
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL RESULTS

A.1 EMPIRICAL RESULTS FOR PROPOSITION 5.1

We evaluated the performance of lazy-agents trained in environments with random delays, where
omax = 10, and compared them to normal agents trained in those with constant delays, where o =
omax, as illustrated in Fig. 5. The empirical results demonstrate that the performance of lazy-agents is
comparable to that of normal agents. This supports our argument that RDMDPs can be transformed
into equivalent CDMDPs through our lazy-agents, thereby enabling conventional methods designed
for handling constant delays to be naturally extended to environments with random delays.

Figure 5: Performance curves of lazy-agents trained in environments with random delays of omax =
10 and normal agents trained in environments with constant delays of o = omax for continuous
control tasks in the MuJoCo benchmark. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns.

A.2 PLOTS OF PERFORMANCE COMPARISON

In this section, we present the performance curves of each algorithm on the MuJoCo tasks with
random delays of omax ∈ {5, 10, 20}. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns.

Figure 6: Performance curves of each algorithm on the MuJoCo tasks with omax = 5.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 7: Performance curves of each algorithm on the MuJoCo tasks with omax = 10.

Figure 8: Performance curves of each algorithm on the MuJoCo tasks with omax = 20.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 STATE-SPACE EXPLOSION ISSUE

In this section, we present the performance curves of lazy-augmented-SAC and lazy-BPQL on the
MuJoCo tasks with random delays of omax ∈ {5, 10, 20}. As shown in Fig. 9, the proposed lazy-
BPQL outperforms lazy-augmented-SAC in terms of asymptotic performance and sample efficiency.
Notably, lazy-augmented-SAC completely fails to learn for the tasks even with the random delay of
omax = 5, highlighting the importance of avoiding the state-space explosion issue.

Figure 9: Performance curves of lazy-augmented-SAC and lazy-BPQL for continuous control tasks
from the MuJoCo benchmark with random delays of omax = {5, 10, 20}. From the results, lazy-
BPQL dominates lazy-augmented-SAC, underscoring the importance of avoiding the state-space
explosion issue.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTAL DETAILS

Table 2: Environmental details of the MuJoCo benchmark.
Task State dimension Action dimension Time-step (s)

Ant-v3 27 8 0.05
HalfCheetah-v3 17 6 0.05

Walker2d-v3 17 6 0.008
Hopper-v3 11 3 0.008

Humanoid-v3 376 17 0.015
InvertedPendulum-v2 4 1 0.04

(a) (b) (c) (d) (e) (f)

Figure 10: Experimental environments in the MuJoCo benchmark: (a) Ant-v3 (b) HalfCheetah-v3,
(c) Walker2d-v3, (d) Hopper-v3, (e) Humanoid-v3, and (f) InvertedPendulum-v2

B.2 IMPLEMENTATION DETAILS

The implementation details of the proposed lazy-BPQL align with those presented in Kim et al.
(2023), with the specific hyperparameters listed in Table 3. Since the baseline algorithms included
in our experiments employ the SAC algorithm as their foundational learning algorithm, the hyper-
parameters are consistent across all approaches, except for the DC/AC algorithm.

Table 3: Hyperparameters for lazy-BPQL and the baselines.
Hyperparameters Values

Actor network 256, 256
Critic network 256, 256

Learning rate (actor) 3e-4
Learning rate (critic) 3e-4

Temperature (α) 0.2
Discount factor (γ) 0.99
Replay buffer size 1e6
Mini-Batch size 256
Target entropy -dim|A|

Target smoothing coefficient (ξ) 0.995
Optimizer Adam (Kingma, 2014)

Total time-steps 1e6

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 PSEUDO CODE OF LAZY-BPQL

The proposed lazy-agent can be seamlessly integrated into the BPQL framework with minimal mod-
ifications by using the initial state for decision-making at its maximum delayed times. Subsequently,
all states become naturally available for use at their respective maximum delayed times.

In the implementation, a temporary buffer B has been employed, as utilized by Kim et al. (2023), to
store observed states, corresponding rewards, and action histories, which enables the agent to access
timely and relevant information for constructing augmented states.

