
PROVING TEST SET CONTAMINATION IN
BLACK BOX LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are trained on vast amounts of internet data, prompting
concerns that they have memorized public benchmarks. Detecting this type of
contamination is challenging because the pretraining data used by proprietary
models are often not publicly accessible. We propose a procedure for detect-
ing test set contamination of language models with exact false positive guarantees
and without access to pretraining data or model weights. Our approach leverages
the fact that when there is no data contamination, all orderings of an exchangeable
benchmark should be equally likely. In contrast, the tendency for language models
to memorize example order means that a contaminated language model will find
certain canonical orderings to be much more likely than others. Our test flags po-
tential contamination whenever the likelihood of a canonically ordered benchmark
dataset is significantly higher than the likelihood after shuffling the examples. We
demonstrate that our procedure is sensitive enough to reliably detect contamina-
tion in challenging situations, including models as small as 1.4 billion parameters,
on small test sets only 1000 examples, and datasets that appear only a few times
in the pretraining corpus. Finally, we evaluate LLaMA-2 to apply our test in a
realistic setting and find our results to be consistent with existing contamination
evaluations.

1 INTRODUCTION

Language models (LMs) have driven remarkable improvements on a number of natural language
processing benchmarks (Wang et al., 2019) and professional exams (OpenAI, 2023). These gains
are driven by large-scale pretraining on massive datasets collected from the internet. While this
paradigm is powerful, the minimal curation involved in pretraining datasets has led to growing con-
cerns of dataset contamination, where the pretraining dataset contains various evaluation bench-
marks. This contamination leads to difficulties in understanding the true performance of language
models – such as whether they simply memorize the answers to difficult exam questions. Disen-
tangling the effects of generalization and test set memorization is critical to our understanding of
language model performance, but this is becoming increasingly difficult as the pretraining datasets
are rarely public for many of the LMs deployed today.

Although there is ongoing work by LLM providers to remove benchmarks from pre-training datasets
and perform dataset contamination studies, such filtering can fail due to bugs (Brown et al., 2020a),
be limited to a select set of benchmarks (Brown et al., 2020a; Wei et al., 2021; Chowdhery et al.,
2022), and requires trust in these vendors. Increasing competitive pressures have also led to some
recent model releases to include no contamination studies at all (OpenAI, 2023). These factors make
it critical for us to be able to audit existing language models for the presence of benchmark datasets
without the cooperation of language model providers.

In this work, we show it is possible to prove some forms of dataset contamination for black box
language models. More specifically, we provide a statistical test that can identify the presence
of a benchmark in the pre-training dataset of a language model with provable false positive rate
guarantees and without access to the model training data or weights.

To achieve these guarantees, we exploit the fact that many datasets have a property known as ex-
changeability, where the order of examples in the dataset can be shuffled without affecting its joint
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Figure 1: Given a pre-training dataset contaminated with the BoolQ(Clark et al., 2019) test set
(left), we detect such contamination by testing for exchangability of the dataset (right). If a model
has seen a benchmark dataset, it will have a preference for the canonical order (i.e. the order that
examples are given in public repositories) over randomly shuffled examples orderings. We test for
these differences in log probabilities, and aggregate them across the dataset to provide false positive
rate guarantees.

distribution. Our key insight is that if a language model shows a preference for any particular or-
dering of the dataset – such as a canonical ordering that appears in publicly available repositories –
this violates exchangeability and can only occur by observing the dataset during training (Figure 1).
We leverage this insight to propose a set of tests that compares the language model’s log probabil-
ity on the ‘canonical’ ordering (taken from public repositories) to the log probability on a dataset
with shuffled examples and flag a dataset if the two log probabilities have statistically significant
differences.

Using these ideas, we propose a computationally efficient and statistically powerful test for con-
tamination which shards the dataset into smaller segments and performs a series of log probability
comparisons within each shard. We prove that this sharded test provides control over the false pos-
itive rate, enables computationally efficient parallel tests, and substantially improves the power of
the test for small p-values.

