
HSM: Hierarchical Scene Motifs for Multi-Scale Indoor Scene Generation

Supplementary Material

We provide additional details about HSM’s motif library
(Appendix A.1), support region extraction procedure (Ap-
pendix A.2), DFS solver formulation (Appendix A.3.1),
scene spatial optimization details (Appendix A.3.2), our as-
set retrieval process (Appendix A.4), ablation analysis (Ap-
pendix A.5), a breakdown of SceneEval results by diffi-
culty (Tab. 5), computation cost and runtime analysis (Ap-
pendix A.6), open source VLM result (Appendix A.7), and
limitations (Appendix A.8). We also provide details about
the support region dataset we constructed (Appendix B),
the user study instructions (Appendix C), and the VLM
prompts used in HSM (Appendix D), along with extra
scene-level qualitative examples (Fig. 10) and rendered
scenes (Fig. 11).

A. HSM Details
A.1. Motif Library
HSM’s motif library consists of 17 motifs:
stack, pile, row, grid, pyramid, wall grid,
wall vertical column, wall horizontal row,
face to face, left of, in front of, on top, surround,
rectangular perimeter, bed setup, on each side, and
next to. See the motif prompt in Appendix D.1.1 for their
definitions. These motifs are learned from arrangements
extracted from scenes in HSSD [35], with the exceptions
of bed setup and pyramid, for which we manually created
example arrangements using Blender1. Each example
arrangement is manually annotated with a corresponding
text description, and we follow SMC [67]’s learning phase
to create reusable meta programs representing the motifs.
Please refer to the original SMC paper for details on the
learning phase.

A.2. Support Region Extraction
We provide a more detailed description of the algorithm for
identifying surfaces in Algorithm 1. In our implementation,
we use a cluster normal threshold of tnorm = 0.9, an adja-
cent normal threshold of tadj = 0.95, and height clearance
threshold of tclear = 0.05m in between two horizontal sup-
port surfaces. The default clearance height for top surfaces
is set to htop = 0.5m. Lastly, we use tseg = 80% to seg-
ment horizontal surfaces.

In order to identify a surface as horizontal or vertical,
we fit a plane to each surface. This involves first fitting an
oriented bounding box to each cluster of faces cj . Since in-
door objects tend to be oriented upright, both vertically up-

1https://www.blender.org/

Algorithm 1 Support Region Extraction Algorithm
1: function EXTRACTPLANARSURFACES(F)
2: unclustered → F

3: queue → []
4: clusters → []
5: while unclustered.size() > 0 do
6: if queue.empty() then
7: f0 → unclustered.pop()
8: c → [f0]
9: clusters.append(c)

10: for all f ↑ neighbours(f0) do
11: if normal(f) · normal(f0) ↓ tadj then
12: queue.append(f)
13: end if
14: end for
15: else
16: f

→ → queue.pop()
17: if normal(f →) · normal(f0) ↓ tnorm then
18: c.append(f →)
19: unclustered.remove(f →)
20: for all f ↑ neighbours(f →) do
21: if normal(f)·normal(f →) ↓ tadj then
22: queue.append(f)
23: end if
24: end for
25: end if
26: end if
27: end while
28: return clusters
29: end function

right and completely unconstrained bounding boxes OBBv

and OBBu are fit to the object to minimize the volume. The
OBBv is used if Vol(OBBv) ↔ (1+ tol) Vol(OBBu) (where
tol = 0.01), else OBBu is used. This method optimizes for
the minimum-volume bounding box but prefers the upright
box unless its volume is significantly larger. Since the boxes
are fit to a surface, we approximate the normal of a plane fit
to the surface by identifying the smallest dimension and val-
idating that it is less than rplane = 0.1 of the other two. A
planar surface p is horizontal if normal(p)y ↓ thzn and ver-
tical if normal(p)y < tvert. In our implementation, we use
thzn = 0.95 and tvert = 0.05.

Fidelity Plausbility

Difficulty ↗ CNT% ↗ ATR% ↗ OOR% ↗ OAR% ↘ COLob% ↘ COLsc% ↗ SUP% ↗ NAV% ↗ ACC% ↘ OOB%

LayoutGPT
Easy 24.79 18.33 6.12 6.45 9.17 25.00 28.44 100.00 48.02 72.02
Medium 23.50 23.96 3.55 4.17 16.59 35.00 25.12 100.00 42.94 77.25
Hard 12.44 15.25 1.26 5.26 13.64 30.00 35.23 100.00 56.23 65.91

InstructScene
Easy 28.93 18.33 6.12 4.84 51.51 85.00 74.10 99.95 77.56 25.60
Medium 29.50 19.79 16.31 11.11 47.40 82.50 69.11 99.17 75.16 29.36
Hard 19.40 26.27 8.18 13.16 58.78 85.00 90.54 99.41 81.37 2.70

LayoutVLM
Easy 36.36 15.00 10.20 19.35 33.43 62.50 59.94 99.39 86.06 5.52
Medium 50.00 28.12 12.77 27.40 37.58 75.00 69.35 98.76 84.00 3.58
Hard 35.32 21.19 4.40 22.81 37.00 70.00 74.92 97.45 90.29 3.36

Holodeck
Easy 47.93 35.00 10.20 58.06 14.24 65.00 61.29 99.46 92.13 1.29
Medium 46.00 42.71 26.24 34.72 19.65 72.50 59.67 99.49 91.17 1.44
Hard 41.29 38.98 19.50 54.39 17.87 90.00 66.87 99.36 87.65 1.08

HSM (ours)
Easy 57.02 65.00 20.41 70.97 16.51 62.50 86.22 98.35 87.54 1.91
Medium 61.00 61.46 43.26 67.12 17.93 57.50 86.68 99.55 86.53 2.56
Hard 64.18 55.08 44.03 71.93 14.16 65.00 82.21 99.07 86.39 1.81

Table 5. Breakdown of SceneEval evaluation results by difficulty.

A.3. Layout Optimization

A.3.1 DFS Solver

A depth-first search (DFS) solver is used to optimize the
poses of scene motifs M = {mi | i = 1, . . . , |M |} in
a support region in order to minimize collisions and place
scene motifs as close to their functionally appropriate loca-
tions as possible. We provide as input 1) the initial position
and orientation, as seeded by the VLM, and bounding box
dimensions of each mi, as well as 2) the support region si

as a set of boundary vertices and any fixed objects in it.
Fixed objects include door, windows and previously placed
objects, with door clearances represented as a 1 ≃ 1m cube
positioned in front of the door to ensure accessibility. In
addition, a VLM is used to determine if each mi should be
aligned to the wall, in the case of the floor support region.

We define the space of possible placements for each
scene motif by overlaying a rectangular grid on the support
surface. We filter out any points outside of si or contained
within fixed objects. For the grid size, we use 0.1m for the
floor, walls and ceiling support region and 0.01m for fur-
niture support regions, to account for the precision required
at each scale.

To explore the space of possible placements for each
scene motif, we iterate through each mi in decreasing order
of their footprint area and compute all possible positions
and orientations satisfying the following hard constraints:
1) scene motifs should not collide; 2) scene motifs need to
be within the bounds of the support region; and 3) if desig-
nated, scene motifs should align with the wall.

For all candidate positions of mi satisfying the hard con-
straints, each is assigned a score based on its distance from
the initial position and distance to the edge of the support
region for edge-constrained scene motifs. Formally, using

the positive part notation [x]+ = max(0, x), the score for a
candidate position pi1 is:

ω(pi1) = ε

[
1⇐ |pi1 ⇐ pi0|

Dinit

]

+

+ϑedge ϖ

[
1⇐ ϱsi,w(pi1)

Dwall

]

+
(1)

where pi0 is the initial centre position; ε = 5.0 and
ϖ = 2.5 are the weighting factors; Dinit = 5m and
Dwall = 0.5m are normalization distances; ϑedge is an in-
dicator variable that if mi should align to the wall; and
ϱsi,w(pi1) is the distance from point pi1 to its specific target
wall. At each step of the DFS, the solver greedily explores
up to the highest 10 candidate positions. The search termi-
nates immediately after the first complete layout is found for
efficiency. If no valid positions are found for a scene motif,
the solver backtracks to explore other placements for previ-
ously placed scene motifs. For efficiency, we set the time
limit for each solver execution to 10 seconds. We place the
scene motif at the initial position if no solution is found in
the end for explicit objects from the input description.

A.3.2 Scene Spatial Optimization

We apply a scene-level spatial optimizer after the DFS
solver to refine placements by eliminating mesh collisions
and ensuring valid support. For each scene motif, we first
evaluate whether optimization is needed by detecting mesh
intersections and unsupported objects. If the scene motif is
already well-placed, we preserve its position to maintain the
DFS solver’s valid placements.

