Supplementary materials for ‘“Federated Expectation
Maximization with heterogeneity mitigation and
variance reduction”

This supplementary material is organized as follows. Appendix A extends the results obtained in
Theorem 1 to the Partial Participation regime. Appendix B contains additional details on compres-
sion mechanisms satisfying A6, including an example of admissible quantization operator. Ap-
pendix C contains the pseudo-code for algorithm FedEM in the full participation regime case, and
the proof of Theorem 1 — including necessary technical lemmas. Appendix D contains details con-
cerning the extension to partial participation of the workers and the proof of Theorem 4. Appendix E
is devoted to the proof of Theorem 3 concerning the convergence of VR-FedEM and necessary tech-
nical results; it also contains a discussion on the complexity of VR-FedEM in terms of conditional
expectations evaluations. Finally, Appendix F contains additional details about the latent variable
models used in the numerical section, as well as the pseudo code for FedMissEM.

Note that, in order to make our numerical results reproducible, code is also provided as supplemen-
tary material.

Notations For two vectors a,b € R?, (a,b) is the Euclidean standard scalar product, and || - ||
denotes the associated norm. For r > 1, ||a||,- is the ¢,.-norm of a vector a. The Hadamard product
a © b denotes the entrywise product of the two vectors a,b. By convention, vectors are column-
vectors. For a matrix A, AT denotes its transpose and ||A||r is its Frobenius norm. For a positive
integer n, set [n]* := {1,--- ,n} and [n] := {0,--- ,n}. The set of non-negative integers (resp.
positive) is denoted by N (resp. N*). The minimum (resp. maximum) of two real numbers a, b is
denoted by a A b (resp. a V b). We will use the Bachmann-Landau notation a(z) = O(b(z)) to
characterize an upper bound of the growth rate of a(x) as being b(z).

We denote by /C,, (11, X) the Gaussian distribution in RP, with expectation g and covariance matrix X.

A Results for FedEM with partial participation and compression.

In this paragraph, we extend the results of Theorem 1 to the Partial Participation (PP) regime, in
which only a fraction of the workers participate to the training at each step of the learning process.
This is a key feature in the FL framework, as individuals may not always be available or willing to
participate [27]. To analyze the convergence in this situation, we make the following assumption.

A9. Forall k € [kmax — 1], Ag41 = {3 € [n]* s.t. Byy1, = 1} where the random variables
By, fori € [n]* and k € [kmax — 1] are independent Bernoulli random variables with success
probability p € (0,1).

This assumption is standard in the FL literature [33, 35, 31], and can easily be extended to worker
dependent probabilities of participation [16].

Usage of the control variates (V} ;);c[,,- with PP. We have V,, = n Y Vi forallk > 0
(see Proposition 12) even when the workers are not all active at iteration #k. A noteworthy point is
that, upon receiving Quant(A41 ;) for all i € A1, the central server computes

Hyi1 = Vi + (np)~* Z Quant(Aj41 ;)

iGAk+1

and not

(np)™" D (Vi + Quant(Agy1)) -

1€ AR41

Though the later solution may appear more natural, it would actually not only require to store all
values V}, ; for i € [n]* on the central server, but also impair convergence in the heterogeneous set-
ting. Indeed, even in the uncompressed regime, in which Quant(Ay41 ;) = Ag41,4, our algorithm
differs from a naive implementation of a distributed EM: FedEM computes

Hiiq = Vi — (np)~* Z Vii + (np) ™! Z (Sk+1,i - §k)

ie-Ak+1 iE.Ak+1
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while a naive distributed EM would compute
R = (p) " > (Sk+1,i - gk) :
iG.Ak-+1
Such an update H ,?Ellw is expected not to be robust to data heterogeneity as proved in [31] for the
Stochastic Gradient algorithm in the FL setting.

The following theorem extends Theorem 1 to the partial participation regime. Its proof is in Ap-
pendix D.

Theorem 4. Assume Al to A9 and set L? := n='>"" L? 0% :=n"'3>" o2 Let {Sik €
[kmax|} be given by algorithm 1, run with o := (1 + w) ™! and v = v € (0, Ymax), Where
Umin p\/’ﬁ
Ymax = .
2Ly, 2v2L(1 +w)y/w+ (1 —p)(1 +w)/p

Denote by K the uniform random variable on [kuyax — 1]. Then, taking Vo ; 1= hi(§0)f0ri € [n]*,
we get

Urmin (1 - vLW) E [InSi)l?] <

W(Sp) — min W
( ((;)k )+7LW1+5(¢U+(1;p)(1+w)/p)0,2.

min

The above expressions can be simplified upon noting that w + (1 — p)(1 + w)/p < (1 + w)/p.
When p = 1, Theorem 1 and Theorem 4 coincide. More generally, Theorem 4 highlights that partial
participation impacts both the limiting variance (which increases by a factor proportional to p~—1)
and the maximal learning rate.

B An example of quantization mechanisms: the block-p-quantization

In this section, we recall the definition of a common lossy data compression mechanism in FL
(see, e.g. [28]), called block-p-quantization, and demonstrate that such quantizations satisfy the
assumptions required to derive our theoretical results.

Block-p-quantization. Let x € R9. Choose {g¢, ¢ € [m]*} a sequence of positive integers such
that >~," , gs = ¢; and p € N*. For z € RY, we define the block partition

(1)
z= |- |, zg €R¥forall £ € [m]*.
Z(m)

For all £ € [m]*, set

R sign(z(g),1) Ug e .
X = Izl e Uy "7 B ( 2. ) L a3
sign(z(g),q,) Ut,q lz ) llp
where z(¢) = (2(g),1, ,$(g)7q[)T € R% and B(u) denotes the Bernoulli random variable with
success probability u. The block-p-quantization operator Quant : R? — RY is defined by
X
Quant(z):= | --- | . (14)
X(m)

The following Lemma ensures the block-p-quantization operator Quant satisfies the assumption A
6 on the compression mechanism required by Theorem 1, Theorem 4 and Theorem 3.
Lemma 5. Let p € N* and {q;,¢ € [m]*} be positive integers such that y_," , q¢ = q. For any

z € RY, we have
m

E[Quant(z)] =z,  E[|Quant(z) —|*] = (lz@lhllz@ly = lz@ll?) |
=1
where Quant is the block-p-quantization operator defined in (13) and (14). Thus, A6 holds. In
particular, for p = 2, we may take w = maxycm]- (Vae —1).
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Proof. We start by noticing that, for all £ € [m]*, (Quant(z)) ) = X(Z). Furthermore,

| ()11

A sign(zg),1) E [Up1] sign(zg),1) Tz (o) T
E[Xo|=leol | - |o| =" | =lagl | - o -
s1gn(x(g)’qk) E [Ug,qé s1gn(96(e),q@) ‘l"r(l)»Tlel
T(e)llp
sign(z ()1 |z 6).1] T
. O T | Tros
Sign(@(e).q.) 1Z(0).g0 () g0

which concludes the proof of the first statement. To prove the second statement, we write

m m qe

IQuant(z) — x> = > X0y — 20> = D> lz@l2 > (Uej — E[Ur,])°

=1 =1 j=1

Since Uy, is a Bernouilli random variable with parameter |y ;|/ || ) ||, it holds that

o w2l _ @l Uzells = 2@ 40)
E {(UZ,J E[UK’J]) } = HI(Z)”]% :

Hence

E [|Quant(z) — %] ZZ{WM lze)llp — l2e),41) }

/=1 j=1
= (lzlhllzgly = lze@ll?)
=1

which proves the second statement. In the particular case where p = 2, using the fact that ||z 4[| <

Vel
E (|| Quant(z) - 2] < " (v — Dllew|” < maxeepm- (va - 1) [zl
(=1
which concludes the proof. O

C Convergence analysis of FedEM

This section contains all the elements to derive the convergence analysis of FedEM developed in
Section 2 in the full participation regime. The analysis is organized as follows. First, Appendix C.1
gives the pseudo code of the FedEM algorithm; Appendix C.2 introduces rigorous definitions for
filtrations and a technical Lemma, and Appendix C.3 presents preliminary results. Then, the proof
of Theorem 1 is given in Appendix C.4 and the proof of Corollary 2 is in Appendix C.5.

The assumptions Al to A3 are assumed throughout this section.
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C.1 Pseudo code of the FedEM algorithm

For the sake of completeness of the supplementary material, we start by recalling the pseudo code
which defines the FedEM sequence in the full participation regime. It is given in algorithm 3 below.

Algorithm 3: FedEM

Data: k. € N*;fori € [n]*, Vo, € RY; §0 € RY; a positive sequence
{7k+17k S [kmax _A”}’ a>0
Result: The sequence: {Sk, k € [kmax]}
Set Vo=n"1Y" Vo
fork=0,...,knax — 1 do
fori=1,...,ndo
(worker #i) ;
Sample Sy 41,4, an approximation of 5; o T(S) ;
Set Apt1,i =Skt1,0 — Viei — Sk s
Set Vit1,s = Vi,i + o Quant(Ay41,). Send Quant(Ajy1.;) to the central server ;
(the central server) ;
Compute Hy1 = Vi +n 1> Quant(Aji1y)
Set Sg41 = Sk + Vip1Hpy1 3
Set Viy1 = Vi +an ' Y0 Quant(Agi1;)
Send Sy and T(Sj41) to the n workers

C.2 Notations and technical lemma

In this section, we start by introducing the appropriate filtrations employed later on to define condi-
tional expectations. Then, we present a technical lemma used in the main proof of Theorem 1 (see
Appendix C.4).

Notations. For any random variable U, we denote by o (U ) the sigma-algebra generated by U. For
n sigma-algebras {Fy, k € [n]*}, we denote by \/;/_, F the sigma-algebra generated by {Fy, k €
[n]*}.

Definition of filtrations. Let us define the following filtrations. For any ¢ € [n]*, we set
N n
.7:071‘ = ]:8:2 =0 (So; V(m') and fo = \/ ‘FO,i .
i=1
Then, for all £ > 0,

(1) Fryr/2, = -7:;11- Vo (Sk1,i),

(i) Fry1,i := Fr1/2, Vo (Quant(Agq1)),
(iii) Fk+1 = \/?:1 -Fk—',-l,ia
(V) Fifiri = Frrri V Frgr

Note that, with these notations, for k¥ > 0 and ¢ € [n]*, the random variables of the FedEM sequence
defined in Algorithm 3 belong to the filtrations defined above as follows:

() S € Fpo Sk € Fa

(1) Skr1,i5 Aky1,i € Frayi/2,is
(i) Vit1,i € Frti,

(V) Spr1s Her, Virr € Fopa.

Note also that we have the following inclusions for filtrations: Fj, C ]-'k,*’ i C Frgay2,i C Fry1s C
Fryq forall i € [n]*.
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Elementary lemma. In the main proof of Theorem 1, we use the following elementary lemma.
Lemma 6. For any x,y € R? and for any o € R, one has:

loz + (1 = a)yll* = allz]* + 1 = )lyl* — a1 = a)[lz — y]|*.

Proof. The LHS is equal to
a?llz]® + (1 = a)?[lyl* + 20(1 — @) (2, y) -
The RHS is equal to
allz]* + (1 = a)llyl* — al =) (2l + Iyl* = 2 (z,y)) -

The proof is concluded upon noting that « — (1 —a) = a? and (1 —a) —a(l—a) = (1—a)?. O

C.3 Preliminary results

In this section, we gather preliminary results on the control of the bias and variance of random vari-
ables of interest, which will be used in the main proof of Theorem 1. Namely, Proposition 8 controls
the random field Hj 1, Proposition 10 controls the local increments Ay ; ; and Proposition 11
controls the memory term V} ;.

