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A APPENDIX

A.1 THE DETAILS OF DATASETS

Beibei is a dataset about maternity and baby products on the Chinese e-commerce platform1, which
contains sales data from January 2017 to April 2021. The dataset includes more than 500,000
products, covering various categories such as formula milk, diaper rash cream, baby clothes, and so
on. It provides detailed information about the products and user infomation, such as product brand,
price and sales volume, and user ID, user reviews and purchase time. In addtion, it also contains three
behavior types(such as page views, favorites and purchases).

Tmall is a dataset provided by Taobao, one of the largest B2C e-commerce platforms in China,
which covers the daily sales and user behavior from November 2014 to December 2014. The dataset
contains data from over 120 million users and millions of transactions, including product information,
user behavior, and user personal information. Additionally, the dataset provides multiple interaction
behavior records(e.g., page views, favorites, add-to-carts, and purchases).

IJCAI was released by the IJCAI Contest2 2015, and used for the task of predicting repeat buyers.
The dataset contains 6 months of anonymous shopping logs of users before and after the Double 11
event, as well as label information indicating whether the user is a repeat buyer. The dataset contains
four behavior types( clicks, favorites, add-to-carts, and purchases).

The summary table characterizes those three datasets as following:

Table 3: Statistics of the Experimented Datasets
Dataset User # Item # Interaction # Sparsity# behavior types#

Beibei 21,716 7,977 3,338,068 0.9807 page views, favorites and purchases
Tmall 114,503 66,706 5,751,432 0.9992 page view, favorites, add-to-carts, and purchases
IJCAI 423,423 874,328 36,222,123 0.9999 clicks, favorites, add-to-carts, and purchases

A.2 PERFORMANCE COMPARISON ON TOP-N ITEM POSITIONS

To fully verify the effectiveness of the experiment, we also conducted experiments on the Top-N
recommendation task for different values of N . Table 4 presents the evaluation results on the
Beibei dataset in terms of NDCG@N. From the results, it can be observed that when N takes
different values from the set {1,3,5,7,9}, DHCF consistently achieves the best performance, further
verifying the effectiveness of the proposed heterogeneous hypergraph neural network multi-behavior
recommendation model combined with multi-behavior contrastive learning.

Table 4: The best performed baselines from each category on Beibei are reported in this table.
Model NDCG@1 NDCG@3 NDCG@5 NDCG@7 NDCG@9

MF 0.1184 0.2275 0.2866 0.3164 0.3293
NCF 0.1228 0.2316 0.2834 0.3154 0.3300
ICL 0.1636 0.3170 0.3552 0.3787 0.3887
SGL 0.1252 0.2357 0.2962 0.3288 0.3381

EHCF 0.1775 0.3029 0.349 0.3724 0.3887
GNMR 0.1395 0.2567 0.3086 0.3334 0.3515
DHCF 0.1967 0.3224 0.3748 0.3992 0.4142

A.3 THE DETAILS OF MODEL OPTIMIZATION

We elaborate the overall workflow of training our DHCF framework in Algorithm 1 as follows. This
algorithm summarizes and generalizes the learning process of the DHCF proposed, and provides a
brief description of the entire recommendation task optimization.

1https://www.beibei.com/
2https://tianchi.aliyun.com/dataset/
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Algorithm 1: The Learning Process of DHCF Framework
Input: User-item heterogeneous interactions X 2 RI⇥J⇥K , target behavior t, auxiliary behavior a,

maximum epoch number S, number of graph iterations L, learning rate ⌘, regularization weight �1,
�2, �3.

Output: Trained model parameters⇥.
1 Initialize model parameters⇥
2 for s 1 to S do
3 Draw a mini-batch U from all users {1, 2, ..., I}
4 Sample m positive items {vp1 , ..., vpm}
5 Sample m negative items {vn1 , ..., vnm}
6 for each ui 2 U do
7 Initialize the training loss L = �1 · k⇥k2F
8 for l 1 to L do
9 Conduct the type-aware message passing (Eq 1)

10 Compute ⇤(u,1) according to Eq 2 to Eq 4
11 end
12 Aggregating multi-order representations ⇤(u,1) from L iterations as (u) (Eq 5)
13 Calculate the prediction score X̂i,j,k =  (u)>

i · (v)>
j

14 L+ =
PM

m=1 max(0, 1� (X̂i,ps,k0 � X̂i,ns,k0))
15 for l 1 to L do
16 Calculate the node-level infoNCE loss Ll

n (Eq 7)
17 Calculate the graph-level constractive loss Ll

g(Eq 8)
18 end
19 Calculate the recommendation loss, weight-decay regularization, the node and graph level loss to

obtain the overall loss L (Eq 9)
20 for each parameter ✓ in⇥ do
21 ✓ = ✓ � ⌘ · @L

@✓

22 end
23 end
24 end
25 return all parameters⇥

A.4 THE DETAILED DESCRIPTION OF BASELINE METHODS

1) Conventional Collaborative Filtering Models.