When optimization is required, we create a combined
mesh representation for the motif and optimize this repre-
sentative object using a two-step iterative process: collision
resolution followed by support validation. In the collision

w/o DFS w/o scene motif w/o scene spatial optimizer w/o wall ceiling

Sofa chairs collide with rug
Sofa chairs not surrounding table

Colliding scene motifs
Missing objects on walls and ceiling

Ours

Figure 8. Qualitative comparison of ablation results. Removing individual components leads to noticeable artifacts, including colliding
motifs, misaligned and colliding furniture, highlighting the role of each module in producing coherent and physically plausible scene
layouts.

SceneEval Fidelity SceneEval Plausbility Avg. #Obj
per Scene↗ CNT% ↗ ATR% ↗ OOR% ↗ OAR% ↘ COLob% ↘ COLsc% ↗ SUP% ↗ NAV% ↗ ACC% ↘ OOB%

HSM (ours) 61.30 59.49 40.40 70.28 16.42 61.00 85.44 98.97 86.80 2.13 20.65
- w/o wall & ceiling 54.79 51.09 33.24 45.38 23.28 59.00 84.03 99.38 86.05 0.86 13.96

Table 6. Extra Ablation study. Removing walls and ceiling reduces fidelity due to missing wall-mounted objects.

resolution phase, we first attempt a small vertical lift. If
collisions remain, we apply a horizontal displacement away
from the colliders. We use an adaptive step size based on
penetration depth and apply movement constraints accord-
ing to its support region. Large objects remain floor-bound,
wall objects maintain wall attachment, and ceiling objects
preserve ceiling contact.

For support validation, we cast rays downward from the
center and corner vertices on each scene motif’s bottom sur-
face, to detect supporting surfaces below. We use ray-mesh
intersection tests against floor geometry and neighboring
object meshes to determine intersection distances accord-
ing to the support region with a threshold of 0.01m. Objects
failing support tests are repositioned to the nearest support-
ing surface with minimal vertical adjustment.

A.4. Asset Retrieval
To generate scene motifs, HSM retrieves meshes from an
object dataset based on the object category, CLIP similar-
ity, and bounding box dimensions. During input descrip-
tion decomposition, we prompt the VLM to extract each
object’s dimensions and style attributes. If these details
are not explicitly provided, the VLM predicts them using
common-sense knowledge. To retrieve the best-matching
asset, we first filter the dataset by object category. We then
use OpenCLIP [31] (ViT-H-14-378-quickgelu) to compute
the text-image similarity between the extracted descriptions
and candidate objects in the dataset and select the top k = 5
by similarity. Finally, the candidate whose dimensions best
match those specified by the VLM is selected.

A.5. Additional Quantitative Analysis
Performance by Difficulty. We report the breakdown of
SceneEval evaluation results by difficulty (Easy, Medium,
Hard) in Tab. 5. HSM maintains consistent performance
across difficulty levels, whereas baseline methods (e.g.,
LayoutGPT, InstructScene) exhibit a significant drop in fi-

delity metrics (CNT, ATR) as prompt complexity increases.
Ablations. We provide a detailed analysis of the ablation
results in Tab. 4, examining how the removal of each com-
ponent affects fidelity and plausibility metrics beyond the
high-level comparison in the main paper. We also report
w/o wall and ceiling — removing wall and ceiling support
regions in Tab. 6, and Fig. 8 shows a qualitative comparison.
w/o scene motifs. Removing scene motifs forces the VLM
to handle each object placement individually rather than as
a grouped structure. Because motifs are larger and occupy
more surface area when placed as a single unit, surfaces
fill up faster and limit additional placements. Without mo-
tifs, more objects can be placed overall, leading to a higher
object count. On fidelity, the lack of grouped placements
reduces structured scene composition; on plausibility, ob-
ject arrangements may appear less coherent despite higher
density.
w/o scene spatial optimizer. Removing the spatial opti-
mizer increases collisions (COL) and lowers support (SUP),
showing that the final refinement step is important for im-
proving physical plausibility without disrupting the overall
layout.
w/o DFS solver. Without the DFS solver, scene motifs are
directly placed by the VLM without enforcing geometric
constraints such as wall alignment or staying within bounds.
This leads to the largest drop in out of bound (OOR) among
all ablations. On the plausibility side, collisions (COL) in-
crease, support (SUP) drops, and out of bounds (OOB) er-
rors peak, as objects are often placed outside their intended
regions or at invalid positions. The DFS solver is neces-
sary to enforce layout constraints and ensure plausible ob-
ject placement.
w/o wall & ceiling. Without walls and ceiling regions,
fidelity metrics decrease because SceneEval-100 [68] de-
scriptions specified wall- and ceiling-mounted objects. The
OOB rate also decreases, since fewer small objects are
placed at the boundary of the room.

Placement
Optimization

Support
Region
Extraction

Scene Motif
Generation

Visual
Validation

Inference

Spatial
Optimization

Decomposition

Figure 9. Runtime breakdown. (Right) Total runtime distribu-
tion. (Left) Breakdown of the Scene Motif Generation stage.

A.6. Computational Cost and Runtime Analysis

All experiments present in the main paper were run on a
Intel i9-14900K CPU with 64GiB of RAM. The average
cost for VLM calls per scene is approximately US$0.50
and generation time is about 8 minutes (roughly US$0.02
per object) with the current implementation. For a repre-
sentative scene that take 8 minutes and 37 seconds with
15 scene motifs, the total generation time averages to 35
seconds per scene motif. As shown in Fig. 9, the system’s
speed is limited primarily by VLM inference latency rather
than geometric computation, with scene motif generation as
the main bottleneck.

A.7. Open Source VLM

To assess the accessibility and reproducibility of our
framework, we evaluate HSM using the open-source In-
ternVL3 5-30B-A3B [73] on the SceneEval [68] framework
with the same set of descriptions. We use InternVL be-
cause initial tests with other open-source VLMs, including
Qwen3-VL-30B-A3B-Instruct [4], were less stable. Qwen
showed weaker instruction following and occasionally pro-
duced schema issues or hallucinated objects, which led to
errors in mesh retrieval and generation. InternVL handled
the pipeline instructions more consistently.

Specifically, HSM with InternVL records SceneEval Fi-
delity scores of 45.40% for object count (CNT), 47.81%
for attribute (ATR), and 23.78% for object-object relation-
ship (OOR), effectively matching or surpassing Holodeck
(CNT 44.64%, ATR 39.42%, OOR 20.92%). In terms
of physical plausibility, the open-source model main-
tains high validity with a support (SUP) score of 72.69%
(vs. Holodeck’s 62.12%) and comparable collision rates
(17.01% vs. 17.32%).

These results show that while fidelity scores using In-
ternVL are lower than those achieved with GPT-4o (a sig-
nificantly larger and more capable model), they still fol-
low the same general trends. We observe that the open-
source VLM exhibits reduced instruction-following capa-
bilities, particularly during complex spatial reasoning tasks

such as scene motif decomposition and inference. How-
ever, the fact that HSM with InternVL still achieves perfor-
mance comparable to Holodeck (which uses GPT-4o) high-
lights the benefit of our hierarchical structure. This demon-
strates that our framework is not overly dependent on any
single proprietary model, offering a robust solution even
when constrained to smaller, open-source model.

A.8. Limitations and Future Work
Limitations. While HSM demonstrates strong performance
in generating dense and realistic indoor scenes, several lim-
itations remain. First, natural-language instructions often
allow multiple plausible interpretations. In HSM, scene mo-
tifs operate locally within each subtree rather than as global
structures, so the system may create different object lay-
outs from the same description and cannot express relations
that span across subtrees. For example, an instruction like
“place the desk so it faces the bed” requires coordination
between two subtrees that HSM does not handle. Second,
the motif library is manually curated and contains a limited
set of atomic spatial patterns. While hierarchical compo-
sition lets HSM express a wide range of arrangements, the
system is still constrained by the coverage of these prede-
fined primitives. As a result, it may struggle with more un-
usual or highly specific configurations that fall outside the
library. Third, our support region extraction assumes well-
curated 3D geometry with correct surface normals. Mal-
formed meshes can produce incorrect support regions and
result lead to misplaced objects. Forth, the current geo-
metric analysis does not distinguish between accessible and
enclosed support regions. This can cause small objects to
be placed inside spaces that should be unreachable, such as
placing a plant inside a cabinet). Finally, the iterative design
of HSM requires multiple VLM queries and optimization
steps, which increases runtime, especially for larger scenes.
Future Work. There are several promising directions
for extending HSM. Incorporating a mechanism to distin-
guish accessible from enclosed support regions would im-
prove placement realism. Runtime efficiency could be im-
proved through parallel processing or using GPU acceler-
ation. In addition, automatically learning new motif types
from VLMs or existing scene datasets would enable the sys-
tem to expand its library dynamically and support more di-
verse indoor layouts.

B. Support Region Dataset Details
To evaluate HSM’s capability in predicting support regions,
we construct a dataset of 100 objects with annotated ground
truth support regions.