C.3.1 Results on the memory terms V.

Proposition 7 shows that, even if the central server only receives the variation a‘l(VkH,i — Vi)
from each local worker #i, it is able to compute 1~ Z;L:l Vi+1,; as soon as the quantity Vp is
correctly initialized.

Proposition 7. For any k € [knax|, we have
k — n v k)i -

Proof. The proof is by induction on k. When k = 0, the property holds true by Line 1 in algorithm 3.
Assume that the property holds for £ < k;, — 2. Then by definition of Vj41 and by the induction
assumption:

n

1 & 1
Vi1 = Vi + Ozﬁ Z Quant(A;H_lﬂ;) = E Z (Vk,i + OAQuant(A]H_L,;))

i=1 i=1

1 n
= - E Vi+1,i -
N4

This concludes the induction. O

C.3.2 Results on the random field Hy, .

We compute in Proposition 8§ the conditional expectation of Hy; with respect to the appropriate
filtration F}, defined in Appendix C.2, as well as an upper bound on its variance. These results
are combined in an upper bound on the conditional expectation of the square norm | Hy1]/? in
Corollary 9.

Proposition 8 shows that the stochastic field Hj; is a (conditionally) unbiased estimator of h(gk)
In the case of no compression (i.e. w = 0), the conditional variance of Hj 1 is 02 /n where o is
the mean variance of the approximations Sy ; over the n workers (see A7); when sup; cri2 < 00,
the variance is inversely proportional to the number of workers n.

Proposition 8. Assume A6 and A7 and set 6? :=n~' Y " | o2. Forany k >0,

E[Hyt1|Fi] = h(Sy) , (15)

1< 2
E [||Hiy1 — B [Hga | Fi] 12| Fr] < % (n Y E [||Ak+1,i||2|fk]> + % : (16)
=1
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Proof. Let k > 0. A6 guarantees

E ZQuant(A;HLi) fk+1/2,i] = ZE [Quant (Agi1,i) | Frot1/2,i ]
i=1 =1
= {Skt1.i — Vii — Sk} - (17)
i=1

Note also that, by A7, E | Sis14| 7, | =50 T(Sk), and that Vi, € Fiand Fy. € Ff, € Fy1n,

(see Appendix C.2). Combined with (17) and using that n~* Z?:l Vi,i = Vi (see Proposition 7),
this yields

1 & ~ ~ ~
+Ve== 5 0T(S)— Sk =h(5) .
k " S; O (Sk) Sk (Sk)

i=1

E[Hypi1|Fr] =E lnl > Quant(Agp1)|Fi
1=1

We now prove the second statement, and start by writing

. 1 <& 1 <& ~ A
Hyyq — h(Sk) = o Z Quant(Ak+17i) + Vi — > Zgi o T(Sk) + Sk

i=1 =1

1 n
= H Z {Quant(Ak+1,i) —E [Quant(Ak+17i)’]:k+1/2’i] }
i=1

1 « ~
+ - ;{SMJJ —50T(Sk)},

where we applied (17) to obtain the last equality. Using the fact that Sy 1 ; —S; © T(gk) € Frt1/2,i
and since, conditionally to Fy, the workers are independent we have

~ 1 &
E [l Hisr = h(SOI2Fe] = = D E [l Quant(Ars1) — E [Quant(Aer1,)|Fosiyai] 2|7
i=1

+ % Zn:E [||5k+1,z‘ —Sio T(g’“)"Q’]:k] '

i=1

The second terme in the RHS is upped bounded by n~to? (see A7). For the first term, using A6 and
since Apy1,i € Fit1/2,i> forany i € [n]* we have

E [|Quant(Ags1,:) — E [Quant (Api1,i) | Fri1y2,i ] 12| Frsiyz,]
=E [|Quant(Apy1,0)[1*| Frgryz,i] — 1Akl
< U+ ) Aksrill® = 1Ak41l* = wlApgrll®
which concludes the proof upon conditioning with respect to Fy. O

Corollary 9 (of Proposition 8).

~ 1 < 2
E [[[He1]*|Fe] < [h(SK)I1? +% (n ZE [1Ak11l 2‘-&}) + % .

i=1

C.3.3 Results on the local increments Ay ;.

We compute in Proposition 10 an upper bound on the second conditional moment of Ay ;, with
respect to the appropriate filtration 7, (see Appendix C.2).

Proposition 10. Assume A7. For any i € [n]* and k € [kmax — 1],

E [[| A1l Fr] < Vii — ha(Se)|? + 07 .
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Proof. Leti € [n]* and k € [kmax — 1]. By A7, E |:Sk+1’7; - §k‘]-",j_i} = hi(gk); in addition,
S, € Fu, Vii € f;i and Fj, C fljl Hence, we get

E |:|‘Ak+1,i||2"/—-::i:| =k [

= [Ihi(Sk) = Viall® + E [ISks16 = S — ha(SlI2| 7

|Sk+1,z‘ - Vk,z‘ - SkHQ‘}—l:i}

= Ihi(S) = Viall® + B [ISks1i — 5i 0 T(Si) %] 7
a7 q 2 2
< Ihi(Sk) = Vil + o7 (18)

The proof is concluded upon noting that Fj, C ]-“,j'i, S) € Fr and Vi € Fg. O

C.3.4 Results on the memory terms V, ;.

Our final preliminary result is to compute in Proposition 11 an upper bound to control the condi-
tional variance of the local memory terms V}, ; with respect to the appropriate filtration Fj, (see
Appendix C.2).

Proposition 11. Assume A5, A6 and A7; set L* :=n~' 3"  L? and o* :=n~' 3" | o2. Forany
k >0, set
1 5
G = = Vi i hz S 2 .
= ; 1V, (i)l

Forany k € [kmax — 1] and o« € (0, (1/(1 + w))], it holds that

e L?w L? 4
B(GunlFil < (1- 5+ 38002 ) Gt 2t G2

L?’1+w
2 2 2 - ") g2,
+ <04+’Yk+1a " )U

Proof. We start by computing an upper bound for the local conditional expectations
E [HVk—H,i - hi(§k+1)||2’}"k], i € [n]* and then derive the result of Proposition 11 by averag-
ing over the n local workers.

Let i € [n]*; from Lemma 6, we have for any s € R?

IE [Vt — 8| Frrayoi || = (1 = @) (Vi — 5) + @ (Skp1i — Sk — 9)|1?

= (1= ) [Vii — sl + al|Skr1i — Sk — slI* — a(1 = @)l| Ay -

On the other hand,
Wiens — B [ieralFera] I = 0 | Quant (B2, — B [ Quant(Ars.0| Fooaoc] |
and by A6 (see the proof of Proposition 8 for the same computation)
E [||Vk+1,i —E [Vagr,i| Frsr/2.) HQ“Fk-i-l/Q,i] < Pw|Agyall®
Hence
E (Vi1 = sl Fusrji] S E[|Virri =5 =B [ Ve = s|Fesay] |’2‘fk+1/27i}
+E “\E (Vi1 = 8| Frv/2,] Hg‘fkﬂ/w}

< (1— ) Vi = sl + allStsrs = i — s[> + @ (@(1 +w) = 1) Al (19)
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For any 3 > 0, using that ||a + b]|? < (14 8?)||a|* + (1 + 872)|b|%, we have

E [||Vk+1,i - hi(§k+1)||2‘fk]
< (U 7 [ Vi — hi(BOI | ] + (14 B9E [ Ihi(B0) — bS] 7 |

b
ot

< (1487 [E [Ves1s = hi(SOIP | Firr/2.4]

Catp )((1 ~ o) Vs — (Bl

Fi] + (14 B3 LR Bl i |21

+ aB[[|Skr1,i — Sk — hi(Si)1P1F] + e (a(l +w) — 1) E [|| Akl Fr] >
+ (1+ %) LiviE [||Hk+1||2|]:k] )
where we have used (19) with s = h,»(gk) € Fi C Fig1/2,i- Choose 3 > 0 such that

’ 1 ifa>2/3

which implies that (1 + 372)(1 — a) < 1 — «/2; note also that 1 < 1+ 372 < 2. By Corollary 9,
we have (remember that a(1 + w) — 1 < 0)

E [Ves1 = hitSisn) 2|7 ] < (1= 5) Ve = hi(S0)I12

+ 20K [Hskﬂ,i —5 0 T(S)|I? (fk} +a(a(l+w) = DE [ Acprill®|Fr]

Lz 7k+1 (:2 Z E [HAk:Jrl,i ?
i=1

RACENTERA
n
Since a(1 + w) — 1 < 0, using A7 and finally Proposition 10, we get:
E (Vi1 = hiSien) 1217 < (1 - 7) Ve = hi(S)|I? + 2a0?

2. -
T R Qleh Si) = Viall® + 2921~ (S0P

L2 1+w
2 e - T 2
+ k+10& n

Overall, by averaging the previous inequality over all workers, we get:

2

a s L*w 5 L%
E[Gri1|Fi] < (1 —5 + 2“Yk+1an> Gk + 2%+1E||h(5k)||

1o (ataz, LLEe) e
« — | O .
'Yk-',-l a n

C.4 Proof of Theorem 1

Equipped with the necessary results, we now provide the main proof of Theorem 1. We proceed
in three steps, as follows. First, for k¥ > 1, we compute an upper bound on the average decrement

E [W(§k+1) F
the maximal value of the learning rate. Third and finally, we deduce the result of Theorem 1 by

computing the expectation w.r.t. a randomly chosen termination time K in [kmax — 1]; in this step,
we restrict the computations to the case the step sizes are constant (7,41 = y for any & > 0).

— W(§ &) of the Lyapunov function W (defined in A4). Second, we introduce
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Step 1: Upper bound on the decrement. Let £ > 0; from A4, we have
W(Sii) < WS + (VW) St = 8i) + 28 S — Bi?
S W)~ wer (BEIE), Hen ) + a2 [l 0
Since §k € F}, by Proposition 8 and A4 we have
E [(BB (S, Hiein )| Fe] = (BEINE)hE0) 2 vainlhB0I @D
Hence, combining (20) and (21), we have
E [W(Bka)| 7| < W) — tesrtmiall WS 470 SV [[[Haa || i ]

< W(Sk) = Ye1Vmin DS + 9200 T E [ Hir = B [Hipa| Fe] 11| Fi ] + 30057 W Ih(Si)]?