We evaluate our statistical test on a 1.4 billion parameter language model trained on a combination
of Wikipedia and a curated set of canary test sets. Our test is sensitive enough to identify test sets
with as few as 1000 examples, and sometimes even appearing only twice in the pretraining corpus.
In the case of higher duplication counts, such as datasets appearing 10 or more times, we obtain
vanishingly small p-values on our test. Finally, we run our test on the LLaMA-2 language model to
study the behavior of our test on language models in the wild, and find that our ability to identify
potential contamination in the MMLU benchmark (Hendrycks et al., 2021) to be consistent with
known dataset contamination studies in the original LLaMA-2 report (Touvron et al., 2023).

We summarize our contributions below.

• Demonstrating the use of exchangability as a way to provably identify test set contamina-
tion using only log probability queries.

• Construction of an efficient and powerful sharded hypothesis test for test set contamination.
• Empirical demonstration of black-box detection of contamination for small datasets that

appear few times during pretraining.

Our three contributions suggest that black-box identification of test set contamination is practical
and further improvements in the power of the tests may allow us to regularly audit language models
in the wild for test set contamination.

2 PROBLEM SETTING

Our high-level goal is to identify whether the training process of a language model ✓ included dataset
X . In our setting, the only method we have to study ✓ is through a log probability query log p✓(s) for
a sequence s (i.e. no access to dataset or parameters). This setting mirrors many common situations
with API-based model providers (Brown et al., 2020b; Bai et al., 2022) and matches an increasing
trend where the training data is kept secret for ‘open’ models (Touvron et al., 2023; Li et al., 2023).
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Identifying test set contamination can be viewed as a hypothesis test in which the goal is to distin-
guish between two hypotheses:

• H0: ✓ is independent of X
• H1: ✓ is dependent on X

where we treat ✓ as a random variable whose randomness arises from a combination of the draw
of the pretraining dataset (potentially including X) and we will propose a hypothesis test with the
property that it falsely rejects the null hypothesis H0 with probability at most ↵.

False positives under H0 In most cases, we can make use of a property of a dataset known as
exchangeability to obtain our false positive guarantee. Nearly all datasets can be expressed as a
collection of examples X := {x1 . . . xn} where the ordering of the examples are unimportant, and
the probability of any ordering would be equally likely (i.e. p(x1 . . . xn) = p(x⇡1 . . . x⇡n) for any
permutation ⇡). Notably, this assumption would hold under the standard assumption that the dataset
is a collection of i.i.d examples.

Whenever exchangability of the dataset holds, the log probabilities of the model under H0 must have
a useful invariance property,
Proposition 1. Let seq(X) be a function that takes a dataset X and concatenates the examples to
produce a sequence, and let X⇡ be a random permutation of the examples of X where ⇡ is drawn
uniformly from the permutation group. For an exchangeable dataset X and under H0,

log p✓(seq(X))
d
= log p✓(seq(X⇡)).

Proof This follows directly from the definitions of exchangability and H0. Since X is ex-
changable, seq(X)

d
= seq(X⇡) and by the independence of ✓ from X under H0, we know that

(✓, seq(X))
d
= (✓, seq(X⇡)). Thus, the pushforward under log p✓(seq(X)) must have the same

invariance property.

Proposition 1 is the basic building block of our tests. It implies that the log probabilities of X
under H0 have the same distribution when shuffled, and this permutation invariance will enable us
to directly apply standard results on constructing permutation tests (Lehmann & Romano, 2005).

Detection rate under H1 The false positive rate guarantee holds with extremely weak assump-
tions, but a useful test should also have high power, meaning that it should have a high detection
rate under H1. We cannot hope for high detection rate without further assumptions. For instance,
an adversary may hide an encrypted copy of X within the parameters of the model (which would
induce a clear dependence between the model and X) but it would be nearly impossible for us to
detect such a situation even with weight access.

