
On the Constrained Time-Series Generation Problem
Supplementary Material

A Datasets

In our experiments we consider two publicly available datasets and one synthetic dataset. All the
datasets have different characteristics such as periodicity, noise, correlation, and number of features.
In particular, the daily stock dataset uses daily historical Google stock data from 2004 to 2019 with
6 features, namely open, high, low, close, adjusted close, and volume. When running univariate
experiments, we only used the open feature from the daily-stock dataset. The energy data from
the UCI Appliances energy prediction dataset Candanedo et al. [2017] contains 28 features, at 10-
minute resolution, with noisy periodicity and correlation. Finally, the synthetic sine dataset contains
multivariate sinusoidal time-series, where each dimension is created independently, sampling the
frequencies and phases according the following equation:

xi(t) = sin(2πηit+ θi), s.t. ηi ∼ U [0, 1] ∧ θi ∼ U [−π, π], ∀i ∈ {1, ..., 5} (1)

This synthetic dataset comes from prior work Yoon et al. [2019]. Where not-otherwise stated, we
consider time-series of length 24. In table 1 we summarize the dataset properties, while in Table 15,
Table 17 and Table 16 we report all the detailed statistics.

Table 1: Dataset Description
Dataset Name Data type Samples dim(x) Data Resolution Link
Stocks Real 3,773 6 1-day Link
Energy Real 19,711 28 10-minutes Link
Sines Synthetic 10,000 5 data-point -

All the datasets are normalized between [-1,1] for the diffusion models.

B Benchmarks

We compare our approaches against existing time-series generative models, i.e., GT-GAN Jeon et al.
[2022], TimeGAN Yoon et al. [2019], RCGAN Esteban et al. [2017], C-RNN-GAN Mogren [2016],a
Recurrent Neural Networks (RNN) trained with T-Forcing and P-Forcing Lamb et al. [2016], Graves
[2013], WaveNET Oord et al. [2016], and WaveGAN Donahue et al. [2018]. We use and modify the
publicly available source code for each of the methods:

• GT-GAN Jeon et al. [2022] : openreview
• TimeGAN Yoon et al. [2019] : github
• RCGAN Esteban et al. [2017] : github
• C-RNN-GAN Mogren [2016] : github
• T-Forcing Graves [2013] : github
• P-Forcing Lamb et al. [2016] : github
• WaveNET Oord et al. [2016] : github
• WaveGAN Donahue et al. [2018] :github

In particular for T-forcing and P-forcing we use a 3-layer GRUs with hidden dimensions four times
the size of input features, as suggested in Yoon et al. [2019].

For constrained time-series generation scenarios, we restrict our analysis to the top three performing
benchmarks, and we adapt their architectures as follows:

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

http://finance.yahoo.com/quote/GOOG/history?p=GOOG
http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://openreview.net/attachment?id=ez6VHWvuXEx&name=supplementary_material
https://github.com/jsyoon0823/TimeGAN
https://github.com/ratschlab/RGAN
https://github.com/olofmogren/c-rnn-gan
https://github.com/snowkylin/rnn-handwriting-generation
https://github.com/anirudh9119/LM_GANS
https://github.com/ibab/tensorflow-wavenet
https://github.com/chrisdonahue/wavegan

• Trend and Fixed-Values constraints. We condition the generators by introducing a new
dimension that contains the trend or the fixed-values. During the training the trend and the
fixed-values are extracted directly from the input time-series to let the models rely on this
additional information.

• Hard-Constraints. We follow the recent work in Di Liello et al. [2020], Xu et al. [2018],
Bengio et al. [2017], and we extend the benchmark architectures by introducing a penalty
loss. This loss penalizes the generative models proportional to how much the generated
time-series violate the input constraint, and it is added to the original model loss by a
scale factor λc, which we consider as a hyper-parameter tuned in the experiments. Most
importantly, for GT-GAN and TimeGAN we add an optimization step, which lasts 1/4 of
the total epochs, and it optimizes the generator alone w.r.t. to the constraint loss. We found
that these models benefit from this additional optimization step.

We also employ rejection-sampling and fine-tuning using COP-method on all their generated synthetic
TS.

C Implementation details

We implement our work in Python. Specifically, we use PyTorch Paszke et al. [2019] to implement
diffusion models, and we use the Sequential Least Squares Programming (SLSQP) solver Jorge and
Stephen [2006] in Scipy’s optimization module Virtanen et al. [2020] for COP-method.

All the deep generative models are trained on an NVIDIA T4 GPU, with 4 CPU and 16gb or RAM.
To compare the computational times, the inference is done on a 4 CPU 3rd generation AMD EPYC
processors for all the models including the COP-method. The default hyper-parameters for the
diffusion model are reported in Table 2; we specify in each section when different hyper-parameters
are used to compute the results.

Table 2: Diffusion Model default hyper-Parameters

Hyper-parameter Value
batch-size 16
β1 1.0e-06
βT 0.5
channels 64
diffusion-embedding-dim 128
epochs 10000
kernel-size 2

Hyper-parameter Value
layers 4
learning-rate 0.0001
n-heads 8
noise-steps T 50
noise schedule quadratic
weight-decay 1.0e-06
constraint None

D Constrained Optimization Method (COP)

D.1 Algorithm and Details

In Algorithm 1, we present the procedure of the COP-method to generate or fine-tune TS such that
they conform to constraints. An illustration of the method is shown in Figure 1. We recall that COP
frames the task of generating a TS sample as optimizing the value of a set of ordered points that
make up the TS sample, such that the sample satisfies domain properties (like auto-correlation). In
particular, it starts from an initial sample TS (taken from the dataset, or randomly generated) and
optimizes its values according to its objective (e.g., maximize the distance between the generated and
initial sample), while respecting some constraints (which could be statistical properties or additional
structural constraints). With this problem formulation, we can use existing COP solvers (e.g., SLSQP)
to get new samples by solving those non-linear constraints and objectives. Thus the COP solver using
the specified constraints and objective function becomes the generative process.

For Algorithm 1, the parameters we used in our experiments are as follows: b = 0.1, θw = 3,
θr = 0.5, ηr = 10, ηi = 2. If the task is to match a trend, then we set θw = L to be the length of the
TS. For very long time series, using a θw < L can help make it easier for the COP solver by breaking

2

Figure 1: An example of a TS being altered (fine-tuning or generation) by the COP-method; changes
are made within a window that convolves over the TS. Top-left is the original TS and the window
shifts to the right (follow images clockwise) and changes the TS from the starting data in order to
respect constraints.

the problem into chunks. However, for some constraints, we may have to solve for all points (i.e.
θw = L) at once. The initial seed TS (x0) is a sample from the dataset (Line 6 of Algorithm 1), but
we also do experiments with different seed TS, and present the results in Section G.5. With respect to
the constraints that we input into the COP-method, they come from the hard constraints in C. The
objective used in COP-method for generating TS is to maximize L2-norm of the difference with the
seed TS. If a soft-constraint in C is a trend to be followed, then the objective is updated to encourage
the COP solver to minimize the L2-norm of the generated TS with the trend; the objective becomes a
weighted combination as follows: f(x̂,x, s) = (1−ω) ∗ ∥x− x̂∥22−ω ∗ ∥s− x̂∥22 where ω ∈ [0, 1].
By using different ω values one can trade-off between matching the trend and pushing the generated
TS to be different from the seed TS. For our experiments that have a trend in constraints C, we set
ω = 1.0.
Finally, if COP-method is used to fine-tune a TS to fit constraints, then the objective is changed to
minimize L2-norm with the input TS. This is to help prevent changing the TS significantly when
fine-tuning. We found L2-norm to work well for our experiments, but other distance functions, like
L1 norm or percentage difference, can be used as well.

