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A APPENDIX

A.1 RELATED WORK

Diffusion Probabilistic Model. Diffusion Probabilistic Models (DM) |[Ho et al. (2020) have emerged
as the leading approach in density estimation Kingma et al.|(2021) and have also demonstrated superior
sample quality Dhariwal & Nichol (2021). These models leverage the inherent characteristics of
image-like data by employing a UNet as their underlying neural backbone Ronneberger et al. (2015);
Ho et al. (2020); [Dhariwal & Nichol (2021). Notably, the use of a reweighted objective Ho et al.
(2020) during training typically leads to the highest synthesis quality. Another research line for image
generation is GAN-based methods |Creswell et al. (2018); (Chen et al. (2016b). A representative study
of this research line is infoGAN |Chen et al.|(2016b), which is a type of generative adversarial network
that not only generates realistic samples but also maximizes the mutual information between a select
few latent variables and the generated output. InfoGAN allows for the discovery of meaningful
representations. However, these studies cannot provide explanations for the generated samples.

Denosing Diffusion Probabilistic Model (DDPM) for Al for Science. Denoising diffusion prob-
abilistic models have demonstrated their ability to predict dynamic evolution in a wide range of
domains, including fluid dynamics |Cachay et al./(2023), weather forecasting |Price et al. (2023), and
molecular dynamics (Wu et al.[(2022). They have also proven effective in inverse design tasks, facili-
tating the optimization of airfoils [Wu et al. (2024) and proteins [Watson et al. (2023). Additionally,
diffusion models have shown promise in tackling complex inverse problems Holzschuh et al.| (2023).
These examples represent just a fraction of the diverse applications where diffusion models have
been successfully employed. In the field of biology, researchers have utilized denoising diffusion
probabilistic models (DDPM) to model diffusion processes in biological networks, enabling the
analysis of protein-protein interactions and gene regulatory networks|Fu et al.| (2023)); Best & Hummer,
(2011);|Gao et al. (2023); Xu et al.|(2022). In physics, the DDPM has been applied to study particle
diffusion in complex systems, such as the propagation of heat in materials. Furthermore, in the realm
of chemistry, the DDPM has been employed to gain insights into the diffusion of molecules and
reactions in chemical systems. These studies highlight the versatility and effectiveness of the DDPM
in capturing and analyzing diffusion dynamics across various scientific disciplines Xu et al. (2022).
Ongoing research aims to further explore the potential of DDPMs in solving complex problems in the
field of Al for Science. For additional related work on diffusion models, please refer to Appendix [A.T]

A.2 PRELIMINARY

Diffusion Probabilistic Models: The Denoising Diffusion Probabilistic Model (DDPM) Ho et al.
(2020) comprises two fundamental processes: the forward process (or diffusion process) and the
reverse process. Let’s begin by describing the forward process. In a diffusion model, the forward
process approximates the posterior distribution g(x1.¢|z¢), which represents the sequence of latent
variables x1.; given an initial value xy. This approximation is achieved by iteratively applying a
Markov chain that gradually adds Gaussian noise over time.

The forward process is represented as follows:
q(e|ze—1) = N (@ pe(ze-1), Bel)

Here, x; denotes the latent variable at time step ¢, and z;_; is the variable at the previous time step.
The distribution g(x¢|x:—1) is modeled as a Gaussian distribution with mean i (z;—1) and variance
B, where 3, is the variance parameter at time step ¢, and I represents the identity matrix. The
mean i (x:—1) can depend on the previous latent variable x;_; and is typically modeled using neural
networks or other parameterized functions.

By sequentially applying the distribution g(x¢|x;—1) for each time step, starting from the initial value
xg, we obtain an approximation of the posterior distribution g(z1.+|z¢) that captures the temporal

evolution of the latent variables via q(z1.¢|xo) := H?:l q(z¢|xi—1).

Consider a diffusion model with 7" time steps. Given an observed data point x; at the final time step,
the goal is to generate a sample from the initial distribution p(xg).

The reverse process in a diffusion model can be formulated as follows: 1. Initialization: Set x; as the
observed data point. 2. Iterative Sampling: Starting from ¢ = 7' — 1 and moving backwards until
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t = 0, sample z; from the distribution p(z¢|z;+1), where p(z¢|z;y1) represents the reverse diffusion
process.