However, most existing forms of contamination are benign – where test sets accidentally slip through
filtering mechanisms Brown et al. (2020a). In this case, we have a reasonable expectation that the
invariance in proposition 1 will be violated and log p✓(seq(X)) � log p✓(seq(X⇡)) as the language
model ✓ is explicitly trained to maximize the log-likelihood over its training data, including seq(X).
The violation of exchangability allows us to reliably detect test set contamination, and the existing
literature on memorization (Carlini et al., 2021) suggests that many models may verbatim memorize
the order of examples in a benchmark dataset. We now focus on building tests that can reliably
identify this form of memorization.

3 METHODS

The core idea of our statistical test is to compare the log probability of the dataset under its original
ordering to the log probability under random permutations. We begin by describing the basic version
of this idea, which directly implements a permutation test on the log probabilities. We then identify
some drawbacks of this approach and describe a sharded test which improves the statistical power
and computational efficiency of the test.
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3.1 A PERMUTATION TEST FOR CONTAMINATION

Under the null hypothesis, the likelihood under the model of any permutation of the dataset X⇡ has
the same distribution, and thus the rank of log p✓(seq(X)) among any set of randomly permuted
probabilities {log p✓(seq(X⇡1)) . . . log p✓(seq(X⇡n))} will be a uniform random variable over [n+
1] (Lehmann & Romano, 2005, Theorem 15.2.2).

This can be used directly to construct a permutation test. Consider the proportion of permuted copies
of X with lower log-likeihood than the canonical ordering under the model,

p := E[ {log p✓(seq(X)) < log p✓(seq(X⇡))}].

The distribution of p will be uniform under H0, and we can test for contamination at a significance
level ↵ by rejecting H0 when p < ↵. In practice, computing this expectation over all ⇡ is intractable,
and we replace this with a Monte Carlo estimate and the appropriate finite-sample correction (Phip-
son & Smyth, 2010), which gives

p̂ :=

Pm
i=1 {log p✓(seq(X)) < log p✓(seq(X⇡m))}+ 1

m+ 1
.

This test is simple and straightforward to implement, and the validity of this test when rejecting at
p̂  ↵ is clear from standard results on permutation testing (Lehmann & Romano, 2005; Phipson &
Smyth, 2010). However, this test suffers from a major drawback in its Monte Carlo implementation
– the runtime of the test in terms of the number of log probability computations is O(m|X|) for a
sequence of length |X| and the p-value can never be below 1/(m+1). For hypothesis tests that aim
to reject at very low p-values (or with substantial multiple hypothesis testing corrections), this poses
a tradeoff between statistical power and computational requirements.

3.2 A SHARDED LIKELIHOOD COMPARISON TEST FOR CONTAMINATION

What are some drawbacks of the naive permutation test? It has an undesirable tradeoff between
statistical power and computational requirements for small ↵, and also requires that the model assign
higher likelihood to the canonical ordering X than nearly all shuffled orderings of X⇡ . This latter
condition can also be a serious problem, as the model may have biases the prefer certain orderings
(e.g. ones that place duplicate examples next to each other) regardless of the order seen during
training.

In contrast, it seems quite likely that the canonical ordering X has higher log probabilities than
the average log probability under a random permutation. That is, instead of relying on the quantile
E[ {log p✓(seq(X)) < log p✓(seq(X⇡))}], can we instead perform multiple log probability com-
parisons of the form log p✓(seq(X)) < E[log p✓(seq(X⇡))]?

We show that this is possible and the resulting test resembles a series of log probability comparisons
followed by a t-test to aggregate these results. More specifically, we will partition the examples
X1, · · · , Xn into r contiguous shards S1 . . . Sr formed by grouping together adjacent examples

S1 = (X1, X2, · · · , Xk)

where each shard Si contains at least k = n/r examples.

Then, we will permute the examples within each shard and compare the likelihood of the canonical
ordering to a Monte Carlo estimate of the average likelihood of the shuffled ordering as

si := log p✓(seq(X))� Mean⇡(log p✓(seq(X⇡))).

Finally, to construct the test, we aggregate these shard statistics si via the mean s = 1
m

Pr
i=1 si and

test for whether s is zero-mean using a t-test.