The constraints used in the COP-method are the same as those input to the other methods, with one
exception. We need to additionally constrain the solver to match the statistical properties of real data.

D.2 Realism constraints for Time Series

To give an example of constraints one might like to impose for the realism of a generated dataset, let
us consider stock prices TS in daily stocks dataset. It is typically required for synthetic stock price
TS to preserve stylized facts (a term in economics Sewell [2011]) about the financial markets. These
include the distributions of returns, and return auto-correlations Bouchaud et al. [2018], Vyetrenko
et al. [2019]. The return at each point in time is defined as the percentage change in the value. For
auto-correlation, we use the discrete auto-correlation function for real data. Equations for returns, and
autocorrelation (for 1 dimensional TS) are shown in Equation 2 on the left and right side respectively.

rx(t) =
xt − xt−1

xt−1
, ρxx(τ) =

E[(xt+τ − µ)(xt − µ)]

σ2
x

(2)

where τ is the auto-correlation lag parameter and µ is the mean value of the TS.

3

Algorithm 1 Constrained Optimization Search for TS Generation/Fine-Tuning

1: Input: Seed TS x0, Constraints C , Objective Function f , budgets for constraints b, window size
θw, window overlap ratio θv , number of retries ηr, number of iterations per sample ηi

2: Output: x̂
3: len_TS← get_length(x0)
4: bounds← (0.98*min(x0),1.02*max(x0))
5: for r ← 1 to ηr do
6: x̂seed ← x0

{ the seed here is a dataset sample, but it can be initialized in different ways; for example, it
can also be sampled using brownian motion and rescaled using a sampled real TS’ mean and
variance}

7: x̂← copy(x̂seed)
8: Wpos ← get_all_window_positions(len_TS,θw, θv)

{ Window positions with overlap would be (for example) [0, 4], [2, 6], ...}
9: br ← b× 2r

10: Cb← update_constraints_with_budget(C,br)
11: for i← 1 to ηi do
12: v∗f ←∞
13: w∗

pos ← ∅
14: x̂i,best← copy(x̂)
15: for (ϕstart,ϕend) ∈Wpos do
16: (status, v̂f , x̂i,ϕstart,ϕend

)← SLSQP_optimize(f, Cb, x̂i[ϕstart:ϕend], bounds)
{solver returns the updated points. Then we insert them into the candidate solution to get
the updated solution}

17: x̂i,temp ← x̂i[0:ϕstart] | x̂i,ϕstart,ϕend
| x̂i[ϕend:]

18: if (status = success) & (v̂f < v∗f) then
19: v∗f ← v̂f
20: x̂i,best← x̂i,temp

21: w∗
pos ← (ϕstart,ϕend)

22: end if
23: end for
24: if v∗f ̸=∞ then
25: Wpos ←Wpos\w∗

pos
26: x̂← x̂i,best

27: end if
28: end for
29: if x̂ ̸= x̂seed then
30: return x̂
31: end if
32: end for
33: return ∅

In the COP method we use auto-correlation of the returns as a constraint – we task the solver to
match this property– for the daily stocks dataset. For the Energy dataset and Sines data, we used
the autocorrelation of the TS (not the autocorrelation of the returns) as the constraint to improve the
realism of the data generated. In our experiments, the auto-correlation lag parameter τ is set to 5.
We constrain the solver by taking the L2-norm of the difference in the autocorrelation vectors and
limiting that error. The initial budget for this constraint is set to 0.1, which can increase if the solver
cannot find a solution (see line 9 in Algorithm 1), and then the solver will iteratively try again.

D.3 WGAN-based Constrained Optimization (WGAN-COP)

One of the main limitations of the presented COP-method is the need to explicitly define all data
properties that generated synthetic data must have. In the COP method we had to add constraints to
match the autocorrelation of the TS signal as a way of capturing desired TS properties. We would
ideally like a function f∗ : X → R able to evaluate how much the synthetic data resembles the real

4

one. However, a single domain-agnostic metric to evaluate synthetic data does not exist yet Alaa et al.
[2022].

Following the recent advances in generative adversarial networks however, we notice that the critic
fw of a WGAN Arjovsky et al. [2017], Gulrajani et al. [2017] matches the description of our function
f∗, in the sense that it will return a higher value if an input sample resembles real data, i.e. it looks
like it was sampled from the real distribution of data. The critic also has additional interesting
properties, as it is trained using the Wasserstein, or Earth-Mover (EM), distance W (q, p) between
the real distribution q(x) and the synthetic one p(x). This distance is continuous everywhere and
differentiable almost everywhere under mild assumptions Arjovsky et al. [2017], and the critic fw
must lie within the space of 1-Lipschitz function ||fw||L ≤ 1. This means that: 1) we can train the
critic till convergence to get a reliable approximation of the Wasserstein distance Arjovsky et al.
[2017]; 2) the critic value correlates with sample realism or quality Gulrajani et al. [2017].

Therefore we can first train the WGAN architecture, and then we can replace the constraints used
to represent desired TS data properties (e.g. auto-correlation) with the critic function fw which we
put into the objective function. We call this adaptation of COP-method with WGAN as WGAN-
COP. WGAN-COP tries to maximize fw while guaranteeing any additional explicit constraints. A
COP-solver can get gradients w.r.t. sample x via back-propagation over the critic’s neural network
∇θfw(x). In general, this approach does not hold for all the GAN architectures (e.g., those that
minimize KL divergence), as the gradients can saturate with no guide for the COP.

Initial experiments show that WGAN-COP does not need to explicitly define realism constraints with
comparable performance, however the training of the WGAN is in general expensive and unstable,
especially with high-dimensional data.

E Diffusion Models

We now introduce the pseudo-code algorithms for the proposed diffusion-based approaches, namely
DiffTime, Loss-DiffTime and Guided-DiffTime. For all the models we keep the same choice of
diffusion steps T = 50, and we compute the noise variance β using a quadratic scheduler with a start
value of β =1.0e-06 and end value of βT = 0.5. We evaluate the impact of different choices of T
and β in Section G.1; and different noise scheduler in Section G.2. We recall also that αt := 1− βt

and α̂t :=
∏t

i=1 αi.