~ L+ ~ Ly;
< W(Sk) = Vk41Vmin <1 — Vk+1 vW ) ||h(5k)||2 +’Y/3+1 WE [||Hk+1 E[Hyy1|Fr] ||2’]:k] :

2 min 2
Applying Proposition 8, we obtain that

~ ~ L ~
E [W(Sk)| 7] < WEK) = vos10min (1 — 5 ) (S

L.
2 2 Lw o
+7k+1 9 n( E [ Akt ‘ﬂc}) T et15,7 (22)

Finally, using Proposition 10 and (22), we get:

N N L. N
BIW (St 5] < WED ~ wsr0mn (10015, ) WSl

L L
+ Y ) nGk'i‘ 15, W1+ w)o? (23)

where

Z [Vii — hi(Sk)|1? -

Step 2: Maximal learning rate +;,,; when w # 0. From Proposition 11, for any non-increasing
positive sequence {7V, k € [kmax — 1]} such that

OZQ’IL

’Yk—i-l = 8L2
and for any positive sequence {Cj, k € [kmax — 1]}, it holds

«
Cr1E [Grs1|Fi] < Cria (1 - Z) Gk

2 ~ L’1+w
+ Cker,fHaLQHh(Sk)HQ +2Ck 41 (a +7,3+1an> o?. (24

Combining equations (23) and (24), we thus have

E[W (Sk41)|Fi] + Cr1E [Grrr| Fi] < W(Sk) + CiGr

L Cy, 2
et (1—%1 w o Ceny (2 )nh( Ak

2rUmin Umin

Ly, w
+ <713+1 5 Cr +Crg1 — Cry1— ) Gy

14 w) [ Ly L?
i ot 2 (B0 D)ot
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We choose the sequence {C}, } as follows:

92L w
Cy =i W=,
a n
the sequence satisfies Ciy1 < Cj (since Vg1 < %) and fy,%HLWw/(Qn) < Cgi1a/4. By

convention, Yo € [y1, +00). Therefore

2Ly, QL w
EW (5k+1)|]:k] + 7k+1 o E[Gry1]Fr] < W(Sk) L Gk (25)
L o~
et (1 i {14802, L?}) TYCATENNED
2 W (1+w) 2 I;ﬂ 2
P LS {1 Rt (1 s ) o @7)

Step 3: Computing the expectation. Let us apply the expectations, sum from £k = 0 to k =
kmax — 1, and divide by k.. This yields

y o Fmax= Ly
min
3 > (1 = Vkt1

2v
max k):() min

{14820 207} ) IO

_ 2L w ~ 2L, w
< ke { W(B0) + 5820 265 - B [WiE.)] - 2, 220 2 G0 1|
a n
w 1 Pmax 1 (1+w) 9 L*w 9
+4ngm kZ% ’}/k-‘rl 1+ Sw 1“!_7]{;4’_18?% g .

We now focus on the case when ;1 = < for any £ > 0. Denote by K a uniform random variable
on [kmax — 1], independent of the path {S., k € [ max) }- Since 72 < a?n/(8L%w), we have

1+ 87 L2 <2.
This yields

Ly -
oy (1975 ) B (S0

—~ 2L w ~ 2L, w
< kb { W(B0) + 2220 26, — B [WiE,..)] - 224 28 6.1}
a n a n

1+
+4LW°;72{1+(40J“)}02. (28)

Note that 4(1 + (1 + w)/(4w)) = (5w + 1) /w.

Step 4. Conclusion (when w # 0). By choosing V; ; = h; for any 7 € [n]*, we have Gy = 0. The
roots of v = (1 — 7 Lyi;/Umin) are 0 and vpin /Ly, and its maximum is reached at vmin /(2L ):
this function is increasing on (0, Umin/ (2L, )]. We therefore choose v € (0, Ymax (v)] where

. Umin « \/ﬁ
max (@) 1= min ; -—
Timax (@) <2LW 2\/§L\@>
Finally, since o € (0,1/(1 4 w)], we choose o« = 1/(1 4 w). This yields

. (Umin 1 \/ﬁ >
Ymax ‘= 1N ) .
2Ly, 2v/2L Vw(1 +w)

Case w = 0. From (23), applying the expectation we have

Vk+1Vmin (1 ~ Vk+1 iw ) E [Hh(§k)||2} <E {W(gk)] —-E {W(S\k-i-l)] +7,3+1L;V7;2

2 min

We now sum from k& = 0 to k = kpax — 1 and then divide by ky,ax. In the case ;1 = 7, we have

Vtimin (1 Y ) E |[Ih(Si)[12] < ke (B [W(S0)| = min W) + vQLVQ'V—f G

min
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Remark on the maximal learning rate. The condition y;41 < ; NI used twice in the

proof:

1. To ensure that (1 — 7k+1257"7 {1 + 87,%+1ﬁ[/2}) > (1 — Yra1 UL—W) in order to obtain
Equation (28).

2. To ensure that the process (G),>0 is “pseudo-contractive” (i.e., satisfies a recursion of the form
U1 < pug + v, with p < 1) in Proposition 11.

A more detailed analysis can get rid of this condition (and thus the dependency v = Oy,_; o0 (w™5/2),
as we recall that o' oc,,_, o, w) for the first point. Indeed, we ultimately only require

Lw’ 2 W o2 1
— -+ - >
(1 Rz 2v {1 Bic+1 oz2nL } -2 (30)

min

to conclude the proof. This is for example satisfied if 7 1 % < 1 and 8v},, 25TW 412 < 1.

This approach results in a better asymptotic dependency of the maximal learning rate w.r.t. w to
obtain Equation (30): v = O, _so0(w™t). However, the condition v 1 < ﬁ% seems to be
necessary to obtain the second point and Proposition 11. The possibility of providing a similar result

to Proposition 11 without the w—3/2 dependency, is an interesting open problem.

C.5 Proof of Corollary 2

In (8), the RHS is of the form A/~ + B for some positive constants A, B: we have A/y + vB >
2v/ AB with equality reached with v, := \/A/B. Hence, we set

1/2

1 (n (W(§O) — minW) 1
T\ T Ly sw) N

If v+ < Ymax, then let us apply (8) with v = +, which yields a RHS given by 24/ A/B i.e.

(1+5w))1/2 1
n \% kmax .

2% ((W(§0) - minW) Ly,

If ¥4 > Ymax, We write

A A 42 B A A A2 A
+ B'Ymax < + Ymax — + erde < ) )
Ymax “Ymax “Ymax A “Ymax Ymax Vi “Ymax

and the RHS is upper bounded by

W(go) — min W

'Ymax kmax

2

Finally, in the LHS of (8), we have

Umin Ly 1

Ly Ly
1_77W21_'7max W 21

Umin Umin 2LW Umin 2

This concludes the proof.

D Partial Participation case

In this section, we generalize the result of Theorem 1 to the partial participation case. This extra
scheme could be incorporated into the main proof, but we choose to present it separately to improve
the readability of the main proof in Appendix C. We first provide an equivalent description of algo-
rithm 1 in Appendix D.1; algorithm 4 will be used throughout this section. Then, we introduce a
new family of filtrations. In Appendix D.3, we first establish preliminary results and then give the
proof of Theorem 4 in Appendix D.4.

The assumptions Al to A3 hold throughout this section.
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D.1 An equivalent algorithm

In this Section, we describe an equivalent algorithm, that outputs the same result as Algorithm 1,

and for which the analysis is conducted.

Algorithm 4: FedEM with partial participation

Data: k.« € N*;fori € [n]*, Vi, € R?; Sy € RY; a positive sequence
{1,k € [kmax — 1]}; @ > Q;p € (0,1).

Result: The FedEM-PP sequence: {Sg, &k € [kmax]}

Set Vy = n~t ZZI:l VO,,' ;

fork=0,...,knax — 1 do

fori=1,...,ndo

(worker #1);

Sample Sy 1 ;, an approximation of s; o T(§k) ;

Set Apy1i = Skt1,6 — Vi — Sk

Sample a Bernoulli r.v. By ; with success probability p ;

Set Vk+1,i = Vk,i + aBk+17,;Quant(Ak+17,;). ;

Send By, y1,;Quant(Ay41 ;) to the central server ;

(the central server) ;

Set Hy1 = Vi + (np) ™" 221 By, iQuant(Agi ) 5
Set Sk1 = Sk + Vetr1Hp1 5

Set Viy1 = Vi +an ' 30| Biy1,iQuant(Agiq,) 3
Send §k+1 and T(§k+1) to the n workers

D.2 Notations

Let us introduce a new sequence of filtrations. For any ¢ € [n]*, we set
n

.7:071' = ]:6; =0 (So; VQJ;) and ]:0 = \/ J:O,i .
i=1

Then, for all k > 0,

(1) Fryay3, = -7:;;2 V 0 (Sk+1,i)
(i) Frross,i = Fry1/s,i Vo (Quant(Agiq)),
(i) Fry1,i = Fryo/3, V0 (Bryri)s
(V) Fr1 = Vieq Frtiis
) ]:1;:1,%‘ = Frg1,i V Fhg1-

Note that, with these notations, for k > 0 and ¢ € [n]*, the random variables of the FedEM sequence

defined in algorithm 4 belong to the filtrations defined above as follows:

i) §k S ]:]:r’l-, §k € F,

(1) Skt1,i5 Akt1,i € Frg1/3.45
(i) Vit1,i € Frt1,

(V) Sk+1, Hig1, Vir1 € Frg1.

Note also that we have the following inclusions for filtrations: Fj, C ]-",j'i C Frg1/3,6 C Fryaysz,i C

Fr1,i C Figa foralli € [n]*.

D.3 Preliminary results

In this section, we extend Proposition 7, Proposition 8 (that controls the random field Hy1) and
Proposition 11 (that controls the memory term V}, ;). We start by verifying the simple following
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proposition, that ensures that the global variable V}, corresponds to the mean of the local control

variables (Vi i)icin)+ -

Proposition 12. For any k € [kmax),

1 n
V’“:H;Vk’i'

Proof. By definition of Vj, the property holds true when & = 0. Assume this holds true for k& €

[kmax — 1]. We write

a n
Vier = Vi + £ 57 Bryr s Quant(Apq 5
1 e+ - Z 1,6 Quant(Agi1,)

i=1

= %Z Viei + % Z (Vg1 — Vi)
i=1 i=1

1 n

- ; Vi1, -

This concludes the induction.

O

We now prove that the unbiased character of Hj, is preserved, and we provide a new control on
its second order moment. Proposition 13 is Proposition 8 with w replaced with w,. When p = 1,

Proposition 13 and Proposition 8 are the same.

Proposition 13. Assume A6, A7 and A9. Set 0% :=n=1 3" o2 Forany k € [kmax —

E [Hys1|Fi]) = h(Sk) ,

and
E [[|Hepr — B [Heqa | F] 12 F5] < ili E [| Akl Fx] +Oj
+ + = nn v +1,% n )
where 1
wy = —(1+w)+w
p ’ — )

Proof. Letk € [kmax — 1]. By definition, we have

1 n
Hy1 = Vi + o > Big1,iQuant(Ayy1;)
=1

1], we have

€1y

where the Bernoulli random variables {By11,% € [n]*} are independent with the same success
probability p. By definition of the filtrations, we have By 11 € Fry1,4, Quant(Axi15) € Frpo/3,i
Vi, € Fi and Ak—i—l,i S ]:kJrl/S,i; and the inclusions Fj, C ]:k+1/3,i C ]:k+2/3,i C .7:]@.’_171‘.

Therefore,

1 n
E[Hyy1|Fe] = Vi + TTp EZ:E [E [Bk+1,i|}—k+2/3,i} Quant(AkJrl,i)’}—k]

1< 1<
=Vi + - Z]E [E [Quant(Agi1,4)| Frs1ys,i ]| Fe] = Vi + -~ ZE [Apy1,ilFr]

=1 i=1

=Vi+ %Z (E [Skt1,ilFr] — Sy — Vk,i)

== hi(Sk) =h(Sk) ,

i=1
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where we used E [ By 1,i|Fita/3,:| = p (see A9), A6, A7 and Proposition 12. This concludes the
proof of the first statement of Proposition 13. For the second point, we write

~ 1
Hy+1 = h(Sk) = ~ > Sk

7]
+ Quant(Agi1,;) — E [Quant(Ak+1,i)|Fk+1/3yi}
1
+ » (Bis1,i — E [ Bra1i| Frsoysi|) Quant(Agy1s) ;

Ekt1,4 = Sk41, — E [Skﬂ,i

note indeed that hi(:S’\k) = E [Sk+“ } — Sk, [Quant(Ak+17i)|}"k+1/3,i] = Apt1,s

Apt1i = Vi + Skt1,i — Sk Vi = n_lzizl Visand p = E [Bk+1,i|.7:k+2/3,i] Write
Hyq —h(S) = % Z?=1 ZEk+1,i- Since the workers are independent, we have

E [ |Hx1 — hBOI|7] = % SOE [0 002 7] -
1=1

Fix i € [n|*. Eg41,; is the sum of three terms 23:1 Ek+1,5,¢ and observe that for any ¢ # ¢/ we
have

E[(Ekt1,6 Errrie) | Fu] =0
Therefore E [ [|Zx41i[?|Fe | = ijl E [||Zk41,,¢/1%| Fr |- We have by A7

E |:||Sk+1,i -E [Sk+1,i ]-‘]:-,Z} ”2’}—4 <o?:

by A6,
E [||Quant(Ak.+1,i) —E [Quant(Ak+1,,-)|fk+1/37i] ||2|]:k] S wE [HAIH-LZHZP:}?] 3
and by A6 and A9

1
E {pQ (Bis1i — E [ Busri| Fryaysi]) ||Quant(Ak+1,i)||2‘fk]

1 _
< TPE [ Quant(Ax1,0)]%|Fi ]

].