This statistical test, whose pseudocode is given in Algorithm 1, addresses the shortcoming of the
permutation test by converting a single rank comparison into a collection of log probability com-
parisons. The t-test based approach also requires O(m|X|) runtime for m permutations, but there
is no 1/m minimum p-value, and in practice we find that the p-values obtained by this approach
decay rapidly, as it only requires that the language models consistently assign higher-than-average
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Algorithm 1 Sharded Rank Comparison Test
Require: Test set examples x1, . . . , xn

Require: Target model ✓
Require: Number of shards r
Require: Number of permutations per shard m

1: Partition the examples into shards S1, S2, · · · , Sr, where each shard has at least bn/rc exam-
ples, and one extra example is added to the first n mod r shards.

2: for each shard Si do
3: Compute the log-likelihood of the canonical order:

l(i)canonical := log p✓(seq(x(i)
1 , x(i)

2 , · · · , x(i)
k ))

4: Estimate l(i)shuffled := Mean⇡[log p✓(seq(x(i)
⇡(1), · · · , x

(i)
⇡(k)))] by computing the sample average

over m random permutations ⇡.
5: Compute si = l(i)canonical � l(i)shuffled
6: end for
7: Define s = 1

r

Pr
i=1 si the sample average over the shards.

8: Run a one-sided t-test for E[si] > 0, returning the associated p-value of the test as p.

log probabilities to the canonical ordering, rather than requiring that the canonical log probability
be in the tails of the permutation null distribution.

Under the null, we expect s to be the sum of independent random variables and we can now show
that the overall test provides a false positive rate guarantee.
Theorem 2. Under the null hypothesis, an i.i.d dataset X , and finite second moments on log✓(S),

|P (p < ↵)� ↵| ! 0

as m ! 1 and p is defined as the p-value in Algorithm 1.

Proof The result follows directly from the combination of Theorem 1 and standard invari-
ance results in (Lehmann & Romano, 2005). First, by Theorem 1, note that the distribution of
log p✓(seq(x(i)

⇡(1), · · · , x
(i)
⇡(k)) is invariant to the permutation ⇡.

By Lehmann & Romano (2005, Theorem 15.2.2), this guarantees that the permutation distribution
is uniform over the support, and the statistic si must be zero-mean. Next, we note that each
shard is independent, as each example is split independently into a separate shard with no overlap.
By independence and the finite second moment condition, s ! N(0,�2/

p
m) under the null

by the central limit theorem and a one sided t-test provides asymptotically valid p-values with
P (p < ↵) ! ↵ uniformly as m ! 1 (Lehmann & Romano, 2005, Theorem 11.4.5).

This result ensures that the sharded rank comparison test also provides (asymptotic) guarantees
on false positive rates, much like the permutation test. The test we propose here has two small
differences relative to the permutation test – it provides asymptotic, rather than finite-sample valid
p-values and assumes i.i.d X for the proof. These conditions could be relaxed by the use of Berry-
Esseen bounds to obtain finite-sample convergence rates for the CLT as well as replacing our use of
a standard central limit theorem with one applicable to the sums of exchangable random variables
(CITE). However, we opted to present the simpler asymptotic test given the frequent use of i.i.d data
generation assumption in the literature as well as the fast convergence of the CLT in practice.

4 EXPERIMENTS

We now demonstrate that our test can detect many common forms of test set contamination. We
begin by training a 1.4 billion parameter language model, consisting of both Wikipedia and a known
collection of exchangeable test sets. These canaries serve as positive controls for our test, and
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our goal will be to flag as many of these as possible. Having validated the test in a setting with
known contamination, we then explore its use with an existing open model (LLaMA2, Touvron
et al. (2023)).