• MF (Koren et al., 2009): This baseline is a matrix factorization approach which incorporates user
and item bias information for the implicit feedback records between users and items.

• NCF (He et al., 2017): This is a milestone work on neural collaborative filtering, utilizing the deep
multi-layer perceptron (MLP) to enable non-linear feature interaction extraction.

2) Autoencoder/Autoregressive Collaborative Filtering.

• CDAE (Wu et al., 2016): This framework enhances CF model with the reconstruction-based
optimization loss using the denoising auto-encoder network with input data corruption.

• NADE (Zheng et al., 2016): It is an autoregressive method which shares the parameters among
different user-item interactions. Multiple hidden layers are in used in NADE for transformation.

3) GNN-enhanced Collaborative Filtering Methods.

• NGCF (Wang et al., 2019): This representative graph neural network model captures the high-order
relationships among users and items with recursive message passing for representation updating.

• SGCN (Zhang et al., 2019): This approach stacks multiple encoder-decoders over the GNN archi-
tecture with the embedding reconstruction loss to address the data sparsity issue. The reconstruction
loss is applied over the encoded latent embeddings with value masking.

4) Recommendation with Disentangled Representations.
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• DGCF (Wang et al., 2020a): This baseline method is a disentangled collaborative filtering approach
for encoding latent factors over the user-item interaction graph, built upon the GCN propagation
scheme. Each user representation is partitioned into intent-aware embedding vectors to represent
latent factors driving users’ interaction behaviors over items.

• GDCF (Zhang et al., 2022): This recent disentangled recommender in which multi-typed geome-
tries are incorporated into interaction disentanglement for generating factorized embeddings.

• ICL (Chen et al., 2022): It proposes to improve the model robustness by leveraging contrastive
self-supervised learning for modeling latent intent distributions over the item-interacted behaviors.

5) Multi-Behavior Recommender Systems.

• NMTR (Gao et al., 2019): It is a multi-task learning model which captures the correlations of
different types of interactions in recommener system with pre-defined cascaded behavior relations.

• EHCF (Chen et al., 2020a): It tackles the heterogeneous collaborative filtering with a non-sampling
transfer learning approach, to correlate behavior-aware predictions for recommendation.

• MBGCN (Jin et al., 2020): This recommendation model is built over the iterative graph message
passing paradigm to propagate the behavior-aware embeddings over the heterogeneous interaction
graph to model multi-typed user-item relations.

• GNMR (Xia et al., 2021a): The self-attention is integrated with a memory network to jointly encode
the behavior-specific semantics and behavior-wise dependencies. Low-order user embeddings are
selectively to be combined with high-order representations.

• KHGT (Xia et al., 2021b): This baseline is another multi-behavior recommendation approach,
which utilizes the stacked graph transformer network to aggregate behavior-aware representations
through attentive weights for differentiating propagated messages.

• MRec (Gu et al., 2022): This baseline method designs a star-style contrastive learning task to
model the correlations between the target behavior and the auxiliary behaviors of users.

6) Self-Supervised Recommendation Models.

• SGL (Wu et al., 2021a): This method proposes to augment user-item interaction graph with random
walk-based node and edge dropout operators for constructing contrastive views.

• MHCN (Yu et al., 2021): A generative self-supervised task is incorporated into recommendation
loss by maximizing mutual information between path-level and global-level embeddings. It
considers high-order user correlations with hypergraph convolutions.

• HCCF (Xia et al., 2022): It is a hypergraph contrastive learning model for generating self-
supervised signals with local-global node self-discriminating. A parameterized hypergraph neural
module is developed to aggregate information from user and item individuals with hyperedges.