This concludes the proof. O

—Pp
< T(ler)]E [|

Proposition 14. Assume A7 and set 0 :=n~1 3" | 02. Forany k € [kmax — 1],
1 n
- D B [|Aksill?|F] < Z [Viei — s (Sp)|I? + o2
i=1

The proof is on the same lines as the proof of Proposition 10 and is omitted.

Proposition 15 extends Proposition 11: the result is similar but with « replaced with ap and w by
Wp.

Proposition 15. Assume A5, A6, A7 and A9; set L? := n=' Y"1 | L? and 0 := n~' Y | o2
Choose o € (0,1/(1 4+ w)]. For any k > 0, define
Z”sz i(Sk)lI?

We have, for any k € [kmnax — 1]
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ap L?w
E[Gig1|Fi] < <1 - + 29— ap > G+ 27k+1 ”h(Sk)H2

L? w
+2(ap+ =2 o?
(Oép ’Yk+1 ap n > g,

where wy, is defined in Proposition 13.

Proof. Leti € [n]*. We follow the same line of the proof as Proposition 11: for any § > 0, using
that [|a + b[|? < (1 + %)]|al|* + (1 + 372)||b||?, we have

E [Visi = hi(Sern)IP| 7

< (U4 B7E [ Ve = (Sl | | + (0 + B2E [[Ihi(Si) = hi(Si) 2] 5

< (1457 [IVesns — mBOIP|Fi] + (4 B [ Hxil?| 7]
We then provide a control for E [||Vk+17i — hy(Sk) Hz‘fk} . Recall that:

Viet1,s = Vi + @ By, Quant(Agi1,).
We write f(Byy1,6) = f(1)1g,,,,=1+f(0)1p,,, ,—o for any measurable positive function f; and
Fri2/3:] = p (see A9), Quant(Aji1,:), Sk, Viri € Fretays,i - We get

thenuse E [1p,,, ,
E [[Visni = hi(S0IP1A
=pE {HVk,i — hi(Sk) — aQuan‘B(AkH,i)HQ‘ﬂ} + (1= p)IVii — hi(S)|1?
(19)

2 p(1 = ) Ves = hi(S)I> + apE [ Sks1s — Sk — ha(Se) | 7]
+ap(a(l+w) = DE [[Agsrill?|[Fe] + 1 = p) [[Vii — hi(Se)I?

= (1—ap) Vi — hi(Si)|

+apE |||Ski1i — Sk — hi(@g)”ﬂﬂc} +oap(a(l+w) = D) E [[[Aggrall®|Fe] -

The end of the proof is identical to the proof of Proposition 11: we choose 8, > 0 such that 8, 2=1
if ap > 2/3 and B, % = 5772 if ap < 2/3. We have

_ ap _
(I—ap)(I+8,7)<1-—,  (A+8)<—, 1<14+5,°<2;

and this yields
E [IVirri = haSern) 2| ] < (1= ) IVis = ha(Si)|1
+2apE [[Sy11,: — 50 TSI Fe | +ap (@l +w) = DE [ Apsr,il| Fe]
L (1 Henl|7]
By definition of the conditional expectation and Proposition 13 we have
E [||His1)?|Fi ] = IE [Hes1|Fe] 1> + E [ Hrt1 — E [Higr | F ] 1?| Fre ]
— [h(Si) 12 + E [IHes1 — h(Si) 2| ] -

Since (a(1 +w) — 1) < 0, using A7 and Proposition 13 again, we get:

o 2 1 1O
E [Grs1|Fr]< (1 - ?p) G + 2apo® + ;pL27£+1E <02 twp ZE [||Ak+1,i|2|fk}> :

=1
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Finally, from Proposition 14,

1 n
- S E [ Akrill?| Fr] < Gr 40>

i=1

This concludes the proof.

D.4 Proof of Theorem 4

Throughout this proof, set
1 —
wp = ( 1+w)4w
P p

Step 1: Upper bound on the decrement. Let k£ > 0. Following the same lines as in the proof of
Theorem 1, we have

E [W(§k+1)’}'k]

N L N L
< W(Sk) = Vk41Vmin (1 — Vk+1 UW ) ”h(Sk)”2 +71%+17WE [||Hk+1 —E [Hk+1|]:k] ||2’}—k] :

2 min

Applying Proposition 13 and Proposition 14, we obtain that

~ ~ Ly
E [W(Sk+1)‘fk] < W(Sk) = Yk+1Vmin (1 ~ Vh+lg, ) Ih(Sk)|>

Ly w Ls;
i G g, (L wp)o® . (32)
where

Z Viei — hi(Si)l1? -

Step 2: Maximal learning rate +;,,; when w # 0. From Proposition 11, for any non-increasing
positive sequence {7V, k € [kmax — 1]} such that

71<:+1 < o p ﬁ
812 w

and for any positive sequence {Cj, k € [kmax — 1]}, it holds

«
OB [Grpa|Fi] < G (1 - i’) G

L’1+w
+Ck+17k+1 L2||h(Sk)H2 +2Ck+1 <Olp+’yk+1 py— p> 0’2 . (33

Combining equations (32) and (33), we thus have

E[W(§k+1)|}—}g] + Cr11E [Gk+1|]:k] < W(:g\k) + CL.Gy

L+ C 2 ~
W ’““%Hﬁ) YN
ap

~ Yk+1Vmin (1 — V41

2 min min
o Ly wp
+ Ter1 7y S T Cr 4+ Ci41 — Ck+1 Gy,
1+w Ly L?
+ {2@p0k+1 + ’}/134_1M <W + QCk+1> } o2 .
n 2 ap
We choose the sequence {C}, } as follows:
9 2Ly,
Ck = “Yk -
ap n
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the sequence satisfies Cxr1 < Cf (since vx41 < &) and vzHLWwp/(Qn) < Cgy1ap/4. By
convention, g € [y1, +00). Therefore

2L, Wp

5 2Ly;
E[W (Sk41)|Fe] + 15— op E [Gry1|Fi] < W(S)) + 73 =W 2P

ap n

w ~
{1+87k+1 y L}) (G

2 Wp (1+wp) L2 Wp 2

+4’}/k+1LWn{ 1+’yk+18 2p2 n g .

Step 3: Computing the expectation. Let us apply the expectations, sum from £k = 0 to k =
kmax — 1, and divide by k.. This yields
kIIlaX71

Umin Z 1 L
Vk+1 Vk+1 %

k=0 min

—Gy,

— Yk+1Umin (1 ’Yk-&-l

{1+87k+1 e L}) YA

o
3
s
%

2 2Ly pr 2L wa
«

IﬂW@mQ}v@uqanmQ}

k -1
w, 1 & (14 wp) L? w
+4wap E ’YkJrl {1+&UZ)<1+WI<:+18 2p2 ;)}02.

n kmax k=0

We now focus on the case when ;41 = <y for any k£ > 0. Denote by K a uniform random variable
on [kmax — 1], independent of the path { S, k € [kmax]}. Since v? < a?p?n/(8L%w,), we have

1+ 842 p L?<2.
a?p’n

< km;x {W(SO) + O

This yields

L; ~
sy (1= 975 ) B [[n(Sic) 1]
_ -~ 2L w ~ 2L, w
b { W(B + 2220 206, B [W(E,,.)] - 222N 2 G, )

w (1+wp)
ALy -2y 14— b 62
+ 4Ly oyl { + i, }0
Note that 4(1 + (1 + wp)/(dwp)) = (bwp + 1) /wy.

Step 4. Conclusion (when w # 0) By choosing V) ; = h; for any ¢ € [n]*, we have Gy = 0. The
roots of v = (1 — 7 Lyi;/Umin) are 0 and vpin /Ly, and its maximum is reached at vpin /(2L ):
this function is increasing on (0, Umin/ (2L, )]. We therefore choose v € (0, Ymax (v)] where

Umin QP Vv
2Ly,  2v2L \/CTP>
Finally, since a € (0,1/(1 + w)], we choose o = 1/(1 + w). This yields
min P Vn )
2Ly, 2v2L \Jop(1 +w) )

st = in

Ymax = min (

E Convergence Analysis of VR-FedEM

The assumptions Al to A3 hold throughout this section. We will use the notations

—m_lzL” , L? = n_lzL? ) (34)
i=1
where L;; is defined in A8, and
1 1 —
()= DSy 0T —a . hls) = o 3 oh(e



E.1 Notations and elementary result

Let us define the following filtrations: for any i € [n]* and ¢ € [kous|*, k € [kmax — 1], set

n
Fioi= ]‘T,o_j =0 (Sinit; Vl,O,i) , Fio:i= \/ Fi,0
i=1
Fiekt1/2, = ]:;k,i Vo (Biktii) Fiat,i = Feper2: Vo (Quant(Ag py1))

n
Fiht1 = \/ Fiha1,is ]:;karM = Fi kot -
i=1
With these notations, for ¢ € [kout]*, k € [kmax — 1] and i € [n]*, Sy pt1 € Fy 1, Stks1i €
Fikr1/2,080 k1,0 € Fokr1/2,0 Vet € Frhrtir Stkr1 € Frrr1 Hygr1 € Fypyr, and
Vik+1 € Frkt1-

E.2 Computed conditional expectations complexity.

In this section, we provide a discussion on the computed conditional expectations complexity Kcg
that was removed from the main text due to spaces constraints.

The number of calls to conditional expectations (i.e., computing S;;) to perform ko, outer steps of
algorithm 2, each composed of ki, inner iterations, with n workers and mini-batches of size b is

nmkout + n(2b)kinkout = nkinkout <;n + 2b> 3

it corresponds to one full pass on the data at the beginning of each outer loop and two batches of
size b on each worker i € [n]*, at each inner iteration. In oder to reach an accuracy €, we need
(kinkouty) ~t = O(e) with the parameter choices in Theorem 3 (esp. on b) we thus have

Keg(e) = O (:; (;j + 2(1%)2)) .

This complexity is minimized with ki, = (1 + w)y/m/2. We then obtain an overall complexity
Kcg of O (ﬁ T ) We stress the following two points:

ey (I+w)

1. Dependency w.r.t. m: the complexity increases as v/m. For n = 1,w = 0, this yields a scaling
equal to /me~1! that corresponds to the optimal Kcg of SPIDER-EM [10];
2. Dependency w.r.t. w. Again, the dependency on w depends on the regime for ~y. In the (worst

case regime), 7 = O(/n/w?/?), we get

Kcr(e) = O <W)

when € — 0 and w,n — 0o, which corresponds to a sublinear increase w.r.t. w (that compares to a
linear increase in the cost of each communication).