4.1 PRETRAINING WITH INTENTIONAL CONTAMINATION

Datasets and training To validate our test statistic, we train a 1.4 billion parameter GPT-2 model
from scratch with a combination of standard pretraining data (Wikitext, taken from the RedPajama
corpus (Computer, 2023)) and known test sets. We derive 10 test sets from numerous standard
datasets (BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), OpenbookQA (Mihaylov
et al., 2018), MNLI (Williams et al., 2018), Natural Questions (Kwiatkowski et al., 2019), Truth-
fulQA (Lin et al., 2022), PIQA (Bisk et al., 2019), MMLU (Hendrycks et al., 2021)), and subsample
the datasets to at around 1000 examples to ensure that the test sets remain a small part of the over-
all pretraining dataset (See Table 1 for exact sizes). While we do not know if these datasets are
exchangable when they were constructed, we can make them exchangable simply by applying a
random shuffle to the dataset, which would make all orderings equally likely.

To test our ability to detect benchmarks at various duplication rates, we duplicate each of the datasets
a different number of times - ranging from 1 to 100 (See Table 1). The overall pretraining dataset
has 20.2B tokens, with 20M tokens associated with some benchmark dataset.

Test parameters The sharded rank comparison test requires two additional parameters: the shard
count m and the permutation count r. Thoughout the experiments we use m = 50 shards and r = 51
permutations. In our ablations below, we found that the tests are not particularly sensitive to these
parameters, and we fix these parameters to avoid the possibility of p-hacking.

Table 1: We report the results of training a 1.4B language model from scratch on Wikitext with
intentional contamination. For each injected dataset, we report the number of examples used (size),
how often the model was injected into the pre-training data (dup count), and the p-value from the
permutation test and sharded likelihood comparison test. The bolded p-values are below 0.05 and
demonstrate in the case of higher duplication counts, such as datasets appearing 10 or more times,
we obtain vanishingly small p-values on our test. Finally, rows marked 1e � 38 were returned as
numerically zero due to the precision of our floating point computation.

Name Size Dup Count Permutation p Sharded p

BoolQ 1000 1 0.099 0.156
HellaSwag 1000 1 0.485 0.478
OpenbookQA 500 1 0.544 0.462
MNLI 1000 10 0.009 1.96e-11
Natural Questions 1000 10 0.009 1e-38
TruthfulQA 1000 10 0.009 3.43e-13
PIQA 1000 50 0.009 1e-38
MMLU Pro. Psychology 611 50 0.009 1e-38
MMLU Pro. Law 1533 50 0.009 1e-38
MMLU H.S. Psychology 544 100 0.009 1e-38

Canary Results In Table 1, we find that our test is highly sensitive, and provides near-zero p-
values at duplication rates of 10 or above. These detections hold for relatively small datasets ( 1000
examples) and for a modestly sized language model with 1.4 billion parameters. Given that many
test sets are much larger in practice, and many language models of interest are much larger and
memorize more aggressively (Carlini et al., 2019), these findings suggest that our test is likely to
detect contamination whenever there are sufficiently many duplicates.

While the permutation test attains significance (at a typical ↵ = 0.05, say) for all benchmarks
duplicated at least 10 times, the p-values are bounded below by 1/(1 + r), where the number of
permutations r used here is 100. Results for our sharded test use r = 50; even with half the
compute, the sharded test attains comparable performance for benchmarks with small duplication
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rate. However, the p-values attained by the sharded test for moderate to high duplication rates are
vanishingly small. Attaining comparably low p-values using the permutation test is computationally
infeasible. For example, to allow for the possibility of a p-value as low as 1.96e-11 (matching the
MNLI result) would require permuting the dataset 1011 times, and as many forward passes of the
model.

Although our test is unable to detect contamination at a duplication rate of 1, other existing literature
on memorization has suggested that detection at this duplication level is extremely difficult. Prior
work has found that existing tests of memorization begin to work with 10-30 duplicates (Carlini
et al., 2021), that deduplicated text is hard to extract (Kandpal et al., 2022), and that dataset con-
tamination with a duplication rate of 1 barely affects downstream benchmark performance (Magar
& Schwartz, 2022).

