Under review as a conference paper at ICLR 2025

A EXPERIMENTAL RESULTS

A.1 EMPIRICAL RESULTS FOR PROPOSITION 5.1

We evaluated the performance of lazy-agents trained in environments with random delays, where
Omax = 10, and compared them to normal agents trained in those with constant delays, where o =
Omax. as illustrated in Fig.[5] The empirical results demonstrate that the performance of lazy-agents is
comparable to that of normal agents. This supports our argument that RDMDPs can be transformed
into equivalent CDMDPs through our lazy-agents, thereby enabling conventional methods designed
for handling constant delays to be naturally extended to environments with random delays.

Ant-v3 (o, omax = 10) Walker2d-v3 (o, omax = 10) Humanoid-v3 (o, omax = 10)
6000 6000 6000
—— Lazy-agent (random)
5000 1 —— Agent (constant) 5000 4 5000 4
£ 4000 4000 4 £ 4000
S S
ki @
= 3000 3000 4 = 3000 4
@ @
o o
o o
g 2000 2000 4 g 2000
X X
1000 1000 4 1000
0 0 0
00 02 04 056 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Steps le6 Steps le6 Steps 1e6

Figure 5: Performance curves of lazy-agents trained in environments with random delays of 0y,,x =
10 and normal agents trained in environments with constant delays of 0 = opm.x for continuous
control tasks in the MuJoCo benchmark. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns.

A.2 PLOTS OF PERFORMANCE COMPARISON

In this section, we present the performance curves of each algorithm on the MuJoCo tasks with
random delays of omax € {5,10,20}. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns.

Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
i 7000 3500 4
50009 zlmc d-SAC //
ayed-
1 3000 4
—— Lazy-BPQL (proposed) 6000
€ 4000 1 c €
5 5 5000 £ 2500 -
T @ @
< 3000 < 4000 4 & 2000 4
)))
© © 3000 4 @ 1500 1
g 2000 g g
< < 2000 4 < 1000 4
1000 4 e S
N N 1000 500 7
0 0+ o1
0.0 02 0.4 0.6 038 10 0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10
Steps 1le6 Steps 1e6 Steps 1e6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 - 5000 - 1000 4
800
£ 4000 4 £ 4000 c
5 5 5
2 3 T 600
< 3000 =] £ 3000 4 <
)))
o © o 4007
g 2000+ g 2000 1 g
< Ed 2 5004
1000 4 1000
S I — 0
e
0 0+
T : —200
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 L 0.0 0.2 0.4 0.6 0.8 1.0
Steps le6 Steps le6 Steps le6

Figure 6: Performance curves of each algorithm on the MuJoCo tasks with oy,x = 5.

12

Under review as a conference paper at ICLR 2025

Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
—_— 7000 + 3500 1
=000 ilmc d-SAC
— Delayed-
4 3000 1
—— Lazy-BPQL (proposed) 6000
£ 4000 € £
5 5 5000 4 5 25004
@ @ @
< 3000 < 4000 - & 2000
)))
o © 3000 4 © 1500 4
g 2000 g g
< < 2000 1 & 1000 4
1000 1000 | 500 4
o 0+ 7
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Steps le6 Steps le6 Steps le6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 5000 1000 +
800 +
£ 4000 £ 4000 c
5 5 5
@ T T 001
= 3000 3000 4 e«
3 3 3
© g g 4001
g 2000 g 2000 4 g
< < < 004
1000 1000 +
o]
=
0 04
T T T T T T T T T T T T -200 T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 10
Steps 1e6 Steps 1e6 Steps le6
Figure 7: Performance curves of each algorithm on the MuJoCo tasks with oy,,x = 10.
Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
— 7000 3500 1
000 xlmc d-SAC
— Delayed-
+ 3000 +
—— Lazy-BPQL (proposed) 6000
g 4000 g 5000 1 § 2500
@ T @
= 3000 £ 4000 4 & 2000
3 3 3
o © 3000 © 1500 4
g 2000 g g
< < 2000 Z 1000 1
1000 1000+ 500 4
o 0 1
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps le6 Steps le6 Steps le6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 5000 1000 §
800 4
£ 4000 £ 4000 €
5 5 5
5 @ @ 600
< 3000 & 3000 4 «
E 3 3
o B © 400
g 2000 g 2000 + g
< < < 2004
1000 1000 4
o]
o 04
T T T T T T T T T T T T —200 T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1le6 Steps 1e6

Figure 8: Performance curves of each algorithm on the MuJoCo tasks with oy,x = 20.