Specifically, we select 100 3D assets from the HSSD-
200 dataset [35], spanning 12 categories: tables (36), TV
stands (10), shelves (8), benches (6), sofas (6), desks (6),
bathtubs (5), chairs (5), nightstands (5), sinks (5), trays (5),

and racks (3). We specifically focus on two types of ob-
jects — those with multi-layer structures and those with ir-
regularly shaped surfaces — due to their complex support
regions, making them ideal for evaluation. For instance,
TV stands, shelves, nightstands, trays, and racks typically
feature multi-layer structures that require a non-trivial ex-
traction process to identify valid support regions. Similarly,
benches, sofas, bathtubs, chairs, sinks, and some tables and
desks were selected for their curved or irregularly shaped
surfaces, which pose additional challenges for support re-
gion prediction.

For each selected object, we use Blender to manually
annotate support surfaces by selecting mesh faces, care-
fully handling surfaces with vertical splits or curved geom-
etry. Each selected surface is then extruded upward, record-
ing the maximum height it can be extended before reach-
ing an obstructing surface. For top surfaces without an-
other surface above, we flag them and assign a height of
htop = 1.0m. The final dataset consists of a set of sup-
port surfaces for each object, along with their corresponding
heights and top surface flags.

C. User Study Instructions
Below, we provide the user study instructions given to par-
ticipants. The instructions consist of three sections: an over-
all description of the study, guidelines for scene-level eval-
uation, and guidelines for small object-level evaluation.

C.1. Overall Description of the Study
This study asks you to compare generated indoor
scenes. Please read the instructions carefully. For
each comparison, you are required to choose one
of two scenes (Left or Right). The study has two
parts:

1. Scene Level Evaluation: You will see top-
down views of each scene. Focus on the over-
all room layout and furniture arrangement.

2. Small Object Level Evaluation: You will see
close-up views of populated furnitures (e.g.,
objects on tables, shelves).

Each evaluation should take approximately 20
seconds. Thank you for your time and responses!

C.2. Instructions for Scene-level Evaluation
You will see top-down views of each scene. Only
focus on the overall room layout and furni-
ture arrangement and evaluate the quality of the
scenes based on the following:

• Best matches the text description - Which
scene better matches the text description? For
example, “there is a dining table with two

chairs” should contain exactly these objects in
the described arrangement.

• Has realistic object placement and arrange-
ments - Which scene has more realistic spatial
relationships and object arrangements? For ex-
ample, a dining table should have enough space
around it for people to move, chairs should be
properly tucked under the table (not floating or
overlapping with the table).

Notes on color:

• Each object is consistently colored within
each prompt. For example, for a single
prompt, all nightstands across the generated
scenes might be purple, and the bed might be
green.

• Objects colored in red are close to the ceiling,
such as ceiling fans or ceiling lights.

C.3. Instructions for Object-level Evaluation

You will see close-up views of populated furni-
tures (e.g., objects on tables, shelves). Only focus
on the small object arrangements on top of the
furniture and evaluate based on the following:

• Best matches the text description - Which
scene match the text description more? For ex-
ample, “there is a lamp on top of the night-
stand” should contain exactly these objects in
the described arrangement.

• Has realistic object placement and arrange-
ments - Which scene has more realistic spa-
tial relationships and object arrangements? For
example, a mug should be sitting upright on
a desk, not floating, tilted at an odd angle, or
halfway off the edge.

Notes on color:

• Each object is consistently colored within
each description. For example, if there are
two books or two lamps in the same generated
scenes, they’ll be the same color to help you
recognize them easily.

D. VLM Prompts

We provide the VLM prompts used in HSM below. The
scene motif decomposition prompts are detailed in Ap-
pendix D.1.1, while prompts for generating scene motifs
can be found in Appendix D.1.2. Additionally, we include
scene-level, furniture-level, and small object-level prompts
in Appendices D.2 to D.4.

D.1. Scene Motif Prompts

D.1.1 Scene Motif Hierarchy Decomposition

To generate a scene motif, we need to first decompose the
scene motif into a hierarchy of motifs. We provide the VLM
with descriptions of the available motifs along with exam-
ples and demonstrate how an scene motif description can be
decomposed into multiple motifs.

motifs: >-
Different motifs have different unique object input constraints.
Choose the most appropriate motif for the given objects based on

the number of unique object types:ω→

Single Object Motifs (1 Unique Object Type)
`stack`:
Description: Vertically stacks identical objects with uniform

spacing along the y-axis.ω→
Example: "a stack of five books"
Constraints: 1 unique object type.

`pile`:
Description: Arranges identical objects in a randomized pile

configuration with customizable offsets and rotations.ω→
Example: "a pile of three towels with random orientations"
Constraints: 1 unique object type.

`row`:
Description: Places identical objects in a horizontal line

with configurable spacing and incremental adjustments.ω→
Example: "a row of three chairs evenly spaced"
Constraints: 1 unique object type.

`grid`:
Description: Arranges identical objects in a 2D grid pattern

with uniform spacing in rows and columns.ω→
Example: "a grid of 2x2 chairs"
Constraints: 1 unique object type.

`pyramid`:
Description: Arranges identical objects in a pyramid shape

with fewer objects in higher layers.ω→
Example: "a pyramid of six books"
Constraints: 1 unique object type.

`wall_grid`:
Description: Places identical objects in a grid pattern on a

wall with uniform spacing and wall alignment.ω→
Example: "a 2x3 grid of paintings on a wall"
Constraints: 1 unique object type. Requires wall placement.

`wall_vertical_column`:
Description: Arranges identical objects in a single vertical

column on a wall.ω→
Example: "three vertically aligned mirrors on a wall"
Constraints: 1 unique object type. Requires wall placement.

`wall_horizontal_row`:
Description: Arranges identical objects in a single horizontal

row on a wall.ω→
Example: "a row of three paintings evenly spaced on a wall"
Constraints: 1 unique object type. Requires wall placement.

Two Object Motifs (2 Unique Object Types)
`face_to_face`:
Description: Places two objects in front and facing each other.
Example: "a chair in front of a desk"
Constraints: 2 unique object types.

`bed_setup`:
Description: Places a bed against a wall, flanked by one or

two objects of a second type (usually nightstands).ω→
Example: "a bed with nightstands on each side"
Constraints: 2 unique object types (bed, side object).

Requires wall alignment for the bed.ω→
`surround`:
Description: Places objects of a second type (e.g., chairs)

around the perimeter of a primary round object (e.g.,
round table).

ω→
ω→
Example: "chairs surrounding a round table"
Constraints: 2 unique object types (central object,

surrounding object). Central object assumed round.ω→
`rectangular_perimeter`:

Description: Arranges objects of a second type (e.g., chairs)
around the perimeter of a primary rectangular object
(e.g., rectangular table).

ω→
ω→
Example: "four chairs arranged around a dining table"
Constraints: 2 unique object types (central object,

surrounding object). Central object assumed rectangular.ω→
`left_of`:
Description: Positions a secondary object immediately to the

left (from primary's perspective) of a primary object.ω→
Example: "a fork to the left of a knife in place setting"
Constraints: 2 unique object types.

`on_top`:
Description: Stacks a secondary object directly on top of a

primary object.ω→
Example: "a cup on top of a saucer"
Constraints: 2 unique object types. Note: Use cautiously.

Bottom object typically larger. Prefer surface placement
if 'on top' is ambiguous.

ω→
ω→

`in_front_of`:
Description: Positions a secondary object directly in front of

a primary object (along the primary's forward-facing
z-axis).

ω→
ω→
Example: "a keyboard in front of a monitor"
Constraints: 2 unique object types.

`next_to`:
Description: Places a secondary object adjacent to a primary

object. Allow for both wall-aligned and non-wall-aligned
arrangements.

ω→
ω→
Example: "a bookcase next to a sofa chair"
Constraints: 2 unique object types.

Three Object Motifs (Max 3 Unique Object Types)
`on_each_side`:
Description: Places secondary/tertiary objects symmetrically

on both sides of a central primary object.ω→
Example: "a fork and a knife on each side of a plate"
Constraints: Handles 2 or 3 unique object types, maximum 3

objects in total.ω→
Case 1 (3 unique types): Primary (e.g., plate),

Secondary (e.g., fork), Tertiary (e.g.,
knife).

ω→
ω→
Case 2 (2 unique types): Primary (e.g., bed),

Secondary (e.g., nightstand - same object
placed on both sides).

ω→
ω→

system: >-
You are a scene decomposition expert.
Your purpose is to translate natural language descriptions of

object arrangements into a structured,ω→
hierarchical JSON format using a predefined set of motifs.