E.3 Preliminary results
E.3.1 Results on the minibatch B, ;,;

The proof of the following proposition is given in [10, Lemma 4]. It establishes the bias and the
variance of the sum along the random set of indices B; ;1 conditionally to the past.

Proposition 16. Let B be a minibatch of size b, sampled at random (with or without replacement)
from [m]*. It holds for any i € [n|* and s € RY,

1 —_ 1
Bp 50T = 5 s T);

JjEB
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and for any s, s’ € RY,

H% S {5150 T(s) —5) — (5550 T(s') — )}

JjEB
S o T o)~ (5o T) — ) || < EE - s

E.3.2 Results on the statistics S, ;; ;

Proposition 17 shows that for £ > 1, S; ;41,5 is a biased approximation of m~1! Z;"Zl 545 0 T(§t,k);

and this bias is canceled at the beginning of each outer loop since Sy 1,; = m™! Z;”: 15ij © T(§t70).
Corollary 18 establishes an upper bound for the conditional variance and the mean squared error of

Stkt1,i-
Let us comment the definition of S; 41 ;. Forany ¢ € [kowt|*, k € [k, — 1] and ¢ € [n]*,
1 _ ~ 1 _ ~
Stkt1, = b Z SijoT(Ste)+Yepyii, Yert1,:=Stki— b Z Sij 0 T(Ste—1) -
JEBt kt1,i JEBt kt1,i

It is easily seen that

1 ~ 1 ~
Yipv1s = Logi+ b Z 550 T(Ste—1) — b Z Sij 0 T(Ste—1) ,

JEB ki JEBt kt1,i
and since Y 1 ; =Sy 0, —b™? Zje& LS 0 T(S¢,—1), we have by using Proposition 17,

k

1 B ~
Tt,k i Z Z Sij o St o— 1) B Z Sij © T(St,Zfl)
£=1 JEBt 0, JEBt e41,i
1 m
EZ: St _1 Z sz] oT St —1)

JEBt 1,i
We have E [T 1, ;|Fi.0] = 0 but conditionally to the past ]-':’kal’i, the variable Y , ; is not centered.
Proposition 17. For any t € [kow|* and i € [n]*,

1 5 1 PN
St717¢ — E z;gij o T(quo) = St,O,i — E Zlgij o T(St7_1) =0.
JI= J=

Forany t € [kous|*, k € [kin — 1] and i € [n]*, we have

E[St,kJrlz tkli| %Zg Stk —Stkl_ Zsm Stk 1)

Proof. Lett € [koys]* and ¢ € [n|*. We have by definition of S; 1 ; and S; o ;
St1,i=St0:i+ b~! Z (gij o T(§t,()) —S;j 0 T(§t,—1)) =S¢0, = ZS” St 0)
JEBt1,i

where we used that S; o = S _1.

Let k € [ki, — 1]. By definition of S; ;41 ;, we have

Sikt1i—Seki=b"" Z <§z’j ° T(§t,k) —8;50 T(S’\t,kfl)) .

JEBL k+1,i
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Since §t$k, §t,k,1 S ‘F;,Lk,i’ we have by Proposition 16
E b71 Z (gZJ ] T(§t7k) — §2J [¢) T(§t’k71)> ‘Ft—i_k,i

JEBt kt1,i
1 m : N ) N
= E Z (Sij o T(Smk) - Sij o T(St7k_1))
j=1

and the proof follows. O
Corollary 18 (of Proposition 17). Assume A8. For any t € [kout|*, k € [kin — 1] and i € [n]*,
L?
E [[IStkt1.6 = E[StatrilFenal 1P| Fir] < Fz'yt%k”Ht,k'P ;
1 m 2 k
_ a 2 7
E | ISt k41, — E;Szj o T(Se.u)ll*|Fro | < F;%‘E [Heell?[Feo] -
By convention, H, o = 0 and 22:1 ag = 0.
Proof. Note that §t ks §t k—1 € Ft k. By Proposition 17, we have
“'St k41,0 — E [St k1, 2| Tk J ||2|]:t,k]
1 _ N _ = 1 &
=FE HB jEBZ (Sij o T(Styk) - S»L'j o T(St,k 1 ) E ]Zl (S” [¢] T(St k) S” o T(St k—1 ) H .Ft k
t,k+1,1 =

By Proposition 16, it holds
2 Li2 3 3 2 L12 2 2
E [IISt k11 — B[St hrril Feral 121 Fek] < 5 18tk = See-1ll™ = vkl Heell” ;
with the convention that H; o = 0 since §t70 = §t7_1. The proof of the first statement is concluded.

For the second statement, by definition of the conditional expectation and since §t, k€ Frr C ]-';r ki
it holds

E | IStes1i— — st TSI Fo | =B [IS0keri = E [Stwrri| Fis | 12| 7]

+E | |E [St,k+l i

Fhei) 7%25 TSl o

By Proposition 17,
2

St,k,i - ZS” St k— 1)

sz}_ Zsm Stk

Hence, by using Sy 1 ; — m ™! Zj:l 550 (St,o) =0 (see Proposmon 17), we have

E St,kJrl 1

1 m - R 2
E Hst,k+1,i - Z;sij o T(St,k)H Fi0
j:

L 2 Ly, S, ’
< F%’kE [HHt,kH ‘]:t,o] +E Hsm,i - Ez;sij OT(St,k—l)H Ft.0
=
2 k)
sz E [[[Heel®|Fro] -
=1
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E.3.3 Resultson A; ;1 ;

Proposition 19 provides an upper bound for the mean value of the conditional variance of A¢ j1 .
and for its Ly-moment. Proposition 20 prepares the control of the varianc of the random field Hy 1
upon noting that

Hipv1 — E[Hy 1| Feoe]

:\'—‘

Z Quant(A; kt+1,:) — E[Apky1,4|Fek]) -
i=1

Proposition 19. Assume AS. For any t € [kou|* and k € [kin — 1],

1 n
OB 18kl Fo]
i=1

2 k n
) .
= [I1Heel?|Fio] + = DB [Iha(Ses) = Vil Fro] -
25 R E (M PIFio] + 5 3 [Ih(S) = Vil o
In addition,
1 — L?
EZE (1A k41, —E[ k] < ?%Z,kHHt,kHz
=1

Proof. Leti € [n]*, t € [kouw|" and k € [kin, — 1]. We write

1 o . _
At gt1,i = Stk+14 — - Z;Sij o T(Sek) +hi(Sek) = Vi -
j:

When k = 0, we have Sy 1 — 5 27", 5ij © T(5:0) = 0 (see Proposition 17) so that A, 1, =

m

hi(§t70) — V40,5 For k > 1, we write

m

E [[|Akt1,l1?|Fro] <2E | [|Seps1i — — ZSU Stk M2 Fro

+ 2 [ hi(Sek) = Viril?| Feo |
and the proof of the first statement is concluded by Corollary 18.
By definition of A ;1 4, it holds

At it1,i — E[Ap g1, Fere] = Stkr1i — B[St ppri] Feor] - (35)
The proof is concluded by (35) and Corollary 18. O
Proposition 20. Assume A6 and A8. For any t € [kout]* and k € [kin — 1],

1 N | , o y
- ;IE [1IQuant (A¢ kr1,i) — E [Appsril Fer] 17| Fro] < - ;]E (1A k41,012 Fro]

L, 2
+ F'Yt,kE [HkaH }]:t,o] :

Proof. Leti € [n]*, t € [kous)* and k € [kin — 1]. We write
Quant(A; k1+1,i)—E [A¢ k1. Fre] = Quant(Ag 1) —A¢ k1,0 k1, —E [ D¢ 14| Fe k]

and use the property

E [[|Quant(As ki1,:) — E[Ag ki1,

, } =E [HQuant(At,kJrl,i) - At,k+1,i||2‘]:t,0]
+E [||At,k+1,i —E[A¢ kg1, Feor] HQ‘ft,O] .
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By A6 and Fy ; C Fy j41/2,4» WE have
E [[|Quant(As ki1,:) — At,k+1,i||2’}—t70}
=E [E [||Quant(At,k+1,i) - At,k+17i||2’}—t,k+1/2,i] ’]:t,O] <wE [||At,k+1,i||2’ft70} )

in addition, by Proposition 19,
U L?
nt Y E [k — E[ArksnilFor] P Fe0] < 2k [IHel?| Fio] -
i=1
This concludes the proof. O

E.3.4 Results on the memory terms V; ;.1 ;

Lemma 21 proves that the memory term V; ;1 computed by the central server is the mean value
of the local V; j41,; computed by each worker #i. Proposition 22 establishes a contraction-like

inequality on the mean quantity n=* Y | Vi k41, — hi(§t,k+1)H2 thus providing the intuition
that V; j+1,; approximates h;(S; j+1).
Lemma 21. Foranyt € [kout]* and k € [kin — 1],

1 — 1 —

Vikt1 = — § Vikt1,i 5 Vio=— § Vi0,i -
s 1 ni 1
1= =

Proof. The proof is by induction on ¢ and k. Consider the case ¢ = 1. When k£ = 0, the property
holds true by Line 1 in algorithm 2. Assume that the property holds for & < ki, — 2. Then by
definition of V; 41 and by the induction assumption:

Sl

1 n n
Vigs1 =Vigp + a- ZQuant(Al,k+1,i) = Z (Vi,k,i + aQuant(Aq py1,:))

i=1 i=1
n
1
= - § Vl,k+1,i .
n-
=1

By Lines 18 and 21 in algorithm 2 and by the induction on k, we obtain

1 — 1 —
Voo =Vig, = = E Vikini = — E V2,0, -
n “ n <
i=1 =1

Assume that for t € [kou, — 1]* we have Vg = n~! Z;;l Vi,0,s- As in the case t = 1, we prove by
induction on k that for any k € [k, — 1], Vi g1 = nt >, Vi kt1,i (details are omitted). This
implies, by using Lines 18 and 21 of algorithm 2, that

1 — 1 —

Vitr1,0=Vigy, = — E Vikini = — E Vit1,0, -
n “ 1 n “ 1
i= =

This concludes the induction. O

Proposition 22. Assume A6 and AS. Let o € (O, 1+ w)’l]. Foranyt € [kou|*, k € [kin — 1] and
i € [n]*, it holds

E [Vigsri| Frps1y2:]) = 1 —a) Vigi +a (St,k-‘rl,i - §t,k> ;

Define for t € [kout]* and k € [kin]

1 & a
Gy = - Z_; 1Viki = hi(Ses)| -
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We have
E[Giry1lFio] < (1 —a/2)E [GyilFio]

2 L
+ ELQVZkHE I He g1l Feo] + 20 DV [1HeelP[Fio]
=1

+a(a(l+w) ZE 1A kil

| Feo] -

Proof. Lett € [kow)*, k € [kin — 1] and i € [n]*. By definition of V}; 114, A¢ k+1,; and by A6, it
holds

E [Vigsvi| Feps1/2.:] = Vi + oF [Quant(Ay jr1,:)| Frpt1/2,i ]
=WVikit+a (St,k+1,i - §t,k - Vt,k,i) .

This concludes the proof of the first statement. For the second statement, we write for any 5 > 0:

Veerri = hi(Sear)l® < (14 B2)IIi(Seps1) = hilSea) I + (L + 87 [Vepsri = ha(Sen) |

< 1+ B L3 [ Heprr 2 + (1 + 87| Vigerri — hi(Sen)l?
(36)

where we used A8 and the definition of §t,k+1 in the last inequality. For any s € R?