E.1 DiffTime

DiffTime is our base diffusion model approach, which can be trained to incorporate both trend and
fixed-values constraints. The basic model (i.e., without any constraint) follows the standard diffusion
model procedures. Algorithm 2 shows DiffTime training process, while Algorithm 3 shows the
inference process to generate new synthetic time-series.

Algorithm 2 Unconstrained DiffTime Training

1: Input: input TS distribution q(x0), number
of epochs E

2: Output: trained diffusion function ϵθ
3: for i = 1 to E do
4: t ∼ Uniform({1, . . . , T})
5: x0 ∼ q(x0) ; ϵ ∼ N (0, I)
6: Take gradient step on

∇θ

∥∥ϵ− ϵθ(
√
α̂tx0 +

√
1− α̂tϵ, t)

∥∥2
7: end for

Algorithm 3 Unconstrained DiffTime Sampling

1: Input: trained diffusion function ϵθ
2: Output: synthetic time-series x̂
3: x̂T ∼ N (0, I)
4: for t = T to 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: x̂t−1 = 1√
αt

(
x̂t − 1−αt√

1−α̂t
ϵθ(x̂t, t)

)
+ σtz

7: end for
8: Return x̂0

5

Trend Constraint. To constrain a particular trend, we condition the diffusion process using a trend
time-series s ∈ χ. We follow the recent work of Tashiro et al. [2021] to define our conditional
diffusion model, and we show the training procedure in Algorithm 4. At each training iteration,
a trend s, extracted directly from the input time-series x0 ∼ q(x0), and is used to condition the
generative model. The trend s can be any interpolation of the input time-series x0. In our experiments,
during training we compute the trend by dividing the time-series in two, and fitting each half with a
linear interpolation. We combine the linear interpolations to obtain a very simple trend s, and retain
the model from just copying the trend. During inference, we test the ability of the model to generalize
using instead a low-order (i.e., 3) polynomial approximation. In Figure 2 we show an example of
time-series and its trends, used respectively for training and inference, while in Section F.3 we show
some examples of generated time-series.

Algorithm 4 Trend-Constrained DiffTime Training

1: Input: input TS distribution q(x0), epochs E
2: Output: trained diffusion function ϵθ
3: for i = 1 to E do
4: t ∼ Uniform({1, . . . , T})
5: x0 ∼ q(x0) ; ϵ ∼ N (0, I)
6: s = poly-interpolation(x0)
7: Take gradient step on

∇θ

∥∥ϵ− ϵθ(
√
α̂tx0 +

√
1− α̂tϵ, t|s)

∥∥2
8: end for

Algorithm 5 Trend-Constrained DiffTime Sampling

1: Input: trained diffusion function ϵθ, trend s
2: Output: synthetic time-series x̂
3: x̂T ∼ N (0, I)
4: for t = T to 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: x̂t−1 = 1√
αt

(
x̂t − 1−αt√

1−α̂t
ϵθ(x̂t, t|s)

)
+ σtz

7: end for
8: Return x̂0

0 10 20

300

305

310
Input TS

0 10 20
300

305

310
Training Trend

0 10 20

300.0

302.5

305.0

307.5
Inference Trend

Figure 2: An example of trend-constraints.

Fixed-Value Constraint. To guarantee the fixed point constraints, which are hard constraints, we
modify the reverse process of DiffTime, and we explicitly include them in the latent variables x1:T .
The reverse process is shown in Algorithm 6, while the training procedure remains the standard one,
shown in Algorithm 2. The sampling algorithm shows that at each diffusion step t we explicitly
enforce the fixed-points values in the noisy time-series x̂t, such that, ∀ ri,j ∈ R, x̂i,j = ri,j where
x̂i,j ∈ x̂t. This approach guarantees that the generated time-series have the desired fixed-point values
— in fact the fixed-values are enforced also for t = 0 into x̂0 which is our final synthetic time-series.
By enforcing these fixed point at each iteration, we empirically found that the diffusion process better
adapts the synthetic time-series to incorporate them. Figure 9 shows some examples of generated
time-series with fixed-values constraint.

Algorithm 6 DiffTime Sampling - Fixed-Values Constraint

1: Input: trained diffusion function ϵθ, fixed-points constraintsR
2: Output: synthetic time-series x̂
3: x̂T ∼ N (0, I)
4: for t = T to 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: x̂t−1 = 1√
αt

(
x̂t − 1−αt√

1−α̂t
ϵθ(x̂t, t)

)
+ σtz

7: for ri,j ∈ R do
8: x̂t−1,i,j = ri,j
9: end for

10: end for
11: Return x̂0

6

E.2 Loss-DiffTime

We now discuss how to introduce a loss penalty into the diffusion model presented in the previous
section, to incorporate more complex constraints. While the sampling algorithm is the same of
Algorithm 3, the training now incorporates a penalty term into the loss function:

L(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2 + ρfc(x̂0)

]
(3)

where xt =
√
α̂tx0 +

√
1− α̂tϵ and x̂0 = 1√

αt

(
xt − 1−αt√

1−α̂t
ϵθ(xt, t)

)
. The function fc represents

any differentiable constraint we want to incorporate.
The training pseudo-code is reported in Algorithm 7.

Algorithm 7 Loss-DiffTime Training

1: Input: input TS distribution q(x0), number of epochs E, differentiable constraint fc, scale
parameter ρ

2: Output: trained diffusion function ϵθ
3: for i = 1 to E do
4: t ∼ Uniform({1, . . . , T})
5: x0 ∼ q(x0) ; ϵ ∼ N (0, I)
6: xt =

√
α̂tx0 +

√
1− α̂tϵ

7: ϵ̂ = ϵθ(xt, t)
8: Take gradient step on

∇θ ∥ϵ− ϵ̂∥2 + ρfc

(
1√
αt
(xt − 1−αt√

1−α̂t
ϵ̂)
)

9: end for

E.3 Guided-DiffTime

While Loss-DiffTime model is able to incorporate any constraint, it requires to train a new diffusion
function ϵθ for any new constraint. To overcome this limitation, we introduce Guided-DiffTime that
does not require re-training for new constraints — we train a single unconstrained diffusion model
using Algorithm 2 and then we guide this model during inference using a differentiable constraint fc.
We show this guided sampling procedure in Algorithm 8. In particular, at each diffusion step, we
get gradients from the differentiable constraints to guide (condition) the synthetic time-series. The
parameter ρ weights the constraint during the generative process.

In Section H.1 we show how Guided-DiffTime can dramatically reduce the carbon footprint, by
reducing the computational resources needed to handle new constraints.