Your role is to:
1. Decompose complex arrangement description into motifs
2. Understand the objects and their relationships in the

description using common senseω→
3. Reason about the relationships between objects in the

arrangementω→
4. Handle both atomic and compositional arrangements
5. Ensure real life object orientations and spacing using the

provided object informationω→

Motif definitions: """<MOTIF_DEFINITIONS>"""
Read the motif definitions carefully and understand the usage,

constraints, and examples for each motif type.ω→
The constraints are referring to unique object types, not unique

objects.ω→
You will be provided with furniture information that may include

key properties with the description.ω→
You must use these properties to select the most appropriate motif

(e.g., `rectangular_perimeter` for a dining table with a
'rectangular' shape).

ω→
ω→

Decomposition strategy:
If you have more objects than a motif can handle based on its

UNIQUE OBJECT TYPE constraint, you must either:ω→
1. Select a subset of objects that fit a valid motif type (and

handle remaining objects in secondary arrangements)ω→
2. Group similar objects (e.g., multiple chairs as a single object

type)ω→

Common failure patterns to avoid:
- For arrangements with 4+ objects, split into multiple

arrangements if no motif type can handle all objectsω→
- Do not choose a general motif type if you can choose a more

specific one. e.g. choose "bed_setup" instead of
"on_each_side" for a bed with bedside table

ω→
ω→

Critical consistency requirements:
- The selected objects MUST completely reflect what is described

in the arrangement descriptionω→
- The description MUST accurately represent ALL selected objects

and their spatial relationshipsω→
- Every object mentioned in the description MUST appear in the

objects list with correct countsω→
- Every object in the objects list MUST be referenced in the

descriptionω→
- Do not invent or add objects that are not explicitly provided in

the available object list. All arrangements must ONLY use the
objects specified.

ω→
ω→

JSON response requirements:
- All object counts must be integers
- Element "type" must be either a valid motif type or "object"

(not specific furniture names)ω→
- Include "constraint_check" field indicating the number of unique

object types used in the motif (e.g., 2)ω→
- Each object must appear exactly once in any hierarchy

Example of a complex arrangement "A sofa in front of a coffee
table, with two side tables on each side of the sofa."ω→

Objects: sofa (1), coffee table (1), side table (2)
Primary arrangement: sofa + coffee table (2 objects for

in_front_of)ω→
Secondary arrangement: side table (2 objects for on_each_side)

Correct Hierarchical JSON:
```json
{
"type": "in_front_of",
"description": "A coffee table in front of a group containing a

sofa with side tables",ω→
"elements": [
{
"type": "object", "amount": 1, "description": "Coffee table"

},
{

"type": "on_each_side",
"description": "A sofa with two side tables on each side of

it",ω→
"elements": [
{ "type": "object", "amount": 1, "description": "Sofa" },
{ "type": "object", "amount": 2, "description": "Side

tables" }ω→
]

}
]

}
```

Example of a place setting with a plate, fork, knife, spoon, and a
glass "A plate with a fork, knife, and spoon placed around it,
and a glass nearby."

ω→
ω→
Objects: plate (1), fork (1), knife (1), spoon (1), glass (1)
Primary arrangement: plate + fork + knife (3 objects for

on_each_side)ω→
Secondary arrangement: spoon + glass (2 objects for in_front_of or

left_of)ω→

Correct Hierarchical JSON:
```json
{
"type": "next_to",
"description": "A primary place setting arrangement is

positioned next to a spoon and a glass.",ω→
"elements": [
{

"type": "on_each_side",
"description": "A fork and a knife on each side of a plate.",

"elements": [
{ "type": "object", "amount": 1, "description": "Plate" },
{ "type": "object", "amount": 1, "description": "Fork" },
{ "type": "object", "amount": 1, "description": "Knife" }

]
},
{
"type": "in_front_of",
"description": "A spoon in front of a glass.",
"elements": [
{ "type": "object", "amount": 1, "description": "Spoon" },
{ "type": "object", "amount": 1, "description": "Glass" }

]
}

]
}
```

Next, we ask the VLM to identify the primary arrange-
ment, reasoning about the core function of the objects. We
also ask it to identify the remaining arrangements.
identify_primary_arrangement: >-
Given these objects and their counts """<OBJECT_COUNTS>"""
and the description of the target scene motif """<DESCRIPTION>"""
and the available furniture information """<FURNITURE_INFO>"""

What should be the primary/dominant arrangement that defines this
arrangement's function?ω→

Consider:
1. Which objects form the main functional relationship?
2. What motif type would best handle this relationship?
3. Do the objects fit the motif type constraints? (e.g.,

'in_front_of' takes 2 unique types, 'on_each_side' can take 2
or 3 unique types).

ω→
ω→
4. What is the most appropriate spatial relationship for these

objects based on their typical use?ω→
5. If the overall description involves multiple objects, identify

the CORE PAIR or TRIPLET and their motif first. Other
objects/relationships can be handled by nesting this primary
motif within a larger structure or by creating secondary
arrangements.

ω→
ω→
ω→
ω→

Motif selection rules:
- Choose the most appropriate motif type based on the objects

and their spatial relationships.ω→
- Use common sense to select the most specific and functionally

accurate motif.ω→
For example, for a description like "a chair in front of a

desk", choose `face_to_face` over the more generic
`in_front_of`, as it correctly infers the most likely
functional orientation.

ω→
ω→
ω→

- The primary arrangement is typically the dominant functional
grouping (e.g., dining table with chairs, bed with
nightstands).

ω→
ω→
- Consider the functional purpose of the arrangement when

selecting the appropriate motif.ω→
- If you have more objects than a motif can handle, you MUST

split them across primary and secondary arrangements.ω→

Respond with json:
```json
{
"rationale": "<rationale explaining why these specific objects

form the primary arrangement and how they fit motif
constraints>",

ω→
ω→
"motif_type": "<motif_type>",
"description": "<description for the selected motif_type and its

objects ONLY, mentioning every object by name and count>",ω→
"objects": {
"object_name_1": count (integer),
"object_name_2": count (integer),

},
"constraint_check": <number of unique object types used>

}
```

identify_remaining_arrangements: >-
Given the target scene motif description """<DESCRIPTION>"""

and the identified primary arrangement """<PRIMARY_ARRANGEMENT>"""
and the remaining objects """<REMAINING_OBJECTS>"""

For the remaining objects, identify logical secondary
arrangement(s) to complete the description.ω→

For each arrangement:
1. Which objects should be grouped together?
2. What motif type best suits their relationship?
3. Do the objects fit the motif type constraints? (refer to system

constraints)ω→

Secondary arrangement rules:
- Group objects with functional relationships
- Position arrangements with appropriate clearance from primary

arrangementω→
- Each object should appear in exactly one arrangement
- Only use objects from the remaining objects list - do not reuse

objects from primary arrangementω→
- Account for ALL remaining objects across all secondary

arrangementsω→

Respond with json for each secondary arrangement:
```json
{
"rationale": "<rationale explaining why these specific remaining

objects should be grouped together and how they fit motif
constraints>",

ω→
ω→
"motif_type": "<motif_type>",
"description": "<description mentioning every object by name and

count, be extremely specific about the arrangement>",ω→
"objects": {
"object_name": count,
...

},
"constraint_check": <number of unique object types used>

},
{
...

}
```

We then prompt the VLM to structure the identified ar-
rangements into a hierarchy of motifs.
generate_compositional_json: >-
Given the target scene motif description:
"""<DESCRIPTION>"""
and the identified primary and secondary arrangements:
Primary: """<PRIMARY_ARRANGEMENT>"""
Secondary: """<SECONDARY_ARRANGEMENTS>"""

According to the identified arrangements,
combine the primary and secondary arrangements (if any) into a

single hierarchical JSON following these strict rules, use the
examples from the system prompt as a guide:

ω→
ω→
1. Every grouping MUST use a valid motif type that fits the motif

constraints (refer to system constraints)ω→
2. Descriptions should only reference the spatial relationship

between objects in that specific arrangement or groupω→
3. Do not add any new objects or relationships that are not in the

identified arrangementsω→
4. If you cannot fit all objects in the identified arrangements

due to constraints, you MUST revise the arrangement strategyω→

Validation checklist:
- All objects accounted for exactly once?
- Hierarchy optimized with minimal depth?
- Motif type constraints respected throughout?

Before responding, use a few sentences to describe and explain the
hierarchy.ω→

Format (RESPOND WITH EXACTLY ONE JSON):
```json
{
"type": "<motif_type>",
"description": "Description of the full arrangement",
"elements": [
{

"type": "<motif_type or object>",

"amount": N (integer), // Only for objects
"description": "Description for this element or object",
"elements": [...], // Only for motif types

},
{
"type": "<motif_type or object>",
...

}
],

}
```

Finally, we prompt the VLM to validate the hierarchy
using three criteria: 1) Each motif is physically plausible;
2) Each motif type is used as intended; and 3) The hierar-
chy is optimal and in its simplest form. If any of the motif
is invalid, we keep the prompting history and retry from
identify primary arrangement.

validate_arrangement: >-
You are an expert in validating the decomposition of a scene motif

into a hierarchical arrangement of individual objects.ω→
"""<DESCRIPTION>"""

Given this arrangement JSON:
"""<ARRANGEMENT_JSON>"""

Perform a comprehensive validation across three key dimensions:

1. Physical Feasibility:
- Can all objects be physically placed as described?
- Are there any impossible positions or collisions?
- For nested arrangements, validate as composite units

2. Motif Correctness:
- Is each motif used according to its intended purpose?
- Do parent-child relationships make logical sense?
- Does each motif have the correct number of unique element

types? (refer to system constraints)ω→
- Is each element used exactly once?