Power as a function of duplication rate We carefully study the lowest duplication rate for which
our test can reliably detect contamination. To do this, we perform the above canary study but with
duplication rates ranging from 1 to 7, and we show the aggregate log p-values for each duplication
rate in Figure 2. We find that we cannot reliably detect duplication rates of 1, but that at counts of
2 and 4 we begin to detect some test sets (gray points below the dashed line) and that the detection
threshold is around a duplication rate of 4. This suggests that even small amounts of dataset du-
plication would be sufficient for detection, and future improvements to the power of this test could
enable reliable detection at much lower duplication rates.

Figure 2: For a model pre-trained with canary datasets injected at a duplication count of 1, 2, 4, and
7, we plot the log p-value against dataset duplication count to quantify how the test’s power depends
on dataset duplication count.

4.2 SHARDING AND PERMUTATION COUNT

Our test relies on two parameters – the number of shards in the test, and the number of permutations
to sample. Both of these affect the power of the test, and we carefully study the impact of these
parameters on our ability to detect test sets by evaluating our pre-trained model on the 6 datasets that
contain 1000 examples (BoolQ, HellaSwag, MNLI, NaturalQuestions, TruthfulQA, PIQA). For the
number of shards, we explore a range of settings, from 10 shards to 200 shards and for permutations
we test a range from 1 to 50 permutations.

Shard sensitivity Our results in Figure 3a show that there is a sweet spot to the number of shards,
around 10-20 shards, where our detection rate for test sets are maximized. Larger numbers of shards
perform worse, since each shard involves fewer examples. Shards below 10 do not perform well, as
this is likely too few samples to merit the use of an asymptotically valid test like the t-test.

Permutation count sensitivity We also measure the dependence of our test on the number of
permutations per shard in Figure 3b, and find more permutations to generally improve the power
of our test. We test permutations of 1, 2, 10, 25, 50 and compute the average log p-value of the 6
datasets evaluated on the pretrained model. In practice we find that there is substantial diminishing
returns beyond 25 permutations in the t-test. This stands in stark contrast to the permutation test,
where a permutation count of 25 would only allow for a minimum p-value of 0.038.
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(a) So long as each shard contains enough exam-
ples and enough shards are used, the p-value is
stable under variations of the number of shards r.
We plot the average log p-value of those six of our
pre-trained model benchmarks with 1,000 exam-
ples, varying the number of examples per shard.

(b) Increasing the permutation count improves the
estimate of the mean log-likelihood of the shard
under permutation, but we find that the p-value
stabilizes at around 25 shuffles. We plot the aver-
age logarithm of the p-value(s) of 6 datasets eval-
uated on our pretrained model as a function of per-
mutations per shard.

Figure 3: Impact of varying shard and permutation counts on test performance.

4.3 EVALUATING EXISTING MODELS FOR DATASET CONTAMINATION

We now demonstrate the utility of our procedure in validating test set contamination in a pub-
licly available language model (LLaMA2, Touvron et al. (2023)), on a public data set (MMLU,
Hendrycks et al. (2021)). Computationally, we find that our test runs reasonably quickly for a 7 bil-
lion parameter model, allowing for the testing of 49 files for contamination in 12 hours using 1000
permutations per shard, and we find that the test outcomes are in general agreement with the contam-
ination study results of Touvron et al. (2023): we do not find evidence of pervasive contamination
of LLaMA2 by MMLU.

Of the 58 files in the MMLU test set, we tested 49 using our procedure, and identify 2 test sets
which are potentially exchangeable, and for which we observe p-values lower than 0.05 – this is
consistent with the existing contamination studies of LLaMA-2 which find some contamination but
at a low level that does not substantially impact downstream benchmarks. Due to the large number of
hypotheses being tested, the p-values considered here would not withstand a Bonferroni correction.

To further rule out the possibility of a non-exchangable structure that is difficult to detect, we also
run these datasets on a negative control where we test for contamination in BioMedLM ((Bolton
et al., 2022)), a language model trained exclusively on PubMed data, which is known not to contain
MMLU. The test statistics computed on BioMedLM are high, suggesting that our p-values are not
due to a nonexchangable dataset.