Algorithm 8 Guided-DiffTime

Input: trained diffusion function ϵθ, differentiable constraint fc : X → R, scale parameter ρ
Output: synthetic time-series x0

x̂T ∼ N (0, I)
for t = T to 1 do
ϵ̂← ϵθ(x̂t, t)
ϵ̂← ϵ̂− ρ

√
1− α̂t∇x̂t

fc(
1√
α̂t
(x̂t − ϵ̂

√
1− α̂t))

x̂t−1 ←
√

α̂t−1

(
x̂t−

√
1−α̂t ϵ̂√
α̂t

)
+

√
1− α̂t−1ϵ̂

end for
return x̂0

7

E.4 Modelling the diffusion function

We approximate the diffusion function ϵθ using a deep neural network, whose architecture is based on
the groundbreaking work of Tashiro et al. [2021], Kong et al. [2020]. The architecture is composed
by a 1-layer TransformerEncoder Paszke et al. [2019], full-connected and 1d-Convolutional layers.
The diffusion steps t are encoded using a 128-dimensions embedding as proposed in previous
work Tashiro et al. [2021], Vaswani et al. [2017], Kong et al. [2020]. Figure 3 shows the neural
network architecture.

Input (S, L, K)

B : batch (default = 16)
S : 2 If Soft Constraint else 1
C : channel (default = 64)
L : TS length (default = 24)
K : TS features
E : temporal embedding (default = 128)

Conv1d (S, C)

ReLU

(S, L*K)

(C, L*K)

Diffusion step t

Dense

Diffusion step
embedding

Sin/Cos Temporal
encoding

SiLU

SiLUDense

Residual Layers

layer 0

layer i

layer n-1

+

Skip
connections

Dense +

(E)

(C, 1)

Feature Transformer
Layer

(E)

(K, L, C)

(L, K, C)

Temporal
Transformer Layer

Conv1d (C, 2*C)
(C, K*L)

(2*C,K*L) Activation
Gate

Conv1d
(C, 2*C)

(C, L, K)

Input to next layer+

(C, K*L)

Conv1d (C, C)

ReLU

Conv1d (C, 1)

Noise !𝝐

(C, L*K)

(C, L* K)

(1, L, K)

(C, L*K)

(C, L, K)

(C, L*K)

Figure 3: Diffusion model eθ(xt, t) architecture.

Since our architecture is mainly based on CSDI, we only discuss the main difference with respect
to the original work Tashiro et al. [2021]. In particular, we remove the side information provided
as embedding, and we incorporate all our conditionals along the input time-series x. In fact, our
the conditional trend s has the same shape of the input time-series x. Thus, we can create an input
Tensor with K features, L length, and C channels, where the first channel contains the conditional
trend s and the second channel contains the input time-series x. We also change the kernel-size of
the convolutional layers, which we found to be an important hyper-parameters to tune according the
volatility and length of the input time-series. For example, sine data of length 24 requires a kernel
size of 6. Stock data requires kernel size 2 for time-series of length 24, while the kernel size should
be increased to 24 for stock time-series with length 360.

For the noise level we use a Quadratic-Scheduler which defines βt as follows:

βt =

(√
β1 + t ·

√
βT −

√
β1

T − 1

)2

where T = 50 are the diffusion steps, and β1 = 1.0e− 06 and βT = 0.5.

8

F Experimental details and results

In this section, we report additional details about the experiments we show in the main body of the
paper.

F.1 Unconstrained generation

In Figure 4 we report the t-SNE analysis for all the approaches, which we omitted due to the limited
space, in the main body of the paper. Notice that, to save computational resources, we do not
recompute all the approaches but we use results from previous published work Yoon et al. [2019],
Jeon et al. [2022] for the same dataset (daily stocks). The figure shows again that DiffTime and COP-
method can generate realistic time-series beating existing benchmark algorithms. In particular, the
figure shows that our approaches have significantly better performance with better overlap between
red and blue samples.

(a) COP-method (b) DiffTime (c) GT-GAN (d) TimeGAN (e) RCGAN

(f) C-RNN-GAN (g) T-Forcing (h) P-Forcing (i) WaveNET (j) WaveGAN

Figure 4: t-SNE visualizations on multivariate stock data, where a greater overlap of blue and red dots
shows a better distributional-similarity between the generated data and original data. Our approaches
show the best performance.

F.2 Trend constraint

We report in Figure 5 the t-SNE analysis which we omitted due to space limitations in the main body
of the paper. This figure confirms the quantitative evaluation, with DiffTime and COP-method being
the best models also in terms of covering the input distribution — they show better overlap between
red and blue dots.

15 10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

COP

Original
Synthetic

(a) COP-method

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

DiffTime

Original
Synthetic

(b) DiffTime

10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

GT-GAN

Original
Synthetic

(c) GT-GAN

10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

TimeGAN

Original
Synthetic

(d) TimeGAN

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

RCGAN

Original
Synthetic

(e) RCGAN

Figure 5: A t-SNE visualizations of Trend constrained data, where a greater overlap of blue and
red dots implies a better distributional-similarity between the generated data and original data. Our
approaches show the best performance.

We report in Figure 6 some example of the generated time-series, showing how our synthetic time-
series are closer to the input trend. The figure also shows that GT-GAN is only able to generate a very
simple time-series matching just the upwards or downwards trend component.

9

0 10 20

145

150

155

Trend

0 10 20

145

150

155

160

165
COP

0 10 20

145

150

155

160

DiffTime

0 10 20
130

140

150

TimeGAN

0 10 20

180

185

190

195

200
RCGAN

0 10 20
400

450

500

GT-GAN

0 10 20

1020

1040

1060

1080

0 10 20

1000

1050

1100

0 10 20
1000

1050

1100

0 10 20
1000

1020

1040

1060

0 10 20

1050

1100

1150

0 10 20

600

800

1000

0 10 20
280

290

300

310

320

0 10 20
280

290

300

310

320

0 10 20
280

290

300

310

320

0 10 20

290

295

300

0 10 20

300

310

320

330

0 10 20

600

800

1000

1200
Synthetic TS

Figure 6: Example of Trend constraints and related synthetic time-series.

Sinusoidal Trend Finally we evaluate the case of a sinusoidal trend, i.e., the trend is provided as a
sine wave, computed similarly to Eq. 1. Considering the peculiar properties of a sinusoidal trend,
i.e., its periodicity, we investigate additional metrics, including: L2 distance and DTW distance
which measures how much the synthetic data follows a trend constraint by evaluating the distance
between the TS and the trend using L2 norm and Dynamic Time Warping (DTW) approach Berndt
and Clifford [1994], respectively; Fourier distance which applies a Fourier transformation and
compares the basis of the periodic trend and the synthetic TS generated.

Table 3 shows the evaluated quantitative metrics. The table confirms the results shown in the main
body of the paper: our approaches achieve the best performance in terms of Discriminative and
Predictive score; they also have the closest distance w.r.t. to the input trend. It is interesting to note
that the DTW and spectral transformation techniques effectively capture any latent similarity patterns
with the trends. For example, the spectral transformation highlights how some methods, like RCGAN,
are able to somehow capture the trend even if shifted (which is also visible on Figure 7).