3. Completeness & Optimality:
- Is the hierarchy structured optimally?
- Could any nested arrangements be simplified?

Respond with detailed validation results:
```json
{
"is_valid": boolean,
"checks": {
"motifs": {
"valid": boolean,
"issues": ["issue_description", ...]

},
"hierarchy": {
"valid": boolean,
"issues": ["issue_description", ...]

},
"completeness": {
"valid": boolean,
"missing_items": ["item_name", ...],
"duplicate_items": ["item_name", ...]

}
},
"fixes": [
"specific_fix_1",
"specific_fix_2",
...

]
}
```


D.1.2 Scene Motif Generation

Once the hierarchy of motifs is validated, we start the gen-
eration process by first describing the task and providing
guidelines to the VLM.
system: >-
You are an expert in Python specialized in using meta-programs to

generate scene motifs, arrangements of multiple objects in a
room.

ω→
ω→

Your role is to:
1. Reason about the spatial relationships between objects
2. Generate precise object arrangements using meta-programs
3. Handle both atomic and compositional arrangements
4. Ensure consistent object orientations and spacing

All arrangements are defined within a right-handed 3D coordinate
system where:ω→

- X-axis: Negative = LEFT, Positive = RIGHT (width plane)
- Y-axis: Negative = DOWN, Positive = UP (height plane)
- Z-axis: Negative = TOWARDS viewer, Positive = AWAY from viewer

(depth plane)ω→

Core principles:
1. Use clear spatial relationships and appropriate clearances

- Maintain sensible spacing between objects from the given
object info (0.3-0.5m for large objects)ω→

- Ensure access paths for human interaction (e.g. suitable
distance between sofa and coffee table)ω→

2. Position objects logically relative to each other
- Respect functional relationships (e.g., chairs face tables,

nothing should be placed in front of a bookshelf, cup
should be on top of a plate)

ω→
ω→
- Remember that the arrangement is for a room, you should

consider the relationship between the objects (e.g. nothing
should place in front of a TV stand)

ω→
ω→
- Consider the size and the default orientation of the objects

when positioning themω→

Egocentric view: You (the observer) are looking from negative Z
towards positive Z. Objects with larger positive Z coordinates
are closer to you.

ω→
ω→
All spatial relationships (left, right, front, back) are described

relative to your perspective as the viewer.ω→

Placement Rules:
- Horizontal Positioning: Use X-axis offsets for left/right

placementω→
- Depth Positioning: Use Z-axis offsets for front/back placement
- Vertical Positioning: Use Y-axis only for explicit

height/stackingω→

Default Object Orientation:
- All objects initially towards the viewer (towards +z direction)
- Rotate around Y-axis to change facing direction
- Example: 180° rotation makes object face away from viewer

Units and Measurements:
- All dimensions (x, y, z) are in meters
- All rotations are in degrees (Y-axis)
- All objects maintain y=0 unless stacking/height required

We generate each motif in the hierarchy iteratively. At
each iteration, we provide the VLM with the corresponding
program in the library and ask the VLM to infer appropri-
ate parameters using object sizes and already generated ob-
ject arrangements as reference. We repeat this step until the
whole hierarchy of motifs is generated.
inference_hierarchical: >-
From the observations you made in the previous step, here is a

meta-program that generalizes a spatial arrangement of type
"<MOTIF_TYPE>":

ω→
ω→
```python
<META_PROGRAM>

```
And here is a description of a spatial motif of the same type:
"""<DESCRIPTION>"""
Object info (name, half-sizes in meters) """<FURNITURE_INFO>"""

"""<ARRANGEMENT_CONTEXT>"""

Your task is to call the meta-program above with the necessary
arguments to recreate the spatial motif described in the
description as closely as possible.

ω→
ω→
Read the docstring and comments in the meta-program to understand

how to use it.ω→
Refer to the example function call in the meta-program

documentation to understand how the meta-program should be
called, if available.

ω→
ω→
Use common sense to infer the arguments for ambiguous arguments,

such as object dimensions, positions, and rotations.ω→
When in doubt, refer back to the example function call in the

meta-program documentation.ω→
I will run a postprocessing step to refine the spatial motif after

you provide the function call to me.ω→

Technical Details:
- You must use the same object names and half-sizes from the

object infoω→
- All dimensions in meters, rotations in degrees
- Y-axis (vertical) rotations for objects facing
- All objects are normalized to face the same direction by default

(facing towards +z axis)ω→
- Place objects with appropriate spacing and avoid intersection

based on their half sizesω→
- The world is in a right-handed coordinate system, that is, when

looking from the front, the x-axis is to the right, the y-axis
is up, and the z-axis is towards the viewer.

ω→
ω→

Write a few sentences on how you will generate a function call to
the meta-program to create the arrangement described and the
reasoning behind particular arguments.

ω→
ω→
Then respond with a single function call that implements the

arrangement described wrapped in a code block.ω→
```python
```

Finally, we ask the VLM to validate the generated scene
motif. We provide it with top-down and front orthographic
projections of the scene motif and instruct it to evaluate
whether the generated scene motif adheres to the input de-
scription and give feedback if it is not correct.

validate: >-
Given a description of a spatial arrangement,
"""<DESCRIPTION>"""
analyze the 2D top down and front view of the arrangement and

validate if the arrangement is correct.ω→

Remember that the arrangement are placed in a room, use common
sense to determine if the arrangement is correct.ω→

Give a score from 0 to 1, where 0 is completely incorrect and 1 is
completely correct.ω→

If the arrangment is partially correct, depend on the amount of
objects in the arrangement, give a score between 0 and 1.ω→

e.g. if there is only 2 objects, give a score of 0.5 if 1 object
is in the correct position and orientation.ω→

You should give feedback on what is wrong with the arrangement and
provide a few sentences on how to fix it.ω→

Try to be as specific as possible and give specific coordinates
using the 2d top down and front view with x, y, z coordinates.ω→

Respond in JSON format. The JSON should include:
- "feedback": Your detailed feedback on the arrangement and

possible fixes.ω→
- "correct": Your validation score (0 to 1).

The final JSON structure should be:
{
"feedback": "<feedback_string>",

"correct": <float_score>,
}

D.2. Scene Level Prompts
To generate a scene, we first provide the VLM with the gen-
eral instructions of the task.

system: >-
You are a professional AI assistant specializing in interior

design and space planning.ω→
Your primary tasks are to interpret room descriptions, generate

plausible floor plans,ω→
and analyze provided floor plan data (including images when

available) to suggest room details.ω→

Core Tasks:
1. Room Type Identification: From a textual description, identify

a canonical room type.ω→
2. Floor Plan Generation: Based on a textual description and room

type, generate a floor plan including:ω→
- Vertices: Arranged clockwise, starting from (0,0).

Measurements in meters.ω→
- Room Shape: Generally rectangular or L-shaped. Avoid highly

irregular shapes unless specified.ω→
- Door(s) and Window(s): Placed on boundary walls, with

coordinates on wall segments.ω→
- Adherence to Standards: Measurements rounded to the nearest

0.25m. Room height defaults to 2.5m.ω→
3. Floor Plan Analysis (when an image is provided):

- Analyze the floor plan image in detail, noting overall shape,
wall dimensions (by ID, to 2 decimal places),ω→

door/window locations (precise coordinates), and using the
0.25m grid for reference.ω→

- The floor plan visualization typically includes:
* Light blue filled area for the room.
* A 0.25m grid.
* Red lines for room boundaries with dimensions.
* Numeric IDs for wall segments.
* Vertex coordinates.
* Green door with swing arc.
* Blue window(s).
* Helper points (x markers) and coordinates.
* X and Z axes.

General Guidelines:
- Use precise measurements and coordinates.
- Consider traffic flow, natural light, and room proportions when

applicable.ω→

We then prompt the VLM to infer a room type given the
input text description.

room_type: >-
Given a room description, respond with a single specifc room type

in json format.ω→
Room type should be a single word or phrase that captures the

style, theme, and purpose of the room description.ω→
"""<ROOM_DESCRIPTION>"""
e.g. "modern living room", "kids bedroom for 2 children", "small

study room"ω→

```json
{
"room_type": "<ROOM_TYPE>",

}
```

If the room boundary is not provided, we also prompt the
VLM to suggest a room boundary and provide the boundary
vertices, the height of the room, and the door location as
output.

room_boundary: >-
This is the room description: """<ROOM_DESCRIPTION>"""
and this is the room type: """<ROOM_TYPE>"""

The size of the room should be determined by the room description
and the room type.ω→

In particular, ensure the room is large enough to fit all
mentioned furniture comfortably, with realistic spacing for
movement and usability.