13

Under review as a conference paper at ICLR 2025

A.3 STATE-SPACE EXPLOSION ISSUE

In this section, we present the performance curves of lazy-augmented-SAC and lazy-BPQL on the
MuJoCo tasks with random delays of omax € {5,10,20}. As shown in Fig. E], the proposed lazy-
BPQL outperforms lazy-augmented-SAC in terms of asymptotic performance and sample efficiency.
Notably, lazy-augmented-SAC completely fails to learn for the tasks even with the random delay of
Omax = D, highlighting the importance of avoiding the state-space explosion issue.

HalfCheetah-v3 (omax = 5) HalfCheetah-v3 (omax = 10) HalfCheetah-v3 (omax = 20)
Lazy-augmented-SAC
8000 1 |azy-BPQL (proposed) 8000 7 80007
£ 6000 £ 6000 A £ 6000 4
E 5 S
] k]]
4 4 4
@
g 4000 &, 4000 g 4000
e e e
g g g
< 2000 < 2000 { < 2000
o 01 o
O.‘O 0.‘2 0.'4 O.‘ﬁ 0.‘8 l.‘O 0.‘0 0:2 O.‘A 0.‘6 0:8 1.‘0 O:O O.‘Z 0.‘4 O.‘G 0.‘8 l.IO
Steps le6 Steps le6 Steps 1le6
Ant-v3 (omax = 5) Ant-v3 (omax = 10) Ant-v3 (omax = 20)
6000 6000 6000
Lazy-augmented-SAC
s000 | — Lazy-BPQL (proposed) 5000 4 5000 4
£ 4000 £ 4000 4 £ 4000 1
E S S
] k]]
< 3000 < 3000 < 3000
@ (] @
o o o
4 2 4
g 2000 g 2000 + g 2000 1
< < <
1000 1000 1000
o 04 [
O.‘O 0.‘2 0.'4 O.‘ﬁ 0.‘8 l.‘O 0.‘0 O:Z O.‘A 0.‘6 O:E 1.‘0 O:O O.‘Z 0.‘4 O.‘G 0.‘8 l.IO
Steps 1e6 Steps 1e6 Steps 1e6

Figure 9: Performance curves of lazy-augmented-SAC and lazy-BPQL for continuous control tasks
from the MuJoCo benchmark with random delays of omax = {5, 10,20}. From the results, lazy-
BPQL dominates lazy-augmented-SAC, underscoring the importance of avoiding the state-space
explosion issue.

14

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTAL DETAILS

Table 2: Environmental details of the MuJoCo benchmark.

Task State dimension ~ Action dimension Time-step (s)
Ant-v3 27 8 0.05
HalfCheetah-v3 17 6 0.05
Walker2d-v3 17 6 0.008
Hopper-v3 11 3 0.008
Humanoid-v3 376 17 0.015
InvertedPendulum-v2 4 1 0.04

(®

Figure 10: Experimental environments in the MuJoCo benchmark: (a) Ant-v3 (b) HalfCheetah-v3,
(c) Walker2d-v3, (d) Hopper-v3, (e) Humanoid-v3, and (f) InvertedPendulum-v2

B.2 IMPLEMENTATION DETAILS

The implementation details of the proposed lazy-BPQL align with those presented in |Kim et al.
(2023)), with the specific hyperparameters listed in Table 3] Since the baseline algorithms included
in our experiments employ the SAC algorithm as their foundational learning algorithm, the hyper-
parameters are consistent across all approaches, except for the DC/AC algorithm.

Table 3: Hyperparameters for lazy-BPQL and the baselines.