Table 3: Soft Constraints (Sinusoidal Trend) - Time-Series Generation
Algo Inference-Time L2 Distance DTW Distance Fourier-based distance
COP (Ours) 0.73 ± 0.05 46.3±32.9 35.8±25.8 0.57±0.57
DiffTime (Ours) 0.02 ± 0.00 35.57±16.99 27.57±13.12 0.49±0.57
GT-GAN 0.00±0.00 1699.4±1253.1 1692.5±1253.9 1.74±2.51
TimeGAN 0.00±0.00 121.35±61.30 87.29±50.25 1.06±1.11
RCGAN 0.00±0.00 124.82±83.29 95.73±72.62 0.70±0.75

In Figure 7 we fixed a trend for all the approaches, and we sample 1000 time-series to evaluate the
generated time-series. The blue shaded area shows the 5% and 95% percentiles of the generated
synthetic time-series.

0 10 20

280

300

320

COP

5-95th percentile
Trend

(a) COP-method

0 10 20
260

280

300

320

340
DiffTime

5-95th percentile
Trend

(b) DiffTime

0 10 20

200

400

600

800

GT-GAN
5-95th percentile
Trend

(c) GT-GAN

0 10 20

280

300

320

TimeGAN
5-95th percentile
Trend

(d) TimeGAN

0 10 20

280

300

320

340

RCGAN

5-95th percentile
Trend

(e) RCGAN

Figure 7: A visualizations of Trend constrained data, where the orange dotted time-series is the trend,
and the shaded blue area shows the 5% and 95% percentiles of the generated synthetic time-series.
Our approaches show the best performance with time-series closer to the input trend.

10

F.3 Fixed-values constraint

For the fixed-values constraint we consider two fixed-value points at index 6 and 18 of the input
time-series, which represent the points at 25% and 75% positions, respectively. We report in Figure 8
the t-SNE analysis which we omitted due to space limitations in the main body of the paper. This
figure confirms the quantitative evaluation, with DiffTime and COP-method being the best models
also in terms of covering the input distribution — they show better overlap between red and blue
dots. In particular, we recall that while DiffTime is not perfectly covering the input distribution, it
always guarantee (i.e., 100% of the time) that the synthetic time-series pass through the two input
fixed-points.

15 10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

COP

Original
Synthetic

(a) COP-method

15 10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

DiffTime
Original
Synthetic

(b) DiffTime

10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

GT-GAN
Original
Synthetic

(c) GT-GAN

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

TimeGAN

Original
Synthetic

(d) TimeGAN

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

RCGAN
Original
Synthetic

(e) RCGAN

Figure 8: A t-SNE visualizations of Fixed-values constrained data, where a greater overlap of blue
and red dots implies a better distributional-similarity between the generated data and original data.
Our approaches are among the best models.

We report in Figure 9 some example of the generated time-series. This picture highlights the ability
of DiffTime to generate reasonable time-series passing through the two fixed-points. COP-method
shows the best results in this case, although it doesn’t change the TS much from the input TS given
to the COP-method. On the other hand, our DiffTime method does a better job of generating more
different TS while satisfying the constraints.

0 10 20
135

140

145

150

Input TS

0 10 20
135

140

145

150

COP

0 10 20

150

175

200

225

DiffTime

0 10 20

200

400

600

800 TimeGAN

0 10 20

150

200

250

300

RCGAN

0 10 20

150

200

250

300

GT-GAN

0 10 20

280

285

290

295

0 10 20

280

285

290

295

0 10 20
280

300

320

0 10 20

400

600

800

0 10 20
200

220

240

260

280

0 10 20

220

240

260

280

0 10 20

230

240

250

0 10 20

230

240

250

0 10 20

230

240

250

260

0 10 20

240

260

0 10 20
225

250

275

300

325

0 10 20

300

400

500

600 Synthetic TS

Figure 9: Example of Fixed-values constraint and related synthetic time-series.

11

F.4 Global Minimum constraint

For the global minimum generation, we enfored the time-series to have a global minimum at index
10. For Guided-DiffTime we use ρ = 2 while for Loss-DiffTime we use ρ = 3.5. In Figure 10 we
report the t-SNE analysis.

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

COP

Original
Synthetic

(a) COP-method

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime

Original
Synthetic

(b) Guided-DiffTime

10 5 0 5 10 15
x-tsne

10

5

0

5

y-
ts

ne

Loss-DiffTime

Original
Synthetic

(c) Loss-DiffTime

15 10 5 0 5 10
x-tsne

10

5

0

5

y-
ts

ne

GT-GAN

Original
Synthetic

(d) GT-GAN

10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

TimeGAN
Original
Synthetic

(e) TimeGAN

10 5 0 5 10 15
x-tsne

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y-
ts

ne

RCGAN

Original
Synthetic

(f) RCGAN

Figure 10: A t-SNE visualizations of Global-Min constrained data, where a greater overlap of blue
and red dots implies a better distributional-similarity between the generated data and original data.
Our approaches shows the best performance.

We report in Figure 11 some example of the generated time-series. While most of the approaches
generate synthetic time-series that respect the global minimum constraint, our methods better cover
the input distribution (see Figure 10), i.e., more fidelity in the generated data. In fact, in all the
benchmarks the generated time-series are very similar, while our approaches have more diverse
time-series.

0 10 20

240

250

260

270
COP

0 10 20

600

650

700
Guided-DiffTime

0 10 20

240

260

280
Loss-DiffTime

0 10 20

840

860

880 TimeGAN

0 10 20

290

300

310

320

RCGAN

0 10 20
500

520

540

GT-GAN

0 10 20
280

290

300

310

0 10 20
390

400

410

420

430

0 10 20
860

880

900

920

0 10 20

260

280

300

0 10 20

300

320

340

0 10 20

720

730

740

750

760

0 10 20
220

240

260

280

300

0 10 20

500

550

600

0 10 20

800

820

840

860

0 10 20

160

180

200

0 10 20

290

300

310

320

0 10 20

300

320

340

360
Constraint

Figure 11: Example of Global-min constraint and related synthetic time-series.

F.5 Multivariate constraint

Finally, we report the multivariate constraint using the multivariate Google stock data. This constraint
guarantees a well known financial data property where: the feature High has always the highest

12

value w.r.t. to the other features; and the feature Low has always the lowest value w.r.t. to the other
features. For Guided-DiffTime we use ρ = 0.001 while for Loss-DiffTime we use ρ = 3.5. We report
in Figure 12 the t-SNE analysis which we omitted due to space limitations in the main body of the
paper. This figure confirms the quantitative evaluation, with DiffTime and COP-method, and our
approaches show a better coverage of the input distribution, with a higher overlap between red and
blue dots.