The distribution p(z¢|z;+1) in the reverse process is typically modeled as a Gaussian distribution,
similar to the forward process. However, the mean and variance parameters are adjusted to account
for the reverse direction. The specific form of p(x:|x+11) is defined as follows:

Per1(@e; 1 (Tepr, t + 1), B (241, + 1))

By iteratively sampling from the reverse process, we can generate a sequence of latent variables
xo.; that follows the reverse diffusion process. This reverse sequence represents a sample from the
initial distribution p(x). The reverse process is crucial for training the diffusion model. During
training, the model learns to approximate the reverse process by minimizing the discrepancy between
the generated samples and the observed data points. This training procedure ensures that the model
captures the underlying data distribution and can generate realistic samples.

The optimization objective of the diffusion model is conducted via the following negative log-
likelihood:

E[—logpiy1(z0)] < Ep, ., [~ 1og(pe+1(20:)/q(21:4]70))]
T

= Ep,.. [~ logprya () — Z10g(pt+1(33t—1|$t)/9($t|$t—1))] =L
t=1

Cahn-Hilliard Function: Wetting phenomena and interfacial tension play significant roles in
numerous scientific and engineering fields, ranging from fluid dynamics to materials science. In
recent years, phase-field methods have emerged as powerful computational tools for studying and
simulating wetting processes. These methods employ a phase-field variable, a continuous function
that describes the local composition or wetting state, enabling the realistic modeling of complex
interfacial dynamics. By incorporating the concept of interfacial tension, phase-field models can
capture the intricate interplay between fluids and solid surfaces.One of the key equations used
in phase-field modeling of wetting phenomena is the Cahn-Hilliard equation, which governs the
evolution of the phase-field variable. This equation takes into account the interfacial energy associated
with the fluid-solid interface and the interfacial tension between the two phases. The interfacial
tension term is crucial for accurately simulating the contact angle, adhesion, and spreading behavior.
The Cahn-Hilliard equation provides a mathematical framework to capture the dynamics of phase
separation by considering the free energy of the system. It takes the following general form:

- 5F
o= (v (55)) ®

where ¢ is the phase-field variable or order parameter representing the local composition. ¢ is time.
M is the mobility coefficient, controlling the rate of diffusion of the phase-field variable. F' is the free
energy functional of the system with respect to the phase-field variable ¢. The free energy functional
F typically consists of two terms: the bulk free energy term and the gradient energy term. The bulk
free energy accounts for the thermodynamic properties of the system, including the interfacial energy
between the two phases and the potential energy associated with phase separation. The gradient
energy term penalizes sharp variations or spatial gradients in the order parameter, promoting smoother
phase transitions.

Functional Formulations for Modeling Tension Phenomena via Phase-Field: To accurately
represent the shape of an arbitrary object, we utilize a phase-field variable ¢, where ¢ = 1 denotes
the interior of the cell and ¢ = 0 denotes the exterior. The transition from ¢ = 1 to ¢ = 0 occurs
gradually within a width defined by the parameter e. The system’s total energy is denoted by H(¢),

and the time evolution of ¢ is determined by the following equation %‘f =— ng’) . This equation

describes the rate of change of ¢ with respect to time. The right-hand side represents the derivative
of the total energy H (¢) with respect to ¢, indicating the force or driving mechanism that governs
the evolution of the phase-field variable ¢. By minimizing the energy functional H (¢), the system
tends to reach an equilibrium state that corresponds to the desired shape of the object. For the tension
dataset, the surface tension is characterized by the tension per unit length multiplied by the total
surface area. To ensure proper normalization, we express it as follows:
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Here, v denotes the coefficient of surface tension, while e represents the characteristic width of the
interface. The term |V ¢|? quantifies the gradient of ¢ in space, while G() is a function proportional
to the perimeter of the object and is given by G(¢) = 184%(1 — ¢)2. The integral in Equation |§
accounts for the total energy associated with surface tension. The time evolution under tension is
described by the following equation, known as the Allen-Cahn equation, which is a reaction-diffusion

equation:
99 0Hwe(9) _ 2, G'(9)
i i (eV ¢+ . ) (7

In practice, the term G(¢) yields similar results to the |V¢|? term. Therefore, when explicitly
calculating the total tension, we can use the following simplified form:

Hin(0) = / d’r (ZGE@) @®)

Equation Eprovides an alternative expression for the total tension, which considers only the G(¢)
term. This formulation allows for efficient computation of the tension without explicitly calculating
the gradient term.