These results show that our test is computationally tractable to run on publicly available language
models, and yields results that are consistent with existing contamination studies. However, we
caution the reader into drawing strong conclusions about contamination in LLaMA or lack thereof.
While we do not find many small p-values on MMLU, the failure to reject the null is not direct
evidence for the null, and so our results do not rule out MMLU contamination. Similarly, due to
challenges with garden-of-forking-paths type analysis, significance tests that are at the boundary
of the rejection cutoff should be taken with a grain of salt. We present these results as showing
promising first steps towards third-party detection of test set contamination, rather than a direct
proof of particular datasets being contaminated.

5 RELATED WORK

Our work relates to a large literature on data memorization, privacy, and membership inference
attacks for large langauge models. We discuss some of the most relevant works to ours below.
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Table 2: Test Results on LlaMA2 with MMLU.

Dataset Size LLaMA2 p-value Neg. control (BioMedLM)

MMLU-elementary-mathematics-test 387 0.0377 0.225
MMLU-professional-psychology-test 611 0.0208 0.488

There is a substantial literature studying memorization of data in large language models, often from
the privacy perspective (Carlini et al., 2021; 2019; Kandpal et al., 2022; Mattern et al., 2023). Most
of these works have focused on analyses of what is memorized and whether private information
can be extracted from a large langauge model, but do not build tests to specifically identify test set
contamination. Our work has a narrower focus on test set contamination, but this also allows us to
build tests that provide more precise guarantees of contamination.

Data contamination has been studied in many contexts, including in the study of pretraining corpora
((Dodge et al., 2021)) as well as in the analysis section of many language model papers (Hoffmann
et al., 2022; Brown et al., 2020a; Gao et al., 2020). The n-gram based analyses in these papers can
shed light on contamination, but they can have high false positives (e.g. SQuAD (Rajpurkar et al.,
2016) containing Wikipedia) and are limited to the set of datasets that were chosen for analysis. Our
approach enables third party tests of dataset contamination with only access to log probabilities,
enabling broader testing, without having to trust the model provider.

Closest to our work is the exposure statistic in Carlini et al. (2019) and other subsequent variations
(Mattern et al. (2023)), which tests the perplexity differences between a target sequence and random
sequences. The idea of comparing the rank of the target log probability to some baseline distribution
is similar to our work. However, our work is distinct in using the exchangability of datasets to obtain
an exact null distribution (giving us provable guarantees when identifying contamination) and in
developing a sensitive and efficient shard-based test.

6 LIMITATIONS

We highlight a few limitations of our approach for detecting test set contamination. First, the p-
values presented in this paper do not have multiple test corrections applied, as it is difficult to define
the ‘total number of hypotheses’ tested throughout development.

Second, any application of this test in practice will likely involve taking an off-the-shelf benchmark
dataset X , for which it will be difficult to know if the dataset is truly exchangable. Heuristic negative
controls such as our BioMedLM experiments can be helpful, but we cannot ever prove that a dataset
is exchangable without knowing its data generating process. We strongly encourage future dataset
creators to apply a random shuffle to their datasets, which would allow our tests to be applied.

Finally, our tests focus on the case of verbatim contamination where a language model ingests a
test set directly. Contamination can happen in many other ways, such as when a language model
consumes a data source used in the construction of a benchmark (e.g. Wikipedia used in SQuAD,
professional tests in MMLU). Verbatim memorization of a test set is not the only form of contami-
nation, and our tests should not be used to rule out all forms of test set contamination.

7 CONCLUSION

In this work, we demonstrated that it is possible to construct a statistical test for test set contam-
ination that provides false positive rate guarantees and requires nothing other than the ability to
compute log probabilities. We construct new, sharding based tests for contamination and demon-
strate their power on both carefully constructed canaries as well as publically available language
models. We view these tests as a first step towards building powerful third party tests of contamina-
tion, and we believe it is an exciting open problem to build tests that are capable of reliably detecting
contamination at the single-duplication-count regime.
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