ω→
ω→
You may assume standard object dimensions if not specified.

For reference, average room size is 3m to 8m in width and depth.
Please make sure the room is not too small or too large based on

the listed objects.ω→

The room should be represented by vertices arranged in clockwise
order and the room should be a generally rectangular or
L-shaped.

ω→
ω→
Avoid highly irregular or complex polygonal shapes unless

explicitly implied by the room description.ω→
The list of room vertices should consist of x and z coordinates,
and the room must always start from (0,0) and measurements must be

in meters.ω→

The default room height is 2.5 meters.
Respect the room description when placing the door and windows.
There is always a door in the room and window in the room.
If window placement is ambiguous or not suitable, an empty list

for window_locations is acceptable.ω→
You can suggest multiple windows in the room according to the room

description and room type.ω→

Place the door on one of the room's boundary walls and usually
near the corner of the room.ω→

Ensure the door's and window's coordinates lie exactly on one of
the wall segments.ω→

Before JSON response, write a few sentences to justify the room's
dimensions based on the described furniture count, and
door/window placement.

ω→
ω→
Respond with json format:
```json
{
"room_height": height in meters,
"room_vertices": [
[0,0],
[x1,z1],
[x2,z2],
[x3,z3],
...

],
"door_location": [x,z],
"window_locations": [
[x1,z1],
...

]
}
```

Before asking it to decompose the input text description,
we first ask the VLM to reason about the shape of the room
and provide high-level observations on how objects should
be grouped and positioned within the room.
describe_room: >-
Look at the provided floorplan data and floorplan image in detail

to analyze the room.ω→
This is the door location: <DOOR_LOCATION>
This is the window locations: <WINDOW_LOCATIONS>
This is the room vertices: <ROOM_VERTICES>
This is the room type: <ROOM_TYPE>

Based on the floorplan data and image:
What does the room look like?
Use a few sentences to describe how you would segment the room

into functional zones.ω→
Suggest location for each functional zone.

Finally, we ask the VLM to decompose the input text
description into a list of objects, each paired with a style

description, its bounding box dimensions, and the instance
count.

requirements_decompose: >-
Given a input room description """<ROOM_DESCRIPTION>""",
Read the room description carefully and decompose all objects from

the room description into four categories:ω→
1. Floor furniture (e.g. sofa, bed, cabinet, desk, free-standing

shelf/bookcase)ω→
2. Small objects that always sit on top of furniture (e.g. books,

plates, cups)ω→
3. Wall objects (only if explicitly described, e.g. painting,

mirror, wall shelf)ω→
4. Ceiling objects (e.g. pendant light, ceiling fan)

For each identified object, specify:
1. The id of the piece (integer)
2. The name of the piece (be speicific without style description

and sperate different categories of furniture, e.g. dining
table, dining chair, office chair, etc.)

ω→
ω→
3. The appearance/style description of the piece (be extremely

specific, e.g. "large wooden computer desk", "small glass
plate", "large dining table")

ω→
ω→
4. The dimensions of the piece [width, height, depth] in meters

according to the description, give the most likely
dimensions

ω→
ω→
5. The amount of the same piece
6. for small_objects only: parent_object (id of the large/wall

object)ω→

Critical requirements:
- Each entry must represent a SINGLE type of object
- If there are object with the same type but have different

appearance/style description, they should be treated as
different objects

ω→
ω→
- All objects in each entry should be a single object, composite

sets (e.g. place settings) must be broken into individual
objects (e.g. a fork, a knife, a plate)

ω→
ω→
- Composite or grouped objects must be decomposed into individual

items (e.g. "stack of plates" becomes individual plates)ω→
- Use the minimum amount and types of objects to satisfy the

room descriptionω→

Respond with JSON:
```json
{
"objects": [
{

"id": large_furniture_id (integer),
"name": "furniture_name",
"description": "appearance/style/type description of the

furniture",ω→
"dimensions": [width, height, depth],
"amount": number of same furniture (integer),

}, ...
],
"wall_objects": [
{

"id": wall_object_id (integer),
"name": "wall_object_name",
"description": "appearance/style/type description of the

wall object",ω→
"dimensions": [width, height, depth],
"amount": number of same wall objects (integer),

}, ...
],
"ceiling_objects": [
{

"id": ceiling_object_id (integer),
"name": "ceiling_object_name",
"description": "appearance/style/type description of the

ceiling object",ω→
"dimensions": [width, height, depth],
"amount": number of same ceiling objects (integer),

}, ...
],
"small_objects": [
{

"id": small_object_id (integer),

"name": "small_object_name",
"description": "appearance/style/type description of the

small object",ω→
"parent_object": id of the parent large/wall object (integer)
"dimensions": [width, height, depth],
"amount": number of same small objects (integer),

}, ...
],

}
```

D.3. Furniture Level Prompts
To place objects in the scene, we first provide the VLM with
the general guideline of the task.

system: >-
You are an AI assistant specializing in dense and realistic large

object placement in a room. Your task is toω→
populate a room with large objects that are both spatially tight

and aesthetically pleasing.ω→

For each arrangement, you should:
1. Describe only the furniture pieces and their direct

relationshipsω→
2. Specify precise dimensions for each piece and total arrangement
3. Use standard furniture sizes and clearances
4. Focus only on the local arrangement without any room context

We ask the VLM to group relevant objects into scene
motifs given the list of objects at the furniture level and the
room description.

populate_surface_motifs: >-
Based on the room analysis provided below, suggest key motifs for

the following room type: """<ROOM_TYPE>""".ω→
List of large furniture: """<LARGE_FURNITURE>"""
List of existing motifs: """<EXISTING_MOTIFS>"""

Room details: """<ROOM_DETAILS>"""

For each motif, define:
1. One or multiple large objects according to the room type, you

should minimize the number of large objects in each motifω→
2. A clear description of the spatial relationships between the

large objects, including the relative positions and
orientations and specific alignment details (e.g. flush with
the wall)

ω→
ω→
ω→
3. Total footprint dimensions [width, height, depth] of the

arrangementω→
4. Required clearance space in meters

Motif guidelines:
- Only reference the large objects provided in the list
- Only group multiple large objects into a single motif if

explicitly mentioned in the descriptionω→
- Group large objects that have tight spatial relationships into

a single motif, rugs are always a single motifω→
- Never split spatially related large objects into separate

motifs (e.g. table and chairs, bed and nightstands)ω→
- Each large object can only be used once in each motif

Respond with JSON with the following format:
```json
{
"arrangements": [
{
"rationale": "concise explanation of arrangement

functionality",ω→
"id": "unique arrangement identifier (be specific e.g. sofa,

sofa_coffee_table, ceiling_lamp)",ω→
"area_name": "name of scene motif",
"composition": {
"description": "direct and precise description of local

furniture relationships without any style details
(e.g. a sofa in front of a TV stand)",

ω→
ω→
"furniture": [



{id: id1, amount: number of same furniture (integer)},
... (and more only if they are spatially tight)

],
"total_footprint": [width, height, depth],
"clearance": clearance_in_meters

},
}

]
}
```

Description guidelines:
- Do not include references to room features (walls, doors,

windows) and objects that are not large furniture in
description.

ω→
ω→
- Do not include any objects that are small objects or wall

objects in description or anything that places on top of the
large furniture.

ω→
ω→
- Do not include non-spatial or stylistic relationships (e.g.

design style details); only include concrete, spatial
relationships.

ω→
ω→

We then generate scene motifs using the object group-
ings. After all scene motifs are generated, we prompt the
VLM to suggest a placement position for each of the scene
motifs. We provide a 2D top-down orthogonal projection of
the room and the descriptions and dimensions of the scene
motifs to the VLM as references.
populate_room_provided: >-
You are an AI assistant specializing in furniture layout

optimization.ω→
Your task is to analyze the room description and visualization to

suggest optimal placement of large furniture pieces that is
placed on the floor only.