Functional Formulations of Wets via Phase-field: The interaction of an object with a substrate
involves adhesion, which pulls the object towards the substrate, and a repellent force that prevents
the object from penetrating into the substrate. To express the total energy in a physically consistent
manner, we define it as follows:

Han(¢) =7 / d*r ( ¢)2G( )+B¢so> ©)

Here, ~y represents the coefficient of adhesion, A is the adhesion strength (with A > 0), and B is
the repellent strength (with B > 0). The field ¢ corresponds to the substrate. In our simulation, the
substrate is considered a fixed function given by:

o(r) = % {1 + tanh [3 x <y°€_y)]} (10)

Here, the substrate is positioned at a specific vertical location, y = yo. In our simulation, we set
yo = —10. The function ¢ describes the spatial profile of the substrate, with a smooth transition
from high to low values as y increases from the substrate position. During this period, the evolution
function, which includes the tension part, is given by:

96 ¢), _

ot €
Equation |1 1|represents the time derivative of ¢, where the first term on the right-hand side accounts
for the tension contribution, the second term describes the adhesion interaction between the object
and the substrate, and the third term represents the repellent force due to the substrate. This evolution
equation governs the dynamics of the phase-field variable ¢ in the presence of adhesion and substrate
effects.

(V26 + AGI(¢22G(SD) + By a1

A.3 DATASETS GENERATION

Tension Datasets Generation: (1) The configuration of the grid and domain: The parameters m
and n determine the quantity of grid points along the = and y axes, respectively. The dimensions
of the domain are specified by L, and L, in the x and y directions. Vectors x and y denote the
coordinates of the grid points along the x and y axes, correspondmgly The parameters k£ and ¢
regulate the bending and tension within the system. (2) ten,.. is a vector that iterates over tension
values for the simulation. Inside the loop for each tension value: -y is the tension parameter. dt,
x;, M, are time steps, smoothing parameter, and viscosity parameters, respectively. Ny, is the
maximum number of iterations. record,,,., determines how often the simulation results are recorded.
Tradis Yradi, Trads are parameters defining the initial shape of the system. ¢ is the initial condition
of the simulation. (3) Change m,n, L,, L, for a finer or coarser grid or a larger/smaller domain.
Modify k, €, and other parameters to explore different physical scenarios. Adjust parameters inside
the tension loop (dt, z;, M, etc) for different simulation characteristics. Change the initial shape
parameters (Trqdi, Yradis Tradi) tO €xplore different starting configurations.
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Wets Datasets Generation: (1) The vector ten,.. represents tension values used in the simulation,
while adh,.. represents adhesion values. For each combination of tension and adhesion values,
denoted by ten; and adh; iterating through the indices of ten,e. and adh,.. respectively, the
following actions take place. The parameter -y is set to the current tension value, and adh is set to the
current adhesion value. The variable rep is calculated as a multiple of tension. At the beginning of
each iteration, the initial shape parameters (%,qdi, Yradi; Tradi) and the shape initialization (¢) are
redefined to ensure unique initial conditions for each combination of tension and adhesion values.
The position of the substrate is represented by y, and the substrate’s initial shape suby is initialized
using a hyperbolic tangent function. (2) By altering these parameters, particularly adjusting tension,
adhesion, and other physical factors, you have the ability to generate datasets that depict wetting
in various scenarios. Depending on your requirements, you can experiment with different levels of
tension, adhesion, initial shapes, and simulation parameters to examine how the system’s morphology
evolves under different conditions.

Jellyfish Datasets Generation: To generate our training and testing datasets, we employ the Lily-Pad
simulator Weymouth|(2015). The 2D flow field has a resolution of 128 x 128, assuming an infinite
extension. For the jellyfish, the fixed coordinates for the head are set as (25.6,64). The wings
are represented as ellipses with an identical shape, with a fixed ratio of 0.15 between their shorter
and longer axes. Symmetry is maintained across the central horizontal line defined by y = 64. To
delineate the boundaries of the wings, we sample a total of M/ = 20 points along each wing. In this
2D experiment, the key control signal is the opening angle of the wings, denoted as w. This angle is
defined as the deviation between the longer axis of the upper wing and the horizontal line.