E [[Viks1i — S| Feps1y2:] =E [IVegrti — E [Vegrvi| Feariyz | 12 Fort/2.]
B [Viksri — 8| Fonsryoi] IP- 3BT
On one hand,
Vgt 1i=E [Vigsri| Frpryze] 1P = o?(|Quant (A gy14)—E [Quant(A¢ k1,0)| Fepsryo,i ] 12
and by A6,
E [[Vigs1i — B [Vigsri| Feprizi ] 1P| Fensryzi] < 2wl Agpgrll?
On the other hand, for any s € RY, and using Lemma 6
1B [Veksrs = 8| Fersajai] 2 = (1= @) (Vigsi = 8) + @ (Stpsri — S — )|
= (1= ) [Vigi = sl> + @llStrs1i = Ser — slI” = a(l = @) [[Viki — Serr,i + Sl
— (1= ) Vi — 512 + llSerts = Soe — 512 = a1l = )| Ay 1all? - (39)

(38)

Let us combine (36) to (39), the last one being applied with s hi(gtﬁk) € .7-?,“. C Fikti1/2,
Since

ISt kr1.i — Se — hi(Ser)ll? = [IStbr1i — — ZS” St W2

we write
E [WVeksri = hiSuns) 1P| Fun | < (14 8L E [ Horr |2 Fe]

+(1+872) {OéQW]E A kg1l Fee ] + (1= )| Vig,i — hi(gt,k)HQ

1 & ~
+aE | ||St.et1,i — - Zgij o T(Sei)?|Fex | —a(l —a)E [HAt,k+1,i||2|]:t,k]
=

Choose 32 > 0 such that
52 .= C1Y @fa >2/3
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This implies that

2

1+ H1-a)<1 - 1+ﬁ2§5, 1+872<2.

a
5 )
Hence,

E [IVissrs = hi(Sinsn) 12| Fie ] < (= /2 Vos = hi(Sea) I

+ Lﬂtk+1]E[||Htk+1H |Fin] +20E IISthru—fZS” T(Sea)lI?| Fok
j=1

t+alaw—1+a)E [||At,k+1,i||2|]:t,k:} ;

(in the last equality, we use 1 + 372 > 1 since aw — 1+« < 0). Finally, by using Corollary 18, we
have

E [IVisri = hilSews)I2|Foo | < (1= a/2E [Vii = hi(Se) %] Fo

2 12 &
+ L2% k1 B [He kg ?| Fro] + 2a-~ > 2 E [ Heell? Feo]
=1

+ « (aw -1+ Oé) E [||At,k+1,i||2|}—t,0] .
The proof is concluded. O

E.3.5 Results on the random field [, .,

Proposition 23 shows that the random field H; ;1 is a biased approximation of the field h(§t’k),
and this bias is canceled at the beginning of each outer loop. Observe also that the bias exists even
when there is no compression: when w = 0 (so that Quant(u) = u) we have

E[Hyps1|Fir] —h(Six) = Hip —h(Sen_1) ,

and the bias is again canceled at the beginning of each outer loop. Proposition 24 provides an upper
bound for the variance and the mean squared error of the random field H; ;. In the case of no
compression (w = 0) and of a single worker (n = 1) so that VR-FedEM is SPIDER-EM, Proposition 24
retrieves the variance and the mean squared error of the random field H; ;1 in SPIDER-EM (see [10,
Proposition 13]).

Proposition 23. Assume A6. For any t € [kows)*, E[Hy 2| Fio] — h(§t’1) = E[H;1|Fio] —
h(S.0) = 0 and for any k € [k;, — 1]%,

E[Hypr1|Fen] —h(Ser) = Hop —h(Sep-1) — IZ Quant(Ay i) — A ki)

_12 [Stkt1,il Fee] — Z

Proof. Lett € [kout]*.
o By definition of H; ; and A, ; ;, by A6 and by Lemma 21, we have

E[Hi1|Feo] =Vio+n" ZE [Quant(As1,)|Fro] = Vio+n~" ZE [A¢1ilFrol

i=1 i=1

—V}o-f-an( [St.14lFeo] — §t,O_V;A,O,i>

— ! ZE 14l Fro] — Bro

i=1
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By Proposition 17 n =1 Y | E[S;1,:|Fi0] — S’\t,o = h(§t,0).
o Consider the case k£ = 1. We have by definition of H; o

>

=1

E[H o Fia1] — h( Sfl =

S\H

Proposition 17 concludes the proof.

e Let kK > 2. Asin the case k = 0, we have

E[Hi 1| Fin] = Vig +nt ZE [Quant(A¢ gy14)|Fix] = Vir +nt ZE [A¢kt1il Fek]
im1 i1

=Vir+n~ 12( [St.ht1,ilFe ] — §t,k*Vf,,k,i>

n

=nt ZE [Stht1,ilFe] — gt,k ,
i=1
so that
E [Hy gy1|Fe ] — h( Stk _IZ (St ket Fee] — Z Stk . 40)

By Proposition 17, upon noting that F; ;, C ]—';rk ;and Sy g 4, St,k,l € Fi k. we have

n

712E Ste+1il Fre]— ZSUOT (Sew) =n"1 " [ Siki—m Z 0 T(Skk-1)

i=1 j=1 =1
41
On the other hand, observe that
Hyp=Vig—1+ nt Z Quant(Ay ;)
i=1
n R n n
=Viko1+07" D Siki— Sek1—nT Y Vikori 0Tt (Quant(Ay ki) — Ay ki)
i=1 i=1 i=1
=nt Z Sthi— §t,k71 +nt Z (Quant(A¢ ki) — At ki)
i=1 i=1

where we used Lemma 21. This yields

H;p — h(é\t,k—l)

=n! Z Sipi—m ! Zgij ° T(gt,kﬂ) +nt Z (Quant(A¢ i) — Ar i) - (42)
i=1 i=1

i=1
The proof is concluded by combining (40), (41) and (42). O
Proposition 24. Assume A6 and A8. For any t € [kout]*,

~ 1 ~
E [I1H11 = h(Sho) 2| Fio | < & (n > Vo - m(st,o)n?) 7

and for any k € [ki, — 1]%,

n

~ 1 L2 k
E |:HH15JC+1 - h(St,k)|\2‘ft,0} < an; (1A k1,317 [ Feo] + YN KZ::IWQ,ZE [1Heel?| Fro]
N 2 k=
E [ [Hyjes1lFi] = h(Sei)|2|Fio | < @Z [ eel P Fio] -

39



Proof. e Case k = 1. From Proposition 23 and the definition of H; ;, we have

Ht71 — h(gt,O) = Ht71 —E [[Ht,1|ft,0] = TL_l Z (Quant(At,Li) —E [Quant(Atyl,i)U-'tyo])
i=1

=1y (Quant(A; 1) —E[Ay1l Frol)
i1
where we used E [Quant(A¢ 1 ;)| Fi /2] = A1 and Frg C Fy1/2; in the last equality. In
addition, since Sy o = S, _1, we have (see Proposition 17)
St1,i=5St0:= hi(§t,0) + §t,0 .
Hence, R R
A1 =St1,— St0 — Vi, =hi(Set0) — Vi -

Therefore, E [As 1| Frol = Ap1i = hi(gtyo) —V4,0,i- Since the workers are independent, we write
~ 1 & ~ ~
E || Hi = h(S0) [ Fio | = — DB [IQuant(hi(Sio) = Veos) = (hi(Seo) = Vi) 17| Fio| -
i=1

By A6, this yields

3

||hi(§t,0) — Vio.ill?

1

E [||Ht,1 - h(gt,O)HQ‘]:t,O} <

wl
nmn -
1

e Case k > 1. Lett € [kout]* and k € [k;, — 1]*. We write
E [HHt,k-H - h(gt,/c)Hz‘]:t,o} =E [|[Htp+1 — E [Hy o[ Fer] 11| Feo ]

+E [ [HyporFok] = h(Sup)|2|Fro| - @3)

Let us first consider the bias term. From Proposition 17, Proposition 23 and the definition of S ;41 ;
(remember that S; . ;, St 1, and Sy 1 are in f:rk ; O Fi.k), itholds

| SEE R EER] NN

=E anl Z(E [Stkt1,i
=1

m N 2
ft,k] — mil Zgij o T(Stk))H ]:t,O
j=1

n m N 2
<E anl Z(St,k,i —m™! Zgij ° T(St,k—l))H Fio
im1 =1

By Proposition 17 again, the RHS is zero when & = 1; when k£ > 2, by Corollary 18 and the
independence of the workers, we have yields

. L2 k—1
E {HE [Hi 1] Fer] — h(St,k)HQ‘]:t,o} < 5 Z’VZEE [I1He el Feo] - (44)
=1

Let us now consider the variance term. We have from the definition of H; ;1 and A6

n

1
Hyprr —E[Hypa|For] = - Z (Quant(A¢ gy1,6) — E[A¢ g1, Fer])
i=1
and here again, by the independence of the workers

E [”Ht,k-i-l —E[Hy g1 Fere] ||2|]:t,0}
< —1 En E | [|[Quant(A —E[A F 2| F
Sz [H ant(A¢ g41,i) [A¢ k16l Fe] | | t,O] . (45)

i=1
The proof follows from (43) to (45) and Proposition 20. O
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E.4 Proof of Theorem 3

Theorem 3 is a corollary of the more general following proposition.

Proposition 25. Assume Al to 3, A4, A6 and A8. Set L? := n~'m~' 370 37T L% Let
{St.i:t € [kout), k € [kii‘ — 1]} be given by algorithm 2 run with any o < 1/(1 + w), and
b > 1, with Vig,; = hi(S1,0) for any i € [n]*. Let (1,K) be a uniform random variable on
[kout]* X [kin — 1], independent of {S¢ k.t € [kout)*, k € [kin — 1]}. Then, it holds

Omin (1= YA E [ He 1] <97 05 o (B [W(S10)| — min W)
where

A, =

Ly, Vmax L ki 02 1/2
2 1410 .
2/UIIlll'l + f UIIIII'I fa ( + 8b ( + w>>

The proof of Theorem 3 from Proposition 25 (which corresponds to particular choices of b, «, etc.
is detailed in Appendix E.5).

E.4.1 Control of H,
Lett € [kout)* and k € [kin — 1]. By A4, we have
~ ~ ~ ~ ~ L.~ ~
W(Stk+1) < W(Si k) + <V W(Stk), St k+1 — St,k> + 7W||St,k+1 — Sixll?
Since §t,k+1 — §t7k = Y¢,k+1H¢ +1, we have using again A4

. _ PO L.
W (St k1) < W(Str) = Yek+1 <B(St,k)h(5t,k)7 Ht,k+1> + TWWE,kHHHt,kHHQ

We have the inequality, for any 8 > 0:

—(Bh,H) < —(BH,H) — (B(h — H), H) < — (BH, H) + ;||HH2+ IB(H —h)|*.