Hyperparameters Values
Actor network 256, 256
Critic network 256, 256

Learning rate (actor) 3e-4
Learning rate (critic) 3e-4
Temperature () 0.2
Discount factor () 0.99
Replay buffer size le6
Mini-Batch size 256
Target entropy -dim|A|
Target smoothing coefficient (§) 0.995
Optimizer Adam (Kingma, 2014)
Total time-steps le6

15

Under review as a conference paper at ICLR 2025

B.

3 PSEUDO CODE OF LAZY-BPQL

The proposed lazy-agent can be seamlessly integrated into the BPQL framework with minimal mod-
ifications by using the initial state for decision-making at its maximum delayed times. Subsequently,

all

In

states become naturally available for use at their respective maximum delayed times.

the implementation, a temporary buffer 3 has been employed, as utilized by Kim et al.|(2023)), to

store observed states, corresponding rewards, and action histories, which enables the agent to access
timely and relevant information for constructing augmented states.

Al

gorithm 1 Lazy Belief Projection-based ()-Learning (Lazy-BPQL)

1

A A

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

34

: Input: actor 7y (al2), beta critic Qg (s, a), target beta critic Q5 4(s, a), replay buffer D, tem-
porary buffer B, maximum delay om,y, beta critic learning rate A, actor learning rate Az, soft
update rate &, episodic length H, and total number of episodes F.

: for episode e = 1to E' do
for time-stept = 1 to H do
if t < omax then
select random or ‘no-ops’ action a,
execute a; on environment
put a;, observed states, rewards to 3
else if t = o, then > wait for oy,x time-steps
select random or ‘no-ops’ action a,
execute a; on environment
put a;, observed states, rewards to B
else
8et St o> Ut—opas > At—1 from B
> get most recent usable state and action histories
Tt 4 (St—omps Ut —opays ++s At —1) > construct augmented state
ay < ’ﬁ'd,(jt))
execute a; on environment
put a;, observed states, rewards to 5
if t > 20, then
8CL 8120005 St—20mu+15 St—0mass Tt—Opas U200 5 +++» Ut — 0 TTOM B
j}t—onm < (St—20ma s Tt —20max 5 +++ aft—omax)
Tt oyt 1 4 (8t—20p+1> Ut—200+15 ++s Ut —opy+1)
SLOTE (L4 — 0y 5 St—Opas + At —Opas s Tt —Oman s Lt —Opan+15 St—0ps+1) 1N D
POP St —20, At —20p,, fTOM B
end if
end if
end for
for each gradient step do
00— AoVJIq,(0) > update beta critic
@ +— ¢ —AxVI=(9) > update actor
0+ 0+ (1-¢)0 > update target beta critic
end for
end for
: Output: actor 7y

16

Under review as a conference paper at ICLR 2025

C VISUAL REPRESENTATION OF LAZY-AGENT

In this section, we provide a visual representation of the proposed lazy-agent employed in RDMDPs,
where the maximum delay is set to oyax = 3.

*sb : @ = generated time, b = delay

Times t=1 t=2 t=3 t=4 | t=5 t=6 t=7 t=8 t=9 t=10

Generated states

Observed states

Usable states

Augmented states

Actions

(@) Timet =10

*sb : @ = generated time, b = delay

Times t=1 t=2 t=3 t=4 | t=5 t=6 t=7 t=8 t=9 t=10

Generated states Sy

Observed states

Usable states

Augmented states | ‘no-ops’

,,,,,,,, 4
[
Actions a;
(b) Timet =1
*sb : @ = generated time, b = delay
Times t=1 t=2 t=3 t=4 i t=5 t=6 t=7 t=8 t=9 t=10
2 1
Generated states Sy 52
Observed states
Usable states
Augmented states ‘no-ops’
,,,,,,,, g
i \
Actions a; a,
(¢c) Timet =2

Figure 11: At times 1 and 2, the states s? and s3 are generated but remain unobserved by the lazy-
agent due to delays. In this scenario, the lazy-agent does nothing (‘no-ops’) until the initial state s2
becomes usable.