Each trajectory commences with the widest possible opening angle and follows a periodic cosine curve
with a period of 77 = 200. The trajectories differ in their initial angle (wy), angle amplitude, and
phase ratio (7). To determine the initial angle wy, a two-step process is employed. Firstly, a random
mean angle w(™ is sampled from the range of [20°,40°]. Then, a random angle amplitude w(® is
sampled from the interval [10°, min(w(™),60° — w(™))]. The resulting initial angle is computed
as wy = w™ + w(®), constrained within the range of [10°,60°]. The phase ratio 7 is randomly
selected from the range of [0.2,0.8]. The opening angle w; at step ¢ adheres to a specific pattern:
it decreases from w(™) + w(®) to w(™) — w(®) as ¢ progresses from 0 to 77", and then it increases
from w(™) — w(® to w(™ 4 w(®) as t advances from 77" to T’. Beyond T”, w; exhibits periodic
variations. This configuration aligns with previous studies on jellyfish’s propulsive performance
Kang et al. (2023). Each trajectory is simulated for 600 steps, equivalent to 3 periods. Only the
segment of the trajectory from 7”7 = 200 to 37" = 600 steps is saved, with a step size of 10. This
decision is made to conserve space, as the simulation from ¢ = 0 to 7/ = 200 is primarily used
for initializing the flow field. Consequently, each trajectory is stored as a sequence consisting of
T = (600 — 200)/10 = 40 discrete steps.

In addition to tracking the positions of the wing boundary points and the opening angles w, we
incorporate an image-like representation of the wing boundaries. This representation contains spatial
information that can be efficiently integrated with the PDE states (fluid field) through convolutional
neural networks. The image-like boundary representation seamlessly aligns with the shape of the
PDE states. At each time step, the boundaries of the two wings are combined and transformed into
a tensor with dimensions [3, 64, 64]. This tensor represents the spatial information in a grid-like
format. Each cell in the tensor contains three features: a binary mask indicating whether the cell is
part of a wing boundary (1) or within the fluid (0), and the relative position (Ax, Ay), which denotes
the distance from the cell center to the nearest boundary point. For each trajectory, the following
components are saved: - PDE states u: This captures the fluid field states for each time step and has a
shape of [T ,3,64,64]. It includes the velocity components in the x and y directions as well as the
pressure. The resolution is downsampled from 128 x 128 to 64 x 64. - Velocity: [T, 2,64, 64]. -

Pressure: [T, 1,64, 64]. - Opening angles w: This stores the opening angle in radians for each step

and has a shape of [T']. - Boundary points: This records the boundary points for both the upper and
lower wings and has a shape of [T, 2, M, 2]. Each wing consists of M = 20 points, and each point is
represented by its coordinates in the x and y directions. The coordinates are scaled accordingly to fit
within the grid dimensions.
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Figure 4: In our study, we offer visualizations that compare benchmark methods, namely TFNO,
SFNO and ConvLSTM, using the tension dataset. The first row portrays the authentic cell scenario,
which serves as the ground truth. The subsequent rows illustrate the cells generated by the benchmark
methods and the corresponding error bar.
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Figure 5: In our study, we present visualizations using DDPM, including the ground truth, simulation
results, and error analysis. The first column subfigure represents the authentic cell scenario, which
serves as the reference. The subfigures in the second column showcase the cells generated by DDPM.
The subfigures in the third column illustrate the error figures, highlighting the differences between
the ground truth and the simulation results obtained through DDPM.
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Figure 6: Our research includes visualizations utilizing DDPM to analyze the Jellyfish (Fluid)
dataset, specifically focusing on the ground truth, simulation results, and error analysis. In the
first column, the initial subfigure presents the accurate depiction of the boundary for a jelly-like
robot. Transitioning to the second column, the subfigures demonstrate the pressure fields generated
through the implementation of DDPM. Lastly, in the third column, the error figures provide a visual
representation of the disparities between the ground truth and the simulated results obtained using

DDPM.
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A.4 DETAILED ILLUSTRATION AND SETUP OF BENCHMARK METHODS

Detailed Illustrations of Benchmark Methods: In this part, we aim to provide detaield illustrations
on baselines for simulating cell evolving.