Algorithm 1 Lazy Belief Projection-based Q-Learning (Lazy-BPQL)
1: Input: actor π̄ϕ(a|x̂), beta critic Qθ,β(s, a), target beta critic Qθ̃,β(s, a), replay buffer D, tem-

porary buffer B, maximum delay omax, beta critic learning rate λQ, actor learning rate λπ̄ , soft
update rate ξ, episodic length H , and total number of episodes E.

2: for episode e = 1 to E do
3: for time-step t = 1 to H do
4: if t < omax then
5: select random or ‘no-ops’ action at
6: execute at on environment
7: put at, observed states, rewards to B
8: else if t = omax then ▷ wait for omax time-steps
9: select random or ‘no-ops’ action at

10: execute at on environment
11: put at, observed states, rewards to B
12: else
13: get st−omax , at−omax , ..., at−1 from B
14: ▷ get most recent usable state and action histories
15: x̂t ← (st−omax , at−omax , ..., at−1) ▷ construct augmented state
16: at ← π̄ϕ(x̂t)
17: execute at on environment
18: put at, observed states, rewards to B
19: if t > 2omax then
20: get st−2omax , st−2omax+1, st−omax , rt−omax , at−2omax , ..., at−omax from B
21: x̂t−omax ← (st−2omax , at−2omax , ..., at−omax)
22: x̂t−omax+1 ← (st−2omax+1, at−2omax+1, ..., at−omax+1)
23: store (x̂t−omax , st−omax , at−omax , rt−omax , x̂t−omax+1, st−omax+1) in D
24: pop st−2omax , at−2omax from B
25: end if
26: end if
27: end for
28: for each gradient step do
29: θ ← θ − λQ∇JQβ

(θ) ▷ update beta critic
30: ϕ← ϕ− λπ̄∇Jπ̄(ϕ) ▷ update actor
31: θ̃ ← ξθ + (1− ξ)θ̃ ▷ update target beta critic
32: end for
33: end for
34: Output: actor π̄ϕ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C VISUAL REPRESENTATION OF LAZY-AGENT

In this section, we provide a visual representation of the proposed lazy-agent employed in RDMDPs,
where the maximum delay is set to omax = 3.

(a) Time t = 0

(b) Time t = 1

(c) Time t = 2

Figure 11: At times 1 and 2, the states s21 and s12 are generated but remain unobserved by the lazy-
agent due to delays. In this scenario, the lazy-agent does nothing (‘no-ops’) until the initial state s21
becomes usable.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Time t = 3

(b) Time t = 4

(c) Time t = 5

Figure 12: At time 3, states s21 and s12 are observed simultaneously. As the lazy-agent uses these
observed states at their maximum delayed times, s21 is used at time 4 and s12 is used at time 5. These
states are reformulated as augmented states before being fed into the policy, thereafter determining
the appropriate actions. States s23, s34, and s15 are generated at corresponding times, with s23 being
observed at time 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Time t = 6

(b) Time t = 7

(c) Time t = 8

Figure 13: States s06 and s37 are generated at respective times. At time 6, states s15 and s06 are observed
simultaneously but are not immediately usable because the previously generated states, s23 and s34,
have not yet been used in decision-making processes. Instead, s23 is used at this time. At time 7,
state s34 is observed and is available for use immediately. At time 8, state s15 becomes usable, as all
previously generated states have now been both observed and used.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Time t = 9

(b) Time t = 10

Figure 14: At times 9 and 10, states s06 and s37 are used in sequence. Despite the state observations
occurring simultaneously or being out of order, all the delayed states are consistently used in se-
quence at their maximum delayed times, i.e., τ(sonn) = n+ omax,∀n > 0.

20

	Experimental Results
	Empirical results for Proposition 5.1
	Plots of Performance comparison
	State-space explosion issue

	Experimental details
	Environmental details
	Implementation details
	Pseudo code of Lazy-BPQL

	Visual Representation of Lazy-agent