ω→
ω→

Take a deep breath and go through everything eariler carefully
before providing a layout suggestions.ω→

Motifs you are required to layout with its id, extents in m[width,
height, depth], individual objects in the motif:
"""<MOTIFS>"""

ω→
ω→
You are also given the floorplan and top down view of each scene

motif.ω→

Follow these steps:

1. Review Input Information:
- Study the provided room analysis
- Note door location and swing path
- Identify any architectural features or constraints
- Consider the room's designated purpose

2. Position motifs:
- For each scene motif, specify:
- Precise center point coordinates (x, z) of the AABB bounding

box within the roomω→
- Optimal rotation angle in degrees (counter-clockwise

relative to the Z-axis) (default is 0 facing south)ω→
- Consider wall alignment for scene motifs that traditionally

work best against wallsω→

3. Optimize Placement:
- Position each motif to:
- Align appropriate scene motifs flush with walls when

possible, use common sense to determine if the scene motif
should be aligned with a wall

ω→
ω→
- Distribute scene motifs evenly throughout the available

space and avoid cramping multiple scene motifs in the same
area of the room

ω→
ω→
- Avoid placing scene motifs too close to the door

- Aim to fill each corner of the room with a scene motif

Wall Alignment Considerations:
- Most furniture typically goes against walls (like beds, sofas,

or cabinets) unless otherwise specified:ω→
- Position the initial coordinates near your intended wall for

optimal snappingω→

- Use wall_alignment: true to enable wall snapping
- Specify wall_alignment_id to target a specific wall (walls

are numbered 0 to N-1 clockwise from room vertices)ω→
- The object will snap to the specified wall and rotate to

face into the roomω→

Output Format:
```json
{
"positions": [
{
"rationale": "concise explanation for placement and

orientation",ω→
"id": "unique identifier for each furniture group",
"position": [x, z],
"rotation": angle_in_degrees,
"wall_alignment": boolean (true if the scene motif should be

aligned with a wall, false otherwise),ω→
"wall_alignment_id": integer (index of the target wall,

0-based, counting clockwise from room vertices. Can be
ignored if you do not want to align with a specific
wall),

ω→
ω→
ω→
"ignore_collision": boolean (USE WITH CAUTION: true if the

scene motif should not be checked for collision with
other furniture (e.g. rug on its own only), false
otherwise)

ω→
ω→
ω→

}
// Repeat for each scene motif

]
}
```

If the occupancy of the room is below tocc, we prompt
the VLM to suggest potential objects to add to the room.
We specifically instruct it to avoid existing objects that are
already in the room for better diversity.
large_furniture_extra: >-
The following are the large furniture that is already placed in

the room: <LARGE_FURNITURE>.ω→
Given a input room description "<ROOM_TYPE>",
You are required to add a few more (1-3) large furniture according

to the room type to fill the empty space.ω→
Remember that large furniture can only be placed on the floor,
do not generate any objects that is placed on the wall (e.g.

painting, mirror) or objects on top of the large furniture
(e.g. a lamp on a table).

ω→
ω→
Do not use the same furniture as the one already placed in the

room (e.g. a desk in the room, do not generate another desk).ω→

For each large furniture that is required to be placed on the
floor (e.g. a sofa, a bed, a cabinet, a desk, etc.)ω→

1. Integer id of the piece
2. The name of the piece (be speicific and sperate different

categories of furniture, e.g. dining table, dining chair,
office chair, etc.)

ω→
ω→
3. The appearance/style description of the piece (be specific,

e.g. "large wooden desk", "large round dining table")ω→
4. The dimensions of the piece [width, height, depth] in meters

according to the description, give the most likely
dimensions in meters

ω→
ω→
5. The amount of the piece

Critical requirements:
- Each entry must represent a SINGLE type of object

Respond with JSON:
```json
{
"objects": [
{
"id": large_furniture_id (integer),
"name": "furniture_name",
"description": "appearance/style description of the

furniture",ω→
"dimensions": [width, height, depth],
"amount": number of same furniture (integer),

},



],
}
```

D.4. Small Object Level Prompts
We provide the small object level prompts below. For small
object placement, the VLM is further prompted to select
which of the floor and wall-mounted objects should be pop-
ulated with commonly co-occurring items. Other procedure
is similar to the one in the previous section.

system: >-
You are an AI assistant specializing in realistic and functional

small object placement on furniture surfaces.ω→
Your task is to populate the surface of a furniture with small

objects that are both functional and aesthetically pleasing.ω→

You are provided with a top-down 2D plot visualization that
contains:ω→

- A highlighted area in the center representing the furniture
surface to be populatedω→

- "X" markers indicating surrounding objects with their names
- A red arrow indicating the front direction of the furniture
- Axis measurements in meters showing the scale and dimensions
- The exact dimensions of the small object labeled in the plot

All 2D visualization uses:
- The center of all plots is the origin (0,0)
- X-axis: represents width (negative is left, positive is right)
- Z-axis: represents depth (positive is back, negative is front)
- Highlighted area: shows the usable surface for object placement
- "X" markers: represent objects around the furniture
- Black arrow: indicates the front-facing direction
- Grid lines: help with precise measurements and positioning

Follow these steps:

1. Context Analysis:
- Count and map ALL surrounding objects that indicate usage

(e.g., chairs, benches)ω→
- Create a corresponding number of place settings or interaction

pointsω→
- Ensure EVERY surrounding object that needs interaction has a

corresponding setupω→
- Map potential interaction zones based on ALL surrounding

object positionsω→

2. Surface Analysis:
- Map the entire usable surface area in detail
- Divide surface into equal sections based on number of

surrounding objectsω→
- Ensure each interaction zone has adequate space
- Reserve central area for shared items

3. Object Selection & Distribution:
- Place one complete set of required items for EACH identified

interaction pointω→
- Distribute objects to ensure equal access from all interaction

pointsω→
- Ensure no interaction points are missed or doubled
- Add shared items only after all required individual setups are

completeω→

4. Functional Optimization:
- Ensure frequently used items remain accessible
- Create clear paths for reaching objects
- Account for object removal/replacement

5. Rotation Specification:
- For standalone objects: specify an "angle" in degrees

(counterclockwise from positive Y-axis)ω→
- For objects that should face users: use "facing" with the ID

of the relevant objectω→
- Examples of facing objects:
* Place settings facing chair positions
* Reading materials oriented toward seating

* Control devices pointing toward user positions
* Display items angled for optimal viewing

populate_surface_motifs: >-
Based on the object layered description earlier,
suggest object groupings only for the following small objects

"""<SMALL_OBJECTS>"""ω→
based on the room description """<ROOM_TYPE>""" and the previous

assignment of surfaces to objects.ω→

Critically assess if objects must be grouped. Group them only if
they form a strong, not separable functional unitω→

(e.g., a computer next to a mouse) or have a direct, necessary
spatial dependenancy (e.g., a cup on top of a saucer).ω→

Otherwise, they should be in separate, smaller motifs or as
single-object motifs.ω→

Avoid grouping loosely related items even if they are nearby.

For each motif, define:
1. One or multiple objects (prefer single objects unless truly

functionally dependent)ω→
2. Realistic dimensions and clear spatial relationships between

piecesω→
3. Total footprint dimensions [width, height, depth]
4. Required clearance space in meters

Guidelines for motif:
- PREFER single-object motifs over multi-object groupings
- ONLY group objects with explicit functional dependency (not

thematic or decorative similarity)ω→
- Each small object can only be used once in each motif
- Each motif can only contain a MAXIMUM of 4 different types of

objects, if there are more than 4, split them into multiple
motifs

ω→
ω→
- If unsure whether to group, ALWAYS create separate motifs
- Ensure ALL objects from the provided list are used across your

arrangementsω→
- IMPORTANT: Do NOT create duplicate arrangements with identical

compositions.ω→
- For multiple instances of the same motif type, use numbered

suffixes (e.g., "plant_display_1", "plant_display_2",
"book_stack_1", "book_stack_2")

ω→
ω→

Respond with JSON with the following format:
```json
{
"arrangements": [
{
"rationale": "concise explanation of arrangement

functionality",ω→
"id": "unique arrangement identifier (e.g. table_setup)",
"area_name": "name of motif",
"composition": {
"description": "direct and precise description of local

object relationships only without any style details,
accurately reflecting the exact quantities specified
(e.g. a stack of four books, a lamp, a fork and a
knife on each side of a plate)",

ω→
ω→
ω→
ω→
"furniture": [
{"id": id1, "amount": integer}, (according to the

description)ω→
... (and more only if they are functionally related)

],
"total_footprint": [width, height, depth],
"clearance": clearance_in_meters,

},
},
...

],
}
```

Description guidelines:
- Do not include references to room features (walls, doors,

windows) and objects that are not small objects in
description.

ω→
ω→
- Do not reference the furniture that the small objects are on.
- Do not include non-spatial or stylistic relationships (e.g.

design style details); only give concrete, spatial
relationships.