FNO [Li et al.| (2020): The Fourier Neural Operator is a groundbreaking approach that utilizes
Fourier space to learn weights, enabling resolution-invariant global convolutions. This influential
work has been further expanded upon by numerous other neural operators. However, one notable
drawback is the substantial memory requirements. Specifically, each weight matrix in the Fourier
domain consumes O(H2MP) memory, where H represents the hidden size, M denotes the number
of Fourier modes used after truncating high frequencies, and D signifies the problem dimension.

SFNO Bonev et al. (2023): Spherical Fourier Neural Operators utilizes spherical harmonics to
transform data into the frequency domain. This is analogous to the way FNO uses the Fourier
transform for Cartesian grids but is specifically designed for spherical data. This approach allows
for handling data on the entire sphere without the distortions introduced by map projections. While
the traditional FNO faces substantial memory demands, SFNO optimizes memory usage through
spherical harmonics. Despite this, the memory requirement for SENO is still O( H?M?), where H is
the hidden size and M is the number of retained spherical harmonic modes.

TFNO: |Li et al.|(2020) We improve the previous FNO model by simply using a Tucker Tensorized
FNO with just a few parameters. This will use a Tucker factorization of the weights. The forward
pass will be efficient by contracting directly the inputs with the factors of the decomposition. The
Fourier layers will have 5% of the parameters of an equivalent, dense FNO.

UNet Ronneberger et al.|(2015): The UNet architecture is known for its U-shaped design, which
resembles an encoder-decoder structure. It is particularly effective for tasks that require precise
localization and segmentation of objects within images. UNet has achieved remarkable performance
in various applications, including biomedical image segmentation, satellite image analysis, and more.
The Unet consists of the forward and backward passes. the time complexity is mainly driven by the
size of the input image or volume, denoted as O(NN), where N is the number of pixels or voxels. It
is important to note that the specific implementation details and variations of UNet may introduce
additional computational complexities.

DDPM: Ho et al. (2020) DDPM gradually transforms a noise-corrupted data version into the original
distribution through iterative diffusion. Training involves two components: sampling and loss function
computation. Sampling complexity is O(S x N), where S is the diffusion steps and N is the step size.
The loss function compares generated samples with the original data, with complexity O(L * N),
where L is the number of layers. Overall training complexity is approximately O(S « N + L % N).
DDPM models complex data distributions using denoising diffusion. Training time complexity is
typically approximated as O(S x N + L « ), where S is diffusion steps, L is layers, and N is layer
size.

ConvLSTM Shi et al. (2015) postulates the prognostication of forthcoming spatiotemporal precipi-
tation patterns as an endeavor entailing the anticipation of sequential data in spatial and temporal
dimensions.

ViT Dosovitskiy et al. (2020) asserts that the reliance on convolutional neural networks (CNNs) is
dispensable, as the direct application of transformers to sequences of image patches yields exceptional
performance in the classification of visual data.

MLP-Mixer Tolstikhin et al.| (2021) is exclusively constructed upon the foundation of multi-layer
perceptrons (MLPs). It encompasses two distinct layer types: one that individually applies MLPs
to image patches, while the other employs MLPs across multiple patches, promoting enhanced
representation learning.

DDOs-FNO Lim et al.| (2023) advances a robust mathematical framework meticulously tailored for
the training of diffusion models within the realm of function space.

DDOs-SFNO Lim et al.|(2023) derives inspiration from the fusion of DDPM and FNO methodologies,
forging a cohesive amalgamation of their respective strengths.

DDOs-TFNO Lim et al.|(2023) adopts a hybrid approach, drawing inspiration from both DDPM and
TFNO methods, thereby capitalizing on their synergistic potential.
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Setups of Benchmark Methods:

Setting of FNO: The modes and width of FNO was set to 12 and 32, providing a suitable level
of complexity for the specific task at hand. The number of channels for the two cell dynamics
datasets and the fluid dataset was determined as [1, 3,5, 7, 9], taking into consideration the unique
characteristics of each dataset. All three datasets were standardized to an image size of 32 x 32 pixels.
In order to accelerate convergence, a learning rate of 1 x 10~ was adopted.