10 5 0 5 10
x-tsne

2

1

0

1

2

3

y-
ts

ne

COP
Original
Synthetic

(a) COP-method

10 5 0 5 10
x-tsne

3

2

1

0

1

2

3

y-
ts

ne

Guided-DiffTime

Original
Synthetic

(b) Guided-DiffTime

10 5 0 5 10
x-tsne

4

3

2

1

0

1

2

3

y-
ts

ne

Loss-DiffTime

Original
Synthetic

(c) Loss-DiffTime

15 10 5 0 5 10 15
x-tsne

4

2

0

2

4

y-
ts

ne

GT-GAN
Original
Synthetic

(d) GT-GAN

10 5 0 5 10
x-tsne

4

2

0

2

4

6

y-
ts

ne

TimeGAN
Original
Synthetic

(e) TimeGAN

10 5 0 5 10
x-tsne

3

2

1

0

1

2

3

y-
ts

ne

RCGAN

Original
Synthetic

(f) RCGAN

Figure 12: A t-SNE visualizations of Multivariate constrained data, where a greater overlap of blue
and red dots implies a better distributional-similarity between the generated data and original data.
Our approaches shows the best performance.

We report in Figure 13 some example of the generated time-series. In this case, it’s worth noticing
that Guided-DiffTime and COP-method have among the best performance, showing time-series that
respect the multivariate constraints (i.e., high feature has always the maximum value, while low
feature is the lowest). The Figure also shows that the generated time-series from the GT-GAN have
not exactly the common statistical properties of stock data Bouchaud et al. [2018]; while RCGAN
and TimeGAN have a huge difference between High and Low features, which is unlikely in real data
and in the training set.

0 10 20
240

250

260

COP

0 10 20

460

480

500
Guided-DiffTime

0 10 20
440

460

480

500

Loss-DiffTime

0 10 20
520

530

540

TimeGAN

0 10 20

100

120

140

160

RCGAN

0 10 20

165

170

175
GT-GAN

0 10 20
220

230

240

250

0 10 20

300

310

320

330

0 10 20

240

260

280

0 10 20

740

760

780

800

0 10 20
140

160

180

200

220

0 10 20

80

90

100

110

0 10 20
950

1000

1050

1100

0 10 20

310

320

330

0 10 20
460

480

500

0 10 20

250

260

270

280

0 10 20
525

550

575

600

625

0 10 20

420

440

460

480

500 Open
Close
Low
High

Figure 13: Example of multivariate constraint and related synthetic time-series.

13

G Ablation Study

In this section we carried out an ablation study of the proposed approaches. Where not otherwise
stated, we consider univariate stock-data.

G.1 Diffusion steps

Here we evaluate the impact of a different number of diffusion steps in the diffusion models. We
vary the diffusion steps using T ∈ [50, 100, 200]. Figure 14 shows the t-SNE comparison for the
different diffusion steps, which show all the same performance. Therefore, in all our experiments we
considered the most economic setup of T = 50. In table 4 we evaluate the impact of the different
diffusion steps in the model according the quantitative metrics. Also in this table, we notice that the
increasing the diffusion steps do not improve the results.

(a) DiffTime T = 50 (b) DiffTime T = 100 (c) DiffTime T = 200

Figure 14: A t-SNE visualizations of DiffTime for different diffusion steps T ∈ [50, 100, 200].

Table 4: DiffTime with different diffusion steps T ∈ [50, 100, 200].
Algo Discr-Score Pred-Score Inference-Time

DiffTime T = 50 0.05±0.03 0.21±0.00 0.020±0.00
DiffTime T = 100 0.07±0.02 0.22±0.00 0.049±0.02
DiffTime T = 200 0.06±0.01 0.21±0.00 0.091±0.01

G.2 Noise Variance

Here we evaluate the impact of a different noise variance scheduler in the diffusion models. We recall
that we consider T = 50 diffusion steps, and we set the minimum noise level β1 = 1.0e− 06 , the
maximum level to βT = 0.5. Following recent work in diffusion models Tashiro et al. [2021], Nichol
and Dhariwal [2021], Song et al. [2021], we define βt by consider the following schedulers:

• Linear-Scheduler:

βt =

(
β1 + t · βT − β1

T − 1

)
• Quadratic-Scheduler:

βt =

(√
β1 + t ·

√
βT −

√
β1

T − 1

)2

• Cosine-Scheduler:

βt = β1 + (βT − β1) ·
1

2

(
1 + cos

(
π ∗ t
T

))
In Figure 15 we show the t-SNE comparison for the different schedulers. The figure shows that in our
case Cosine scheduler does not achieve a good performance, while both linear and quad scheduler
better cover the input data distribution.

14

(a) DiffTime-Quad (b) DiffTime-Linear (c) DiffTime-Cosine

Figure 15: A t-SNE visualizations of DiffTime for different noise variance scheduler.

Table 5: DiffTime with different noise variance scheduler.
Algo Discr-Score Pred-Score Inference-Time

DiffTime-quad 0.05±0.03 0.21±0.00 0.021±0.00
DiffTime-linear 0.06±0.02 0.21±0.00 0.021±0.01
DiffTime-cosine 0.25±0.02 0.23±0.00 0.021±0.00

G.3 Diffusion model architecture

We now evaluate the impact of different model layers, and hyper-parameters, on DiffTime perfor-
mance. We introduce the following variants of DiffTime:

• DiffTime-K-Heads - we change the number of attention heads, from 1 to 8;

• DiffTime-LSTM - we replace the convolutional layers using recurrent layers (i.e., LSTM)
along the attention mechanism, which is particularly successful for imputation and interpo-
lation of TS Shukla and Marlin [2020];

• DiffTime-full-LSTM - we replace all the convolutional and transformer layers by using
LSTM layers, which is common for time-series generation Mogren [2016];

• DiffTime-full-CNN - we replace the transformer layers using convolutional layers;

Table 6: DiffTime using different layers and hyper-parameters
Algo Discr-Score Pred-Score Inference-Time

DiffTime-1Heads 0.03±0.02 0.21±0.00 0.02±0.01
DiffTime-4Heads 0.06 ± 0.02 0.21±0.00 0.04±0.01
DiffTime-8Heads 0.05 ± 0.03 0.21±0.00 0.02±0.01
DiffTime-LSTM 0.06 ± 0.01 0.21±0.00 0.02±0.01
DiffTime-full-LSTM 0.50 ± 0.00 0.21±0.00 0.02±0.01
DiffTime-full-CNN 0.14 ± 0.04 0.21±0.00 0.03±0.01

The results are shown in Table 6. The table highlights the performance of the current architecture,
which uses transformer and convolutional layers. Moreover, the table shows that the number of
attention heads should be tuned according to the input dataset to achieve better results.