252

By A4 again, this inequality yields for any 3, ;1 > O after applying the conditional expectation

E [W(gt,kﬂ)

ft,o] <E [W(é\t,k)‘ft,o} = Yk 1Vmin A 1 E [ || Hy, k+1||2|~7:t 0]

o R [ = (S| Fro] - @6)
ﬁt,k—i—l

where
2
Ly B k41
2'Umin 2Umin

At,k+1 =1- Yt k+1

By (46) and Proposition 24, it holds

E [W(Seis1)| Fro] < E[W(Sit) 1 Fuo] = Yot 1vminde i E [[[Herr|21F0]

k
Vtk+1 2 L? 2 2
: = E [| Hy o2 F,
+ 2ﬂt2,k+1 VUmax nb e:ZI’Ytl [” t,@H | t,O]

Vektl o W1 - 2
+ VUmax ~ E A,k 1,4 f,O . (47)
R S [ )

Set
G = ZHVZM i(Sew)ll?
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From Proposition 19, we obtain

E [W(S’\t,k+1)|]:t,0:| <E |:W(§t,k)|]:t,0] — Vet 1Vmin A k1 E || Heor1 |21 0]

VYtk+1 o L? Ve k+1 2
+ VUmax ~ 1. (1+20J ’yt ZE’ |Ht é” |]:t0 Umax [Gt k|]:t 0] .
25;: k41 nb Z ] 5t,k+1 n

Assume that k — V¢ k+1/87 41 18 a non-increasing sequence and set

C 2w 9 Ykt
tk+1 -— Umax 62 .
an k1

From Proposition 22, since o € (0,1/(1 4 w)], we have

(48)

(49)

Cik1E [Gepy1]|Fro] < (1—0/2)Cy 1 E [Gri| Fiol+— L’Ytk+1ctk+1E[HHtk+1|| | Feo]

2

20(?Ot,k+1 Z’YEZE |:

=1

o]

Upon noting that by definition of C ;41 we have (remember that C; 111 < Cy 1)

(1 — 04/2)015 k41 — Ct E+ %;Jﬁ_l v2 % <0,
this yields from (48) and (50)
E [W(Seks1)|Fio] + CoaniE [GrrslFro] < B [W(Sik) 1 Fio] + CikE [GrlFro]

2
- ('Yt,k:Jrl'UminAt,kJrl - aL2'7t27k+1Ct,k+1) E [||He k4111 Fr.0]

+ ( Vi, k+1 02

26152’k+1 max%(

=1
Let us restrict the computations to the case v, = 7, B¢, = B (which implies C; 1 = Cyj =:
we obtain
L B2 2 402 w
YVUmin (1 —yw L maxy2 — R [||Ht,k+1||2|.7'—t,0]
2Umin 2Umin B Umin CY n

<E [W(S’\t,k”}—t,o} + CE [Gt,k|—7:t,0] —E |:W(§t k+1)|]:t 0} — CE [Gt k+1|]:t,0]
3
52 max b

We now sum from k = 0 to k = k;,, — 1 and divide by k;,:

k
L BQ 2 492 w
. 1_ w. P muxL27 _ 2
i < 72’Umin 2Umin B Umin a2n> Kin k=1 [ 7 , ]

- 5 C
< k'E [W(5,0)|Fro| + -—E[Grol Fuo]

mn

Fiol

in

_ ~ C
— ki 'E |:W(St7kin)|ft70:| - k:iE (G

in

(50)

2 L2 k
14 2w) + 20¢th7;€+1> > 2B [I|He o]l Fro) -

O);

k
L?
R (14 100) YK [l Foo]
=1

) L? 2
+ —v e (1+ 10w) E [||Ht7k|| \]:t,o] .



As a conclusion, we have

K —1
Ly; -\ 1 %
YVmin (1 — o — 7A> T Z E [|| Ht g41]%|F2, 0]

Umin in 7

< kB [W(Si0)l Fro| + - [GrolFio]

1o

kin
_ 5 C

— KB WStk Fro] = 1—E [GrpalFro] -

kin
where i
ﬁ 4U 2 w Y vma L kln
= =5 — 2% 14 10w) .
2Umin’y+ﬁ Umin B VUmin TLb ( + LU)
Next, we sum from ¢t = 1 to t = Koy, divide by kout
L kout Kin
min 1- W E H
o (15 =)y 25 2 Bl
k=1 k=1
1.— a . C
< ki (E[W(S10)] —min W) + ———E[G1o] - (D)
in/vout

Finally, we apply the expectation, with (7, K') a uniform random variable on [kout]* X [kin — 1],
independent of {§t,;€,t € [kout]™; k € [kin — 1]}, upon noting that G, r,, = Gi4+1,0 and §t,k
§t+1,0, this yields
L
Y Vmin (1 -

2 min

in in

—”VA)E 1 Hr i)

< kVkSL <E [W(?LO)] —minW) + E[Gio] . (52)

kin kout

Impact of initialization. With V;¢; = hi(§170) for any ¢ € [n]*, we have G1 9 = 0.

Choice of 3. The latter inequality is true for all parameter 32 > 0 (coming from Young’s inequal-
ity). We can thus optimize the value of 3% to minimize the value of A. We here discuss this choice.
First, to ensure that A is independent of ~, we introduce a, and set 52 = a+y so that

a 1 411 9 W max L2k

A= 2n

1+ 10w
2Umin @ Vmin « 2a Umin Nb (1+ )

4 L? Kin
-2 4= Uinax w+ a(1—|—10w) .
8b
Next, we optimize the value of a.> Upon noting that a — Aa+ B/a (for A, B > 0) is lower bounded
by 2v/ AB and its minimizer is a, := /B/A, we choose

QWimin @ Vmin N2

L kirlaQ 12
a, = Qﬂvmaxﬁ (w + <h 1+ 10w)> .
and obtain
v kina?® 1/2
_ 2 max 1mn 1 1 .
fvmln \/>Oé ( * 8b ( * OW)> (53)

Combining Equation (53) and Equation (52), we obtain
Omin (1= YA E [ He s 1) <97 ki et (B [W(S10)| — min W)

where

Ly, v L kina? 1/2
— 9/ Lmax Y 1 410 , 54
2Umin + fvmm Vna ( + 8b (I+ w)) S

which is the result of Proposition 25.

2Remark that this optimization step is crucial to optimize the dependency of A w.r.t. w: this ensures that
A o wd2,
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E.5 Proof of Theorem 3 (Equation (11)) from Proposition 25

1.

We apply Proposition 25 with: b := | G +‘“)21 and the largest possible learning rate « = (1 + w) ™~
this gives in Equation (54)

Ly, Ve L 1410w\ Y2
A, = 2
* 2’Umln * fvmln f( ) (w * 3 >

Ly, Vmax L 1410w\ Y2
— 144 1 .
Yo ( + \f \f( + w) (w—i— 5 )

Next, we choose - to be the largest possible value to ensure (1 — yA,) > % For all ¢, k,

1 Umin Umax L 14+ 10w 12\
Yk = E Gy = <1+4\f 2 (1+ )<w+ )

Ly, Ly, f 8
This gives the first result of Theorem 3, namely Equation (11). We give the proof of the second
result, Equation (12) in the following subsection.
E.6 Proof of Theorem 3 (Equation (12)): control on h(gT, K)
We now establish (12) for v, = 7. Let t € [kout]* and k € [k;, — 1]. We have
(S0 s> < 2I[E [Hy g 1| Foi] |2 + 210(Sek) — B [Hopya | Fon] |17 (55)

Let us consider the first term in (55). By Jensen’s inequality and the tower property of conditional
expectations

E [|E [Ht k41 Fe] 171 Fe0] < E[E [[|Heps1ll*1Fer] |Fr0] = E [[[Heps1ll*[Fe0] -

Let us now consider the second term in (55). By Proposition 23 and Proposition 24, we have

~ 2L >
E |IE [Hyk411Fi0] = h(Sp)lI?1Fio| < { T 321 B [ He % Fr o] when & g{20 .
Therefore, we write

N 2k‘ 1
E [|In(S:0)1?] < 2B [ Hon|?] + 292 ;2 E el

We now sum from & = 0 to k = ki, — 1, then from ¢ = 1 to ¢t = ko, and finally we divide by
kinkout. This yields

kout kin—1k—1

E [INS. )I17] < 28 [ Hr 2] + 20

bkmk
t=1 k=2 (=1
Kout Kin—2
< 2E [||Hr, k41117 +2’Y Z E [||H.xll”]
t=1 k=1
o L? ki
< 2E [[|Hr k41 ]°] +29° 5 E [[|Hr x+1]%]

L2 klll
<2 (14220 )EUHT,KH?} .

E.7 On the convergence of the V, ;. ;’s

In this subsection, we provide a complementary result, to support the assertion made in the text,
that the variable V; j, ; approximates h;(Sy ). Recall that for ¢ € [kow|* and k € [kin], Ge g ==

2y WVaks — hi (Sl -
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Proposition 26. When running algorithm 2 with a constant step size y equal to

-1
Vrmin Vmax L 1410w\ "
= 1+4 1

v LW<+\TL \F(+”)<+8> :

with b := [ Kin ) 3| and o :=1/(w + 1), we have

kout ki
93 ( ) v (L+w)?L? ~ .
outkm ; ; E Gt k S k- [GLO] + 16kinkout Venin (E [W(Sl,()):| — min W) .

In words, the Cesaro average O“tk Zt out S w2 E[Gy 1] decreases proportionally to the number

of iterations kinkout. Consequently, the average squared distance between V; i ; and hi(St,k) (.e.,
G+ 1), converges to 0 in the sense of Cesaro.

Proof. From Proposition 22, we have that, ¢ € [koyut]* and k € [kin), and any o < (w + 1)1
E[Girt11Fr0] < (1 —a/2)E Gl Fio]

2 2
+ aL272k+1E [ Ht k41l Feo] + QQF Z’YﬁzE [ Heel?| Feo] -

=1
Equivalently:
a/2E [Gi x| Fro] SE[GirlFro] —E[Gtrs1]Fto]
2 2 &
2
+5L7 1B [[[Heps1l?| Fro] + 20 F; [ Heell?|Feo] -
Summing from k£ = 0 to k = k;, — 1, we get, with ﬁ,kﬂ =y
o kin—1
5 O ElGulFio] <E[GrolFio] —E| o]
k=0
kin 2 kin—1 k
" Lz 221[1‘, | He i l|? | Fro] +2aF kz:l Zzgvz]E [ H ol Fro]
[Gt,o\ft,o] —E[Gt [ Ft0]
o L?kin <
+ L2 v E [ Hexl? ’]—}0]—1-204 ZVZIE | Hy 1] Fr0 ]
k=1 k=1
]E[Gt,o\fto]* [ 0]

2 in
+04L272< >ZE ||Htk|| |-7:t0] .

Summing from ¢t = 1 to ¢t = kqys, dividing by koutkin, and taking expectation we get:

1 Kout Kin—1 9
ElGip] < —E[G
koutkin Z Z [ t’k] - akoutkin [ 1’0]

t=1 k=0
4 a k Out ln
7[]2 2 in ]E H 9 '
* a?koutKin K ( ) ; P H tka ]

We used that Gy x,, = Gy41,0. By denoting (7, K') a uniform random variable on [koyu|* X [kin — 1]
— independent of the path {S; i, t € [kout]™, k € [Kin]}. we have

2
akout kin

OéZkin

4
iG] < o BlGLol + 25272 (14 3 ) Bl ]
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From Theorem 3, this yields (note that o = (1 +w) ! and b > ki, /(1 + w)?)

21+ w)

E[Gr.x] <
[ 7K] a koutkin

E[G1,0] +7

272 R
LU (5, ) — min W)

Uminkin kout

F Supplement to the numerical section

This section gathers additional details concerning the models used in our numerical experiments.
Namely, Appendix F.1 presents the full derivations for the FedEM algorithm for finite Gaussian Mix-
ture Models, and Appendix F.2 provides the detailed pseudo-code for the FedMissEM algorithm for
federated missing values imputation introduced in Section 4 and provides the necessary information
to request access to the data we used on the eBird platform [1].

F.1 Gaussian Mixture Model

Let y1,...,yn be N RP-valued observations; they are modeled as the realization of a vector
(Y1,...,Yy) with distribution defined as follows:

* conditionally to a {1,...,L}-valued vector of random variables (Z,...,Zy),
(Y1,...,Yy) are independent; and the conditional distribution of Y; is NV, (1 z,, X).

s therv. (Z1,..., Z,) are i.i.d. with multinomial distribution of size 1 and with probabilities
TlyeeeyTL.