ω→
ω→

- The description must accurately reflect the exact quantities
specified in the "amount" fieldω→

describe_layered_object: >-
Please describe in a few sentences on the geometry of the layered

object """<LARGE_OBJECT>""" in a """<ROOM_TYPE>""" based on
the following inputs:

ω→
ω→
Think step by step about the geometry of the object and the space

it occupies.ω→
- List of objects in the scene with object id, name, position and

dimension: """<EXISTING_OBJECTS>"""ω→
- Object to be populated: """<OBJECT_TO_POPULATE>"""

Image (Layer breakdown):
- Shows """<LARGE_OBJECT>"""'s layers from highest (Layer 0) to

lowestω→
- Use this to understand the layer structure and available space
- The position of each small object is relative to this image per

layerω→
- Each layer shows:
- Height (y value in meters)
- Available space above
- Highlighted surfaces (available space)

populate_object_layered: >-
Given a scene motif """<PARENT_MOTIF_DESCRIPTION>""" in a room

described as """<ROOM_TYPE>""",ω→
populate the specified object with appropriate small objects from

the provided motifs.ω→

Small object motifs to place: """<SMALL_MOTIFS_TO_POPULATE>"""

Layer information for small object motifs to place:
- Each layer includes:
- Layer index (starting from 0, highest surface first)
- Layer height (from ground in meters)
- Whether it's the topmost visible surface
- Vertical space above the layer
- Surface details:
- Surface ID and color
- Dimensions (width, depth)
- Area
- Center position [x, z]

Layer Structure:
"""<LAYER_INFO>"""

You are provided with two reference images:

Image 1 (Top-down motif view):
- Shows all large objects in context with front directions (black

arrows)ω→
- Use this to reason about spatial relationships

Image 2 (2D Layer breakdown for """<LARGE_OBJECT>"""):
- Visualizes the surfaces of each layer, from top-left (highest)

to bottom-right (lowest)ω→
- Small object positions are relative to this image
- Each layer displays:
- Height (y in meters)
- Space above
- Surface dimensions and availability

Critical Requirements:
1. You MUST populate ALL surfaces in ALL layers (even if empty,

include empty arrays [])ω→
2. Use only the exact surface IDs provided in the layer information
3. For rotation "facing" field, only reference objects within the

same motif: <PARENT_MOTIF_OBJECTS>ω→
4. Each small object must reference a valid motif ID from the

available motifsω→

Guidelines:
- Use only the layers and surface IDs provided
- Place objects on surfaces likely to be used (avoid placing on

very tall furniture tops unless typical)ω→
- Use available vertical space wisely; consider real-world

usabilityω→

Return the result in JSON:
```json
{
"large_object_name": {
"layer_0": {
"surface_0": [
{
"id": "motif_id_from_available_motifs",
"position": [x, z],
"rotation": { (choose one of the following)
"angle": angle, // Default: 0 degrees (facing the

front direction of the parent object)ω→
"facing": "object_name_from_same_motif" // Use when

object should face towards a specific objectω→
"face_away": "object_name_from_same_motif" // Use when

object should face away from a specific objectω→
},
"rationale": "Brief explanation"

}
],
"surface_1": [] // Empty if no objects, but must be

included if there is surface_1 in the layerω→
},
other layers if any

}
}
```

Placement Guidelines:
- Consider real-world usage patterns
- Respect vertical space constraints
- Distribute objects logically across available surfaces
- Leave some surfaces empty if appropriate, but include them as

empty arraysω→

Example:
If layer_info shows dining table has layer_0 with surface_0 and

surface_1:ω→
```json
{
"dining table": {
"layer_0": {
"surface_0": [
{
"id": "place_setting_1",
"position": [0.3, 0.3],
"rotation": {"facing": "dining chair"},
"rationale": "Positioned for the chair"

}
],
"surface_1": [
{
"id": "place_setting_2",
"position": [-0.3, -0.3],
"rotation": {"angle": 0},
"rationale": "Opposite side placement"

}
]

}
}

}
```

small_objects_layered: >-
You are required to populate only and exactly the following small

objects """<SMALL_OBJECTS>"""ω→
on the following motif: """<MOTIF_DESCRIPTION>""",
only on the following large furniture: """<LARGE_FURNITURE>""",
in a room with description: """<ROOM_TYPE>""",

The layer information is: """<LAYER_INFO>"""

CRITICAL OBJECTIVE: You must place the EXACT total quantity
specified for each object type across ALL furniture surfaces.
This is a strict requirement - no more, no less.

ω→
ω→

Quantity Distribution Strategy:
1. First, identify all available surfaces across all layers
2. Calculate how to distribute each object type to reach the exact

totalω→

3. Ensure the sum of all amounts for each object type equals the
required total exactlyω→

For each small object entry, provide:
1. The name of the piece (use EXACTLY the same name as provided

in the input)ω→
2. The appearance/style description of the piece (be specific,

e.g. "glass cup")ω→
3. The dimensions of the piece [width, height, depth] in meters

according to the descriptionω→
4. The amount of the piece (integer)

JSON Structure Requirements:
- Each large_object_name appears exactly once as a top-level key
- Each layer_X appears exactly once under each large_object_name
- Each surface_X appears exactly once under each layer_X
- All layers and surfaces from the layer information must be

includedω→
- CRITICAL: Do NOT duplicate layer keys (e.g., do not define

"layer_0" multiple times)ω→

Additional Requirements:
- Each entry must represent a SINGLE type of object, do not

generate composite setsω→
- If there are multiple small objects with different

appearance/size, break them into multiple entriesω→
- Use exact number of layers and surface IDs from layer

informationω→
- Consider space available on each surface and height of each

layer (layer_0 is highest)ω→

Respond with JSON:
```json
{
"large_object_name": {
"layer_0": {

"surface_0": [
{
"name": "small_object_name",
"description": "appearance/style description of a single

small object (e.g. glass cup)",ω→
"dimensions": [width, height, depth],
"amount": number of same small object (integer),

},
]

},
"layer_1": {

"surface_0": [
{
"name": "small_object_name",
"description": "appearance/style description of a single

small object",ω→
"dimensions": [width, height, depth],
"amount": number of same small object (integer),

},
]

},
...

},
...

}
```

choose_objects: >-
Choose from the following list of objects: """<OBJECT_LIST>"""
Which objects usually has small objects placed on top/inside of it?

You can respond with an empty array if it is absolutely certain
that all objects are not meant to have any objects placed on
top of them.

ω→
ω→
Respond exactly with the object names in JSON format.
```json
{"objects": ["object_1", "object_n", ...]}
```


Holodeck Ours LayoutGPT InstructScene Input

“A bedroom with a bed with two
nightstands on each side, a
wardrobe, and a TV stand
positioned in front of the bed.
There is a toy box with two dolls
outside the box.”

“A dining room with a ceiling light
hanging above the table and two
chairs on the long side of the
table.”

“A Japanese-style living room
featuring a co!ee table next to
the window with two floor
cushions placed beside it. A sofa
is positioned across from the
window, and in front of the sofa is
a table with a teapot on top,
completing the serene and
minimalist setup.”

“A living room featuring an
irregular-shaped table in the
middle of the room with a sofa
positioned in front of it. Across
the table are two sofa chairs with
a small wooden co!ee table
placed between them. A clock is
mounted on the wall far from the
door.

LayoutVLM

“A dining room with six wooden
dining chairs surrounding a round
wooden table in the middle of the
room. There is no co!ee table in
the room.”

“A large living room with three
display shelves against the wall,
with a long sofa in front. There
are two tables in front of the sofa
and another table right of the
sofa with a lamp on top. There is
no TV in the room.”

“A teenager's bedroom designed
for both comfort and functionality
includes a twin bed with an
adjacent wooden nightstand, a
large wardrobe with multiple
drawers for clothes, and a small
desk and chair equipped with an
electronic setup featuring a
monitor and peripherals. A large
oak bookshelf is positioned next
to the wardrobe.”

Figure 10. Extra qualitative comparisons at the scene level. Among all methods, HSM produces the most consistent room layouts and
object arrangements with respect to the input descriptions.

Figure 11. Rendered qualitative results. HSM is able to generate realistic and densely populated scenes. The scenes also contain smaller
objects and are aligned with user input.

	. Introduction
	. Related Work
	. Method
	. Scene Motifs
	. Input Description Requirement Decomposition
	. Support Region Extraction
	. Scene Motif Generation
	. Layout Optimization

	. Experimental Setup
	. Scene Generation
	. Support Region Extraction

	. Results
	. Scene Generation
	. Support Region Extraction
	. Ablation

	. Conclusion
	. HSM Details
	. Motif Library
	. Support Region Extraction
	. Layout Optimization
	DFS Solver
	Scene Spatial Optimization

	. Asset Retrieval
	. Additional Quantitative Analysis
	. Computational Cost and Runtime Analysis
	. Open Source VLM
	. Limitations and Future Work

	. Support Region Dataset Details
	. User Study Instructions
	. Overall Description of the Study
	. Instructions for Scene-level Evaluation
	. Instructions for Object-level Evaluation

	. VLM Prompts
	. Scene Motif Prompts
	Scene Motif Hierarchy Decomposition
	Scene Motif Generation

	. Scene Level Prompts
	. Furniture Level Prompts
	. Small Object Level Prompts