17

Under review as a conference paper at ICLR 2025

*sL . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states s7 ‘ 3 ‘ s3 ‘
Observed states s?
Usable states
Augmented states 110-0ps
_____________ A :
i \
Actions a, a, as
(a) Timet = 3
*sL . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states st ‘ 3 ‘ s3 ‘ s3 ‘
Observed states s?
Usable states
Augmented states 10-0ps 24
________ A :
i \
Actions a, a, as a,
(b) Timet =4
*sb . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states s? ‘ ‘ st ‘ 52 ‘ 55 ‘ st ‘
Observed states 512 532
Usable states s?
Augmented states no-ops 24 %5
________ A
i \
Actions a, a, asz ay as
(¢) Timet =5

Figure 12: At time 3, states s2 and s3 are observed simultaneously. As the lazy-agent uses these
observed states at their maximum delayed times, s7 is used at time 4 and s3 is used at time 5. These
states are reformulated as augmented states before being fed into the policy, thereafter determining
the appropriate actions. States s3, s3, and si are generated at corresponding times, with s3 being
observed at time 5.

18

Under review as a conference paper at ICLR 2025

*sb . a = generated time, b = delay

Times t=1 t=2 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Generated states ‘ st ‘ ‘ 3 ‘ s3 ‘ s3 ‘ ‘ 5§ ‘
Observed states
Usbtoses | s? | ----------
Augmented states ‘no):ps’ R4 585 . X6
_____________ / R o R S
Actions a, a, as a, as ag
(a) Timet =6
*sL : a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Generated states ‘ 512 ‘ ‘ 5% ‘ 55 ‘ 543, ‘ Sé ‘ ‘ 52 ‘ S? ‘
Observed states
- vabesaes | s? | -----
Augmented states ‘no):ps’ 24 J?5 ” %6 27
_____________ / T R E T R
Actions a, a, as ay as ag a;
(b) Timet =7
*s,‘l’ : a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=28 t=9 t=10
Generated states ‘ 512 ‘ ‘ 5% ‘ 53? ‘ 543, ‘ Sé ‘ ‘ Sg ‘ S73 ‘
Observed states E
Usabtesiates | s12 | | 521 | s3z | s,,§| | sé | -----
Augmented states ‘no)(\Jps’ 77777 24 J?5 M %6 2 g
_____________ / Ly - R
Actions a, a, as ay as ag a; ag
(c) Timet =8

Figure 13: States s and s3 are generated at respective times. At time 6, states st and sJ are observed
simultaneously but are not immediately usable because the previously generated states, s3 and s,
have not yet been used in decision-making processes. Instead, s3 is used at this time. At time 7,
state 32 is observed and is available for use immediately. At time 8, state s}, becomes usable, as all
previously generated states have now been both observed and used.

19

Under review as a conference paper at ICLR 2025

*sb . a = generated time, b = delay

Times t=1 t=2 t=3 t=4 | t=5 t=6 t=7 t=28 t=9 t=10
2 2 3 :
Generated states ‘ S1 ‘ 53 ‘ S3 Sa ‘ :
Observed states
Usable states s7 | : | st | sd ‘
Augmented states no)(\Jps 24 25 %6 2 g ES
_____________ / Y - R
Actions a; a, as ay as ag a; ag ag
(a) Timet =9
*sb . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
2 2 3
Generated states S1 ‘ ‘ 3 ‘ S3 ‘ Sa ‘
Observed states S?
Usable states | s? | | st | | sQ ‘ | s3 |
Augmented states no):ps X4 s R b g Xy 10
............. / e B T
Actions a; a, asz a, as ag a; ag ag ag

(b) Time t = 10

Figure 14: At times 9 and 10, states sY and s3 are used in sequence. Despite the state observations
occurring simultaneously or being out of order, all the delayed states are consistently used in se-

quence at their maximum delayed times, i.e., 7(s2»

n):n+0maxa

20

Vn > 0.

	Experimental Results
	Empirical results for Proposition 5.1
	Plots of Performance comparison
	State-space explosion issue

	Experimental details
	Environmental details
	Implementation details
	Pseudo code of Lazy-BPQL

	Visual Representation of Lazy-agent