Equivalently, the random variables (Y7,...,Yx) are independent with distribution

Zlem Np(pe,X). For 1 < i < N, the negative log-likelihood of the observation Y; is
given up to an additive constant term by

L
1 1 T g1
9»—>§lndet2—|—§<YiYi D> >—1n;exp(<s(Y7;,z),¢(9)>)

where, denoting 1 ;3 (z) the indicator function equal to 1 if z = [ and 0 otherwise:

11y(2) log(m1) — 5u1 X7
]l{L.}(z) log(nr) — iuTE_luL
= 0) .= L . 56
S(y,Z) y]l{1}(2) ) ¢( ) Z_%,U/l ( )
yliry(2) Y lup
The goal is to estimate the parameter 6 := (71,..., 7L, 1, ..., b1, >) by minimizing the normal-

ized negative log-likelihood:

N N
1 1/1 T y-1\ 1 :
F(0) = 5 Indety + o <N ;YY D> > N ;ln/exp“s(l@,z),(ﬁ(@»)V(dz) (57)
where v is the counting measure on {1,...L}.

Classical EM algorithm We use the EM algorithm: in the Expectation (E) step, using the current
value of the iterate 6., we compute a majorizing function 6 — Q(0, 6., given up to an additive

constant by
Q(97 ecurr) = _<§(ecurr)7 ¢(6)> + 1/)(9)7

where

1 1/1 ¢
I - g _T —1
(0) = 5 Indet + 3 <N ?:1 VYT, % > ,
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$(Ocurr) := ZZ 15i(0), and for any i € [N]*, 5;(6) is the conditional expectation of the complete
data sufficient statistics:

pi(0)
= _ ,{317L(9) * = o e NP(M%E)D/L]
si(0) = Yipia(0) , where for ¢ € [L]*, p;1(0) == 25:1 o NG DIV . (58)
Yii(0)

In (58), N} (1, X)[y] is the density function of the distribution N, (p, ) evaluated at y.

In the optimization step (M-step), a new value of 6., is computed as a minimizer of 8 — Q(6, Ocyyr ).
Let us now detail this step.

Algorithm 5: Classical EM algorithm for mixture of Gaussians

1: Input: kpax € N, X, 50, éo
2: Output: The sequence of statistics: {Sk, k € [kmax]}; the sequence of parameters
{ak, ke [kmax]}

3: for k=0,...,knax — 1 do
4:  Expectation step: compute conditional expectations given current parameter 6: Set

& 1L xN o gk

Skr1 = § 2i=1 5i(0%) ) A
5:  Maximization step: update parameter 61 based on current statistics Sy according to

update rule (60)
6: end for

The M step: the map T. Let

s=(sM @y = (M WL @1 2Ly e RL « RPE
we write (s, ¢(0)) = Z?Zl (s, ¢11)(0)) where the functions ¢7) are defined by
log(m1) — 30 X7 i S
oM (0) == : , o (0) := : . (59)
log(m) — 5. X7 ur S

By definition, T (s ) = rgmm%@ (s,(0)) + (). Here, this optimum is unique and defined by
T(s) = {me(s), pe(s), s Z} with

RO
me(s) := W ) (60)
§(2).0
pe(s) == FOrR (61)
| X L
=YY - ZZ s pg(s) pf (s) - (62)
=1 =1

The expressions of 7(s) and p¢(s) are easily obtained. We provide details for the covariance matrix.
We have for any symmetric matrix H

det(I' + H)

1
1T det(D)

=Indet(I +T'H) = In(1 + Te(T"*H) + o(|| H|)))
=Te(T™ H) +o(|H|) = (H.T™") +o(||H|)

thus showing that the derivative of I' — In detI" is ' 1. T(s) depends on X1 through the function

N L
1 1 1 1
E—IH_ilndet(E—l)_’_i <E_1;N§ EKT>+<E—1’2§ 1)Z/*L£/*L E 1U’Z 8(2)5 > )
=1

{=1
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The optimum solves

N L L
1
=N E YY"+ E s popg —2 E pe (54T
=1 (=1 (=1

Hence, Y(s) is this solution when s, < p(s) which yields the expression since s =
(1),¢
s ().

In the federated setting. In the federated setting, the data is distributed across n local servers. For
all ¢ € [n]*, the c-th server possesses a local data set of size N.; N, > land > .._, N. = N. We

write
U o= U U
c=1j=1
thus meaning that each local worker #c processes the data set {Ye1,...,Yen, }

The computation of the map T requires the knowledge of a statistic of the full data set, namely
Nt Zfil Y;Y;". For this reason, we want the map T to be available at the central server only.

Since
N n N¢
DYi=d > Yy
i=1

c=1 j=1
this full sum can be computed during the initialization of the algorithm by the central server, by
using the n local summaries Z 1 Ye; sent by the local workers.

In the FL setting, we write the objective function as follows

A ZZln [ e (s(¥.2),000)) v(d2)

01]1

_ ——ZlnH / ex ({6(Y2302),600)) — 3-(0) ) a2
oc—ZlnH/exp( 52):006)) = -(0)) ().

It is of the form (1) with R(¢) = 0 and

- flnH [ [ exp (1600210000~ 75000)) vide).

In the case nN, = N for any ¢ € [n]*, we have

N/n
- Z Inp(Y;;6) ,
with
p(y;0) = /p(y,Z;ﬁ) v(dz)  p(y,20) = exp ((s(y, 2), ¢(0)) — ¥(0)) v(dz) .

p(y, z; 0) is of the form (2); this yields

N/n

L
_ _ _ n _
Scj(9> = ZS(YCJ7Z)pCj,Z(9) ) Sc(e) = N Z scj ’
z=1 j=1

where p.; »(6) is defined by (58).
The pseudo code for the FedEM algorithm is given in Algorithm 6.
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Algorithm 6: Federated EM algorithm for distributed GMM without compression

1: Input: kyax € N; for ¢ € [n]*, Vo, € REFPL; Sy € RE+PL: §) € RE x (RP)E x RPXP; a
positive sequence {Vg+1, k € [kmax — 1]} @

2: Output: The FedEMsequence: {Sk, k € [kmax|}

3: fork=0,...,kpax — 1 do

4. forc=1,...,ndo

5: (agent 1, locally)

6: Sample a batch 7, . C [N]

7

8

Set Spi1.c = ﬁ e . 5;(Ax), where 5, is defined in (58)

: Set Ak+1’c = Sk+1,c — Sk — Vk,c
9: Update Viy1.c = Vie + o Quant(Ag41,¢)

10: Send Quant(Aj41,¢) to the controller
11:  end for

12:  (the controller)

13:  Compute Hp 1 = Vi + % Z:=1 Quant(Axy1 )

14: Set Sky+1 = Sk + Ver1Hrt1

15: Set Vip1 = Ve +an™ ' 37 Quant(Agiq,e).

16:  Send Sk and ék+1 = T(Sk+1) to the agents, where T(S’k+1) is given by the update
rule (60)

17: end for

F.2 Federated missing values imputation

e Model and the FedMissEM algorithm. I observers participate in the programme, there are J
ecological sites and L time stamps. Each observer #i provides a J x L matrix X* and a subset of
indices Q' C [J]* x [L]*. For j € [J]* and £ € [L]*, the variable X7, encodes the observation
that would be collected by observer #:i if the site #j were visited at time stamp #¢; since there
are unvisited sites, we denote by Y := {X},, (j,£) € Q'} the set of observed values and Z* :=
{X; 0 (4,€) ¢ Q'} the set of unobserved values. The statistical model is parameterized by a matrix
6 € R7*L, where 6;¢ is a scalar parameter characterizing the distribution of species individuals at
site j and time stamp ¢. For instance, 0, is the log-intensity of a Poisson distribution when the
observations are count data or the log-odd of a binomial model when the observations are presence-
absence data. This model could be extended to the case observers #: and #i’ count different number
of specimens on average at the same location and time stamp, because they do not have access to
the same material or do not have the same level of expertise: heterogeneity between observers could

be modeled by using different parameters for each individual #i say 0" € R7*L. Here, we consider
the case when 6%, = 0, for all (4, ¢) € [J]* x [L]* and i € [I]*.

We further assume that the entries {X},,i € [I]*,j € [J]*,{ € [L]"} are independent
with a distribution from an exponential family with respect to some reference measure v on
R of the form: = — p(x)exp{zb;; — ¥(0j¢)}. The function ¢ is for instance defined by
¢(r) = —i7?% for a Gaussian model with expectation 7 and variance 1, (1) = log(1l +
e”) for a Bernoulli model with success probability 7, and ¢(7) = e” for a Poisson model
with intensity 7. Therefore, the joint distribution of (Y*,Z") is given by p;(y*, 2% 0) :=
(H(jj)eﬂi p(y;z)) (H(j,é)éﬂi p(z;ﬂ) exp <<5i(yl, Z’L)7 9> — Zjéw(gﬂ)) ) where si(Y'Z7 Zl) is
aJ x L matrix with entry #(j, £) given by Y}, if (j,£) € Q" and Z} , otherwise.

In order to estimate the unknown matrix # € R7*L we assume that 6 is low-rank; we use
the parameterization § = UV, where U € R/*" and V € RL*" with rank(f) = r and
r < min(J, L). The estimator is defined as a minimizer of the negative penalized log-likelihood:
minUeRJxr’VeRL-xr F‘(l]7 V), W]th }‘_‘([]7 V) = %Z?:l EI(UVT) + % (HU”%‘ + ||V||%7v> 5 Where
for § € R7>L, £(0) := —log [ p; (Y7, 2%;0) 1 g0 v(dzj).
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FedMissEM algorithm. Algorithm 7 provides the pseudo-code for the Federated EM algorithm
for mising values imputation.

Algorithm 7: Federated EM algorithm for distributed missing data imputation

1: Input: ko € N; forc € [n]*, Vi € RIxJ. §0 € RT*7; a positive sequence
{Vk+1,k € [kmax — 1]}; a; the quantization function Quant

2: Output: The FedEM sequence: {Sk, k € [kmax]}

3: for k=0,...,knax — 1 do

4. forc=1,...,ndo

5: (agent #i, locally)

6: Initialize S;41,c = 0 and A4, = 0 everywhere.
7: Sample a minibatch (Zf, ) C [I]* x [J]*

8: for i € 7 do

9: for j € J;; do
10: Set (Si11)iy = Lijea- Vil + (1= Lijenc)(0k)i;
11: Set (Afi1)ig = (Skqa)ig — i — (Vidis
12: end for

13: end for

14: Update Vi¢, | = V¢ + a Quant(Agy1 )

15: Send Quant(Af_ ;) to the controller

16:  end for

17:  (the controller)
18:  Compute Hy1 = Vi +n71 300 Quant(Af )

19:  Set Spi1 = Sk + Yrr1Hei1
20: Set Vir1 = Vi + an~! Zzzl Quant(A2+1)~

-~

21:  Send Sk1 and 0y1 = T(Sk+1) to the agents

22:  (Note: thresholded SVD for Gaussian model or computed iteratively for a general
exponential family model)

23: end for

eBird data information. In our experiments, we used a sample of the eBird data set [1], provided
upon request by the Cornell Lab of Ornithology. We are not allowed to disclose the data itself,
but we provide here the details to reproduce our experiments on the same data set, after requesting
acess on the eBird platform (https://ebird.org/data/request). We selected the counts recorded any-
where in France, between January 2000 and September 2020, for two different species: the Mallard
and the Common Buzzard. These two species were analyzed independently (see Section 4); the
corresponding code is also available as supplementary material.
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