlations with the real AFRs is achieved when all of speaker
audio, appearance and facial emotional behavioural semantics are
considered, as indicated by the highest FRCorr (0.35 and 0.31) on the
MAFRG and PMAFRG tasks. Merely considering the speaker audio
semantics leads to a larger DTW distance (FRdist) between the gen-
erated facial reactions and real AFRs, indicated by the largest FRdist
values on both MAFRG and PMAFRG tasks. In contrast, speaker
facial behavioural semantics (i.e., speaker facial appearance seman-
tics and facial emotional semantics) are more reliable for predicting
facial reactions that have a lower distance to real AFRs. The results
reveal that considering multi-modalities of the speaker behaviour
helps to generate more appropriate facial reactions in response
to each speaker behaviour. In addition, multi-modalities help to
improve the diversity among multiple generated facial reactions in

response to the same speaker behaviour, as indicated by the highest
FRDiv.

4 RESULTS ACHIEVED BY DIRECTLY
GENERATING PERSONALISED WEIGHTS
FOR THE GAFRG AND GENERATING
PERSONALISED WEIGHT SHIFTS FOR
EDITING A PRE-TRAINED GAFRG

Table 7 compares the performance achieved by directly generating
personalised weights (weight generation) and personalised weight
shifts (weight editing) for producing a personalised instance of
GAFRG module. It can be observed that the personalised instance
of GAFRG obtained by weight editing outperforms the other way
over appropriateness (FRCorr and FRdist), diversity (FRDiv, FRDvs
and FRVar) and synchrony (FRSyn). The reason is that directly
generating personalised weights focuses more on the personalised
aspects of facial reaction generation. In contrast, editing a pre-
trained GAFRG allows to take into account both of personalised
cognitive processes of the target listener and the commonly shared
cognitive processes among different listeners. The superior per-
formance achieved by weight editing indicates the importance of
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pre-training a GAFRG in facilitating personalised facial reaction
generation.

5 RESULTS ACHIEVED BY PREDICTING THE
ADDED NOISE AND PREDICTING THE
ORIGINAL CLEAN FACIAL REACTIONS IN
THE REVERSE (DENOISING) PROCESS

Table 8 compares the performance between predicting the added
noise and predicting original clean facial reaction segments by
GAFRG? in the reverse (denoising) process to generate facial re-
actions. As reported, predicting the original clean facial reaction
segments enables the GAFRG?' to generate more appropriate facial
reactions in response to each speaker behaviour on both MAFRG
and PMAFRG tasks (higher correlations and lower distances to
the real AFRs). In contrast, predicting noise to be removed allows
the GAFRG?' to generate more diverse and synchronised facial
reactions in response to speaker behaviours.

6 INFLUENCE OF THE CLASSIER-FREE
GUIDANCE IN MODEL TRAINING

Table 9 evaluates the importance of the employment of classifier-
free guidance in the training of GAFRG and GAFRG?' in multiple
diverse and appropriate facial reaction generation. The comparison
in Table 9 shows that adding classifier-free guidance generally helps
to generate facial reactions with significantly higher correlations to
real AFRs, but it slightly worsens distances and the synchrony (mea-
sured by FRSyn), with a mixed impact on different diversity metrics
(FRDiv, FRDvs and FRVar). For example, the diversity among mul-
tiple facial reactions generated in response to the same speaker
behaviour (measured by FRDiv) is decreased, while the diversity
among facial reactions generated for different speaker behaviours
(measured by FRDvs) is improved.

7 STATISTICAL DIFFERENCE ANALYSIS

We conducted a two-tailed test with 95% confidence to compare our
proposed PerFRDiff and three state-of-the-art MAFRG approaches
on both MAFRG and PMAFRG tasks. The comparative results are
reported in Table 10. It can be observed that PerFRDIfF significantly
outperforms the compared approaches in generating facial reac-
tions that are highly correlated to the real AFRs on both MAFRG
and PMAFRG tasks. In addition, the facial reactions generated by
the PerFRDiff are significantly more diverse and realistic than those
generated by the compared approaches. In contrast, the facial reac-
tions generated by REGNN and Trans-VAE are significantly more
synchronised with the speaker behaviours compared to facial reac-
tions generated by PerFRDiff.

8 MODEL COMPLEXITY ANALYSIS

The intricacies of PerFRDIff are clearly revealed through multiple
metrics that capture its performance and the computational effort
it requires, as shown in Table. 11. For inference purposes, it handles
a 30-second sample of speaker behavior and a 30-second historical
facial video of the listeners, and it outputs a tailored 30-second
facial reactions all within 5 seconds. This demonstrates the model’s

Anonymous Authors

capability for real-time usage. Examining the details of the GARFG
training process, it takes 0.16 seconds to complete a single iteration
and 2 minutes and 19 seconds for a full epoch. On the other hand,
the PWSG’s training involves 0.12 seconds per iteration and just 6
minutes per epoch. During PSSL training, a single iteration takes
0.28 seconds, whereas an entire epoch is completed in 5 minutes.
Structurally, the GAFRG consists of 28.929 million parameters, and
its computational load, measured in FLOPs (Floating Point Opera-
tions per Second), is 1.783T when generating ten facial reactions
(i.e., action units (AUs), facial expression probabilities, valence and
arousal intensities) of the size 10 X 750 x 25. The PSSL comprises
4.76 million parameters and its FLOPs stands at 3.185G when pro-
cessing a listener’s historical facial behaviour of size 1 X 750 X 58
(in the form of 3DMM coefficients). The PWSG comprises 1.627
billion parameters and its FLOPs stand at 1.625G when processing
a personalised cognitive style representation of the size 1 X 512 to
generate personalised weight shifts. The above computation of the
FLOPs and the number of model parameters is done by using the
PyTorch-OpCounter package?. Altogether, these features offer a
comprehensive insight into the model’s complexity.

9 VISUALISATION OF FACIAL REACTIONS
GENERATED FOR DIFFERENT SPEAKER
BEHAVIOURS

Fig. 1 to 4 display facial reactions generated by different approaches
in response to different speaker behaviours. It can be clearly ob-
served that ours show more head movements and diverse facial
expressions in response to different speaker behaviours, compared
to facial reactions generated by other approaches. A video (named
’demo.mp4’) demonstrating speaker behaviours and the correspond-
ing generated facial reactions in response to the speaker behaviours
is provided in the Supplementary Materials folder.
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Figure 2: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #2, where
ours clearly show more head movements in the interaction.

GT real facial  Speaker
REGNN Trans-VAE reaction behaviour
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Figure 3: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #3, where
ours aligns with the real AFR that the facial expressions of the listener turn to smile in response to the speaker behaviour at
the 700-th and 750-th frames.
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Figure 4: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #4, where
ours shows more facial expressions in response to the speaker behaviour.

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



	1 Notations and Abbreviations
	2 Implementation Details
	3 Influence of different speaker behavioural modalities
	4 Results achieved by directly generating personalised weights for the GAFRG and generating personalised weight shifts for editing a pre-trained GAFRG
	5 Results achieved by predicting the added noise and predicting the original clean facial reactions in the reverse (denoising) process
	6 Influence of the classier-free guidance in model training
	7 Statistical Difference Analysis
	8 Model Complexity Analysis
	9 Visualisation of facial reactions generated for different speaker behaviours
	References