G.4 COP-method Initial seed

Here we evaluate the impact of different initial seed into COP-method framework. We test the
following: a) the input time-series distribution q(x); b) Brownian random noise that is scaled to a
real TS sample; c) Blended time-series where we add brownian noise to the input time-series from
q(x). Figure 16 shows the t-SNE results which show that all the different approaches achieve realistic
results, covering the input data distribution. Quantitative metrics are shown in Table 7, and confirm
the applicability of COP-method to the different input seed data.

15

15 10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

COP-Original

Original
Synthetic

(a) COP-Original

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

COP-Brownian

Original
Synthetic

(b) COP-Brownian

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

COP-Blended

Original
Synthetic

(c) COP-Blended

Figure 16: A t-SNE visualizations COP-method using different input seed data.

Table 7: COP-method with different input seed data.
Algo Discr-Score Pred-Score Inference-Time

COP-Blended 0.01±0.01 0.20±0.00 0.81±0.02
COP-Brownian 0.02±0.02 0.20±0.00 0.70±0.05
COP-Original 0.02±0.01 0.20±0.00 0.63±0.01

G.5 COP performance using different distance metrics

COP maximizes a L2 distance as objective, to obtain diversity and create new synthetic samples
starting from the input initial seeds. However, L2 distance may not necessarily be the best proxy
for diversity, and we can use other distance-based metrics. In this ablation experiment, we compare
the performance of COP comparing two different distance metrics. In particular, we empirically
evaluated L2 distance and L1 distance. Figure 17 shows that both the distance metrics preserve
distributional similarity in the synthetic data, which we empirically evaluated using t-SNE. However,
the L2 distance achieves slightly better quantitative results, a shown in Table 8.

Table 8: COP using L1 vs L2 distance to generate synthetic samples.
Algo Discr-Score Pred-Score

COP L2-distance 0.017±0.006 0.203±0.001
COP L1-distance 0.021±0.012 0.203±0.002

(a) L2-distance (b) L1-distance

Figure 17: A t-SNE visualizations of the time-series generated by COP by maximizing the L2 or L1
distance w.r.t. initial seed samples.

16

G.6 The impact of the scale parameter ρ to Guided-DiffTime

We evaluate the impact of the scale parameter ρ to the Guided-DiffTime when applied to Global Min
constraint. In Figure 18 we report the t-SNE analysis, while in Figure 19 we show some examples of
generated synthetic time-series. The quantitative metrics are reported in Table 9. It’s worth noticing
that (as expected) increasing of the scale parameter ρ, results in the model trading-off realism to
guarantee the constraints for all the synthetic time-series.

10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime = 0.4

Original
Synthetic

(a) Guided-DiffTime ρ = 0.4

10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime = 0.8

Original
Synthetic

(b) Guided-DiffTime ρ = 0.8

10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime = 1.0

Original
Synthetic

(c) Guided-DiffTime ρ = 1.0

10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime = 1.2

Original
Synthetic

(d) Guided-DiffTime ρ = 1.2

10 5 0 5 10 15
x-tsne

10

5

0

5

10

y-
ts

ne

Guided-DiffTime = 1.4

Original
Synthetic

(e) Guided-DiffTime ρ = 1.4

15 10 5 0 5 10
x-tsne

10

5

0

5

y-
ts

ne

Guided-DiffTime = 2

Original
Synthetic

(f) Guided-DiffTime ρ = 2.0

Figure 18: A t-SNE visualizations of Global Min constrained data at varying of the scale parameter ρ
for Guided-DiffTime.

0 10 20

610

620

630

Guided-DiffTime = 0.4

0 10 20

600

610

620

Guided-DiffTime = 0.8

0 10 20
600

620

640

660

680
Guided-DiffTime = 1.0

0 10 20
580

600

620

Guided-DiffTime = 1.2

0 10 20

600

650

700
Guided-DiffTime = 1.4

0 10 20

600

650

700
Guided-DiffTime = 2

0 10 20

400

420

0 10 20

370

380

390

400

410

0 10 20
360

380

400

0 10 20

360

380

400

0 10 20
360

370

380

390

400

0 10 20
390

400

410

420

430

0 10 20

580

590

600

610

0 10 20

580

600

620

0 10 20

560

580

600

0 10 20

560

580

600

0 10 20

540

560

580

600

0 10 20

500

550

600
Constraint

Figure 19: Example of Global Min constrained time-series at varying of the scale parameter ρ for
Guided-DiffTime.

17

Table 9: Guided-DiffTime global-min constrained generation at varying of ρ.

Algo Discr-Score Pred-Score Inference-Time Satisfaction Rate
GuidedDiffTime

ρ =0.4 0.04±0.03 0.21±0.00 0.034±0.02 0.36±0.00
ρ =0.8 0.04±0.03 0.21±0.00 0.033±0.02 0.70±0.00
ρ =1.0 0.05±0.02 0.21±0.00 0.032±0.01 0.81±0.00
ρ =1.2 0.06±0.02 0.21±0.00 0.032±0.01 0.88±0.00
ρ =1.4 0.06±0.03 0.21±0.00 0.033±0.04 0.90±0.00
ρ =2.0 0.07±0.02 0.21±0.00 0.034±0.02 0.94±0.00

H Additional Experiments

In this section we present additional experiments which we omitted in the main body of the paper
due to limited space. Where not otherwise stated, we consider univariate stock-data.

H.1 The computational cost of constrained-generation

First we evaluate the impact of adding a new constraint on the proposed models. We evaluate this
in terms of computational cost, i.e., the computational resources and time needed to incorporate
the new constraints and sample N = 1000 time-series for each constraint. For this experiment, we
compute the Global Min constraint and vary the global minimum index i ∈ [0, 23], i.e., along all the
time-series. Therefore, we have 24 different constraints.

In Table 101 we show the training, inference and total computation times required for all the 24
constraints. The table shows that COP-method does not require any training, however has a large
sampling (inference) time, due to the complexity of the optimization problem. Instead, Guided-
DiffTime only requires that we train a single unconstrained DiffTime model used to handle all the
different constraints. Therefore, Guided-DiffTime has a very low computational cost with respect to
other approaches that have to be re-trained for each new constraint. The table shows that Guided-
DiffTime is estimated to reduce the emission of around 60% w.r.t. to COP-method and around 92%
w.r.t. other Deep Generative models. All the deep generative models are trained on a NVIDIA T4
GPU, with 4 cores and 16gb or RAM. To compare the computational times, the inference is done on
a 4 core 3rd generation AMD EPYC processors for all the models including COP. Experiments were
conducted using AWS cloud service in Ohio region, where the total emissions are estimated using a
Machine Learning Impact calculator presented in Lacoste et al. [2019].

Table 10: Constrained Generation - Estimated total computational cost

Algorithm Training-Time (hrs) Inference-Time (hrs) Total-Time (hrs) Emissions (kgCO2eq)

COP-method 0.0 127.8 127.8 1.25
Guided-DiffTime 12.0 0.2 12.2 0.52
Loss-DiffTime 312.0 0.1 312.1 12.45
TimeGAN 400.0 0.0 400.0 15.96
RCGAN 156.0 0.0 156.0 6.22
GT-GAN 192.0 0.0 192.0 7.66

1The presented values are estimated using available experimental data, to reduce the computational cost.