A.5 IN-DEPTH DISCUSSION ABOUT MULTI-RELATION ADAPTIVE CONTRASTIVE LEARNING

A.5.1 Adaptive Self-Supervision of DHCF

In this section we show that, in comparison to vanilla GNNs, our heterogeneous hypergraph mes-
sage passing mechanism can not only generate more supervision signals for the underlying id-
corresponding embeddings, but also provide learnable weights to enable adaptive CF training. In
specific, the key of the pair-wise recommendation loss (i.e. the first term in Eq 9) is to maximize or
minimize the prediction scores X̂i,j,k0 for positive or negative training pairs (ui, vj), respectively. For
vanilla GNNs, the prediction using the L-th order embeddings can be decomposed as follows:

X̂
G
i,j,k0 = z>i zj =

0

@
X

i02NL
i

↵i0ei0
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where X̂
G
i,j,k0 denotes the prediction for (ui, vj) under the target behavior k0, using a GNN model.

zi, zj 2 Rd denote the high-order embeddings for ui and vj given by the GNN. NL
i ,NL

j denote the
set of neighboring nodes in L hops for ui and vj , respectively. ei, ej 2 Rd represent the learnable
parameters for the id-corresponding embeddings of ui and vj , respectively. As shown by the above
decomposition, when maximizing or minimizing X̂

G
i,j,k0 , it does not merely adjust the prediction for

the concerned two nodes ui and vj . The nodes in L hops to ui and vj are all pulled closer or pushed
away in their underlying embeddings. The strength of these optimization terms are determined by the
coefficients ↵i0 ,↵j0 , which are related to the degrees of nodes in the heterogeneous interaction graph.
Although the foregoing GNN-based embeddings implicitly augment the supervision signals for the
neighboring node pairs, we show that by employing our heterogeneous hypergraph architecture
for representation learning, even more supervision signals can be generated, also with learnable
strength coefficients, to further enhance the parameter learning for better graph relation modeling.
Analogous to Eq 10, the prediction score X̂H

i,j,k0 for (ui, vj) under the target behavior k0 made by our
heterogeneous hypergraph neural networks can be decomposed as follows:
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i,j,k0 = H>
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where X̂
H
i,j,k0 denotes the prediction for (ui, vj) under the target behavior k0 with our heterogeneous

hypergraph architecture. Hi,Hj 2 Rd denote the high-order embeddings for ui and vj through the
hypergraph neural network (HGNN). For simplicity, we assume �(·) is the identity function. �i0 ,�j0

denote the learnable HGNN-based weights for simplifying the equations. As shown by the above
decomposition, our hypergraph networks not only adjust the predictions for node pairs in the L-hop
neighborhood, but also generates supervision signals for nodes from the global graph level, which
is far more in amount than vanilla GNNs. This shows that our hypergraph relation learning is able
to conduct graph-level supervision signal enrichment. Furthermore, the weights �i0 ,�j0 for each
term are calculated and optimized by the hypergraph neural networks, which supercharge our DHCF
framework with more capability of adaptive relation learning.

A.5.2 Rationale of Graph Multi-Relational CL

In this section, we analyze the training objective for our graph-level contrastive learning (i.e. Eq 8),
to show that this training objective adaptively and efficiently maximizes the cross-relation similarity
between nodes according to their global connectivity (i.e. how strong the nodes are connected to the
global hyperedges). Our shuffling-based negative sampling essentially conducts uniform similarity
minimization as the contrast of the positive optimization. Without loss of generality, we simplify
Eq 8 by using dot-product as the similarity function s(·), to have the following loss:

Lg =
KX

k=1

��̄>
k0�̄k + log

⇣
exp(�̄>

k0�̄k) + exp(�̄
0>
k0 �̄k)

⌘
(12)

where ��̄>
k0�̄k represents the positive term that pulls close the averaged embeddings of hyperedges

in the target behavior k0 and the averaged hyperedge embedding in the auxiliary behavior types k.
And �̄

0>
k0 �̄k denotes the negative term that pushes away the averaged hyperedge embedding �̄0

k0 of
the negative sample and the vanilla averaged hyperedge embedding. Here the negative sample refers
to the randomly-shuffled graph. Then we individually analyze the positive term and the negative term,
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by decomposing them into low-level node embeddings as shown below:
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For positive samples, the corresponding term @ � �̄>
k0�̄k/@e>i1ei2 = H̃i1,e1,k0H̃i2,e2,k indicates that

our graph-level CL essentially maximizes the similarity between each node pair (i1, i2), according to
their individual relation (i.e. H̃) to all the hyperedges. And @ � �̄>

k0�̄k/@H̃i1,e1,k0H̃i2,e2,k = e>i1ei2
shows that our graph-level CL also adaptively maximizes the cross-relation hypergraph structures
for target relation k0 and auxiliary relation k according to the similarity of node embeddings. For
negative samples, one of the hypergraph weight is substituted by a noise coefficient ✏, which leads to
similarity minimization with random strength. As there is no straightforward negative samples for
graph-level hyperedge embeddings, this strategy enables generally uniform contrastive optimization
against the similarity maximization for the positive samples.
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