Setting of SFNO: The SFNO modes were set to 16, and the hidden channel was configured to 64.
The channel numbers for both cell dynamics datasets and the fluid dataset were set to [1,3,5,7,9],
reflecting the unique characteristics of each dataset. All three datasets were standardized to an image
size of 32 x 32 pixels. To accelerate convergence, we implemented a learning rate of 1 x 1073,

Setting of TFNO: The TFNO modes were set to 16, and the hidden channel was configured to 64.
We employed Tucker factorization with a rank of 0.05. The channel numbers for both cell dynamics
datasets and the fluid dataset were set to [1, 3, 5, 7, 9], reflecting the unique characteristics of each
dataset. All three datasets were standardized to an image size of 32 x 32 pixels. To accelerate
convergence, we implemented a learning rate of 1 x 1073,

Setting of UNet: The hidden size of the UNet convolutional neural network was set to 32, providing
a suitable level of complexity for the specific task at hand. The number of channels for the two cell
dynamics datasets and the fluid dataset was determined as [1, 3, 5, 7, 9], taking into consideration
the unique characteristics of each dataset. All three datasets were standardized to an image size of
32 x 32 pixels. In order to accelerate convergence, a learning rate of 1 x 10~* was adopted.

Setting of DDPM: To ensure equity and uniformity in our experimental procedures, the concealed
dimension of the U-Net convolutional neural network was established at 32, furnishing an apt level of
intricacy for the given undertaking. For the Gaussian diffusion process, an extensive 1000 diffusion
steps were executed, facilitating comprehensive exchange of information. The channel size multiplier
of the U-Net neural networks was stipulated as [1, 2, 4, 8], ensuring efficacious extraction of features
across diverse scales. The number of channels for the two cell dynamics datasets and the fluid dataset
were defined as 20, accommodating the distinctive attributes of each dataset. The dimensions of
all three datasets were standardized to an image size of 32 x 32 pixels. To expedite convergence, a
learning rate of 8 x 10~° was embraced.

Setting of ConvLSTM: The ConvLSTM model is initialized with input dimension and hidden
dimension are both set to 1, indicating a single-channel input and a single-channel output per hidden
layer. The model is designed to process sequences of length determined by [1, 3, 5, 7, 9], representing
the time dimension parameter. The convolution operation within the LSTM utilizes a kernel size of
3 x 3, which allows the model to capture spatial relationships within the data effectively.

Setting of ViT: ViT uses the temporal positional encoding method to handle the sequence length for
positional encoding, applied across combined time steps and patches (with size equals to 4). A linear
layer transforms the patch embeddings back into pixel values, ensuring the reconstruction of the
original image or the generation of future frames in the biological trajectory. The channel numbers
for both cell dynamics datasets and the fluid dataset were set to [1, 3, 5,7, 9], reflecting the unique
characteristics of each dataset. All three datasets were standardized to an image size of 32 x 32 pixels.
To accelerate convergence, we implemented a learning rate of 1 x 1073,

Setting of MLP-Mixer: The MLP-Mixer processes input data through two primary stages: channel-
mixing and token-mixing, utilizing a patch size of 4 x 4, hidden dimensions of 32, and 4 layers.
The number of channels for both cell dynamics datasets and the fluid dataset was set to [1, 3,5, 7, 9],
tailored to the unique characteristics of each dataset. All three datasets were standardized to an image
size of 32 x 32 pixels. To enhance convergence, a learning rate of 1 x 10~3 was adopted.

Setting of DDOs-FNO/DDOs-SFNO/DDOs-TFNO: The hidden size of the FNO neural network in
DDOs was set to 32, providing an appropriate level of complexity for the specific task at hand. To
enable thorough information exchange, a substantial number of 1000 diffusion steps were performed
for the Gaussian diffusion process. The number of channels for the two cell dynamics datasets
and the fluid dataset was determined as 20, taking into account the unique characteristics of each
dataset. All three datasets were standardized to an image size of 32 x 32 pixels. In order to accelerate
convergence, a learning rate of 8 x 10~° was adopted.
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A.5 RESULTS OF BENCHMARK METHODS

We have presented the results of our experiments in Table [ and Table[5} Upon careful examination
of the tables, it becomes evident that ConvLSTM outperforms other models, primarily due to its
inherent capability to capture long sequences effectively. Additionally, our observations reveal that
DDOs-FNO, DDOs-SFNO, and DDOs-TFNO do not exhibit satisfactory performance across the
three datasets. This can be attributed to the inherent challenges faced by these models in terms of
convergence when applied to biological datasets.

Table 4: Comparison of benchmarks in terms of MSE and Relative L2 norm on two datasets.

Time Step Metrics ConvLSTM ViT MLP-Mixer DDOs-FNO DDOs-SFNO DDOs-TFNO
Tension
TS = 1 MSE 0.0165 & 0.0003 0.0869 4 0.0002 0.0342 £ 0.0001 0.1288 £ 0.0010 0.1012 & 0.0020 0.1622 4 0.0020
L2 0.2982 £ 0.0002 0.7431 £ 0.0001 0.4065 + 0.0002 0.7218 4 0.0020 0.6022 £ 0.0030 0.6407 &£ 0.0010
TS =3 MSE 0.0212 4 0.0002 0.0842 4 0.0002 0.0497 £ 0.0002 0.1295 £ 0.0030 0.1124 + 0.0010 0.1734 4 0.0040
) L2 0.3564 £ 0.0001 0.7289 + 0.0001 0.4760 + 0.0002 0.7418 4 0.0030 0.6228 £ 0.0010 0.6538 + 0.0010
TS<=5 MSE  0.0805 % 0.0001 0.0839 4 0.0003 0.0519 £ 0.0001 0.1306 £ 0.0020 0.1206 + 0.0020 0.1801 =+ 0.0030
L2 0.6086 £ 0.0003 0.7319 £ 0.0001 0.5369 + 0.0001 0.7512 4 0.0030 0.6322 =+ 0.0030 0.6622 + 0.0010
TS =7 MSE  0.0858 + 0.0002 0.0849 4 0.0003 0.1562 4 0.0003 0.1311 &£ 0.0020 0.1278 + 0.0030 0.1846 + 0.0020
L2 0.6455 £ 0.0003 0.8217 £ 0.0002 0.7913 4 0.0002 0.7715 4 0.0010 0.6401 £ 0.0030 0.6703 =+ 0.0030
TS =9 MSE  0.0860 & 0.0002 0.0884 4 0.0002 0.1006 £ 0.0001 0.1387 £ 0.0020 0.1304 &+ 0.0020 0.1887 % 0.0020
L2 0.6688 £ 0.0003 0.7738 £ 0.0002 0.7754 4+ 0.0002 0.7815 4 0.0020 0.6517 £ 0.0010 0.6806 + 0.0010
‘Wet
TS = 1 MSE  0.0798 &+ 0.0002 0.1354 4 0.0001 0.1282 £ 0.0002 0.1477 £ 0.0030 0.1319 &+ 0.0030 0.1192 =+ 0.0030
L2 0.3612 £ 0.0001 0.6897 + 0.0002 0.6019 4 0.0002 0.6209 4 0.0040 0.6028 £ 0.0030 0.6011 + 0.0020
TS = 3 MSE  0.0843 4+ 0.0002 0.1512 4 0.0002 0.1267 4 0.0001 0.1501 &£ 0.0020 0.1489 + 0.0010 0.1243 4 0.0020
L2 0.3861 £ 0.0001 0.6958 £ 0.0001 0.5989 %+ 0.0002 0.6235 4 0.0030 0.6172 £ 0.0010 0.6224 + 0.0030
TS =5 MSE  0.0899 + 0.0002 0.1743 4 0.0002 0.1325 £ 0.0001 0.1566 £ 0.0020 0.1512 £ 0.0010 0.1304 & 0.0010
L2 0.3872 £ 0.0001 0.7341 £ 0.0001 0.6057 & 0.0001 0.6308 4 0.0030 0.6172 £ 0.0010 0.6406 + 0.0030
TS =7 MSE  0.0965 &+ 0.0002 0.1765 4 0.0002 0.1369 £ 0.0001 0.1602 £ 0.0020 0.1599 + 0.0030 0.1368 + 0.0020
L2 0.3946 £ 0.0002 0.7355 £ 0.0001 0.6129 4 0.0001 0.6405 4 0.0020 0.6509 =+ 0.0030 0.6594 + 0.0020
TS =9 MSE  0.0992 4+ 0.0002 0.1862 4 0.0002 0.1653 £ 0.0001 0.1624 £ 0.0030 0.1665 £ 0.0020 0.1403 4 0.0030

L2 0.3970 £ 0.0002 0.7543 & 0.0001 0.6408 £ 0.0001 0.6532 = 0.0020 0.6673 % 0.0030 0.6622 =+ 0.0010

Table 5: Comparison of benchmarks in terms of MSE and Relative L2 norm on Jellyfish (Fluid).
Time Step Metrics ConvLSTM ViT MLP-Mixer DDOs-FNO DDOs-SFNO DDOs-TFNO
MSE  0.0569 & 0.0002 0.2440 % 0.0003 0.1841 £ 0.0001 0.5012 & 0.0020 0.5019 % 0.0020 0.5563 =+ 0.0010

TS=1 L2 04719 £ 0.0002 0.8754 &+ 0.0001 0.8065 £ 0.0003 0.9019 = 0.0020 0.9314 £ 0.0020 0.9209 =+ 0.0040
IS =3 MSE  0.0989 & 0.0001 0.2608 £ 0.0003 0.1908 £ 0.0001 0.5218 £ 0.0030 0.5367 £ 0.0020 0.5678 £ 0.0020
L2 0.5953 4 0.0002 0.9027 £ 0.0001 0.7217 & 0.0001 0.9215 £ 0.0010 0.9461 = 0.0010 0.9287 + 0.0030
TS =5 MSE  0.1428 & 0.0002 0.2773 £ 0.0001 0.2548 £ 0.0002 0.5517 & 0.0030 0.5466 £ 0.0010 0.5466 = 0.0030
L2 0.6991 &£ 0.0001 0.9247 & 0.0002 0.7897 £ 0.0001 0.9484 + 0.0030 0.9566 + 0.0010 0.9309 =+ 0.0010
IS =7 MSE  0.1784 &+ 0.0002 0.2887 £ 0.0003 0.2756 £ 0.0002 0.5674 &+ 0.0010 0.5581 £ 0.0010 0.5522+ 0.0030
L2 0.7792 4+ 0.0002 0.9373 £ 0.0001 0.8124 £ 0.0001 0.9518 £ 0.0010 0.9617 &£ 0.0010 0.9455 4 0.0010
TS=9 MSE  0.2496 & 0.0001 0.2965 £ 0.0001 0.2843 &£ 0.0002 0.5718 £ 0.0020 0.5718 £ 0.0020 0.5609 £ 0.0030

L2 0.8843 +0.0002 0.9513 £ 0.0001 0.8249 % 0.0001 0.9645 £ 0.0030 0.9634 £ 0.0030 0.9534 £ 0.0030

A.6 BROADER IMPACTS AND LIMITATIONS

Broader Impact: The introduction of comprehensive large-scale datasets, namely Tension, Wets,
CellDivision and Jellyfish, has significant implications for the field of biological fluid simulation.
These datasets address the challenges faced by the community, including the lack of dynamic biologi-
cal process capture and limited scale of existing datasets. By providing a standardized evaluation
framework and incorporating physical modeling techniques, the datasets empower researchers to
objectively assess and compare data-driven methodologies. This fosters advancements in the field and
promotes the development of accurate and efficient models for simulating complex fluid dynamics
within biological systems. The availability of benchmark datasets also enhances reproducibility and
comparability of results across studies, facilitating knowledge sharing and collaboration within the
research community.

Limitations: While the introduced datasets offer valuable resources for data-driven biological fluid
simulation, they may have some limitations. First, the datasets are designed based on specific
biological scenarios and may not encompass the full range of biological fluid dynamics. Researchers
should be cautious when extrapolating findings to other systems. Second, the datasets rely on physical
modeling techniques such as the phase-field method, which may introduce certain simplifications and
assumptions that could impact the accuracy and applicability of the results. It is important to consider
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the limitations and assumptions of the underlying models when interpreting the data. Finally, the
scale and complexity of the datasets may pose computational and resource challenges for researchers
with limited access to high-performance computing infrastructure.
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