18

https://docs.aws.amazon.com/ec2/index.html
https://mlco2.github.io/impact#compute

H.2 Longer time-series using DiffTime

We now evaluate the impact of the different time-series lengths on the generative models for un-
constrained generation. Notice that, while this is not the goal of our work, DiffTime and COP shows
consistently higher performance for longer time-series, while maintaining a stable training/inference
procedure. On the other hand, GANs-based methods, which have inherently unstable training, show
decreased performance for longer time-series. We consider daily stock-data with three different
lengths ∈ [36, 72, 360] (i.e., days). For these experiments we keep all the same hyper-parameters and
we only change:

• the kernel-size ks of CNN layers in the diffusion model, being ks ∈ [3, 6, 24] for the
different lengths ∈ [36, 72, 360], respectively;

• the hidden-dimension of TimeGAN, RCGAN, and GT-GAN, which is set to be the time-series
length, as suggested by authors and empirically evaluated;

• the window size θw of COP, being the time-series length divided by 2.

As mentioned, we found that the training time highly increase for TimeGAN and GT-GAN, especially
with time series of length equal to 360. For RCGAN and DiffTime the training time is only slightly
increased.

Table 11: Un-Constrained Generation - Longer TS
Length TS Algo Discr-Score Pred-Score Inference-Time

36 COP-Brownian 0.01±0.01 0.20±0.00 0.33±0.00
COP-Original 0.01±0.01 0.20±0.00 0.04±0.00
DiffTime 0.04±0.03 0.21±0.00 0.05±0.00
GT-GAN 0.03±0.02 0.21±0.00 0.00±0.00
RCGAN 0.01±0.01 0.20±0.00 0.00±0.00
TimeGAN 0.03±0.02 0.20±0.00 0.00±0.00

72 COP-Brownian 0.02±0.01 0.21±0.00 0.63±0.00
COP-Original 0.02±0.01 0.21±0.00 0.07±0.00
DiffTime 0.04±0.02 0.22±0.00 0.15±0.00
GT-GAN 0.09±0.05 0.22±0.00 0.00±0.00
RCGAN 0.03±0.02 0.21±0.00 0.00±0.00
TimeGAN 0.06±0.02 0.24±0.00 0.00±0.00

360 COP-Brownian 0.06±0.04 0.20±0.00 2.39±0.00
COP-Original 0.03±0.01 0.20±0.00 0.38±0.00
DiffTime 0.06±0.06 0.20±0.00 0.04±0.00
GT-GAN 0.18±0.05 0.20±0.00 0.03±0.00
RCGAN 0.09±0.06 0.21±0.00 0.00±0.00
TimeGAN 0.10±0.09 0.22±0.00 0.00±0.00

The quantitative metrics are reported in Table 11. It’s worth noticing that (as expected) increasing
the length of the time-series results in lower performance, as the models have more difficulty to
capture the longer statistical properties of the time-series. However, DiffTime and COP have the
lower degradation: the Discr. Score of DiffTime and COP increases only of 0.02 when the time-series
length increases from 36 to 360, while the other methods have at least 0.08 (400% more) increase in
Discr. Score.

In Figure 20 we report the t-SNE analysis for length 36, while in Figure 21 we show some examples
of generated synthetic time-series, normalized w.r.t. their first values. While the generated time-series
in Figure 21 may seem reasonable, some of them exhibit very unusual volatility (e.g., RCGAN and
TimeGAN generate time-series with more than 30% price changes in 36 days), while others samples
have not much diversity (i.e., first two time-series generated by GT-GAN). Importantly, it is also the
case that professional traders can easily distinguish between real stock price series and synthetic price
series generated by simple price models Mandelbrot and Hudson [2010].

In the next section we better investigate some specific financial properties, called stylized
facts Vyetrenko et al. [2020], to show that our approaches outperform the benchmarks in preserving
real data properties.

19

(a) COP-Original (b) COP-Brownian (c) DiffTime

(d) GT-GAN (e) TimeGAN (f) RCGAN

Figure 20: A t-SNE visualization of un-constrained time-series with length equal to 36. A greater
overlap of blue and red dots implies a better distributional-similarity between the generated data and
original data. Our approaches shows the best performance.

0 10 20 30
0.7

0.8

0.9

1.0

COP-Original

0 10 20 30

1.00

1.05

COP-Brownian

0 10 20 30
1.00

1.05

1.10

DiffTime

0 10 20 30

0.8

0.9

1.0

RCGAN

0 10 20 30
0.97

0.98

0.99

1.00

GT-GAN

0 10 20 30
1.0

1.1

1.2

1.3
TimeGAN

0 10 20 30

0.90

0.95

1.00

0 10 20 30
0.95

1.00

1.05

1.10

0 10 20 30

1.000

1.025

1.050

1.075

0 10 20 30

0.90

0.95

1.00

0 10 20 30

0.96

0.98

1.00

0 10 20 30
1.00

1.05

1.10

1.15

1.20

0 10 20 30
0.900

0.925

0.950

0.975

1.000

0 10 20 30
0.950

0.975

1.000

1.025

0 10 20 30

0.925

0.950

0.975

1.000

0 10 20 30
0.6

0.7

0.8

0.9

1.0

0 10 20 30
1.00

1.05

1.10

1.15

1.20

0 10 20 30
0.94

0.96

0.98

1.00

1.02

Figure 21: Example of un constrained time-series with length 36.

H.3 Financial properties

In this section we investigate three specific financial properties of price series, showing that synthetic
time-series generated by our approaches better preserve such properties w.r.t. existing benchmarks.
For example, as asset daily returns usually have fat tail distribution and long-range dependence, we
expected the same properties (or stylized facts) from artificial markets. To have a fair comparison, we
choose the case of time-series with length equal to 36, as the existing benchmarks have the closest
performance to us when the length is 36 (seeTable 11).

We evaluate the following three stylized facts auto-correlations, heavy tails distribution, and long
range dependence, to evaluate asset return properties. We refer the reader to the work in Vyetrenko
et al. [2020] and Bouchaud et al. [2018] for a more detailed introduction to stylized facts.

The first Figure 22 shows the return distribution of real and synthetic time-series, for all the approaches.
Our approaches show better overlap between orange and blue distributions, as the synthetic time-
series better resemble the real data returns. Is it interesting to note that RCGAN synthetic data has
a too much fat-tailed distribution, although in table 11 it has among the best performance in Discr.
Score.

20

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

COP-Original
real
syn

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

COP-Brownian
real
syn

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

DiffTime
real
syn

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

RCGAN
real
syn

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

GT-GAN
real
syn

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Daily Returns

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

TimeGAN
real
syn

real (right)
syn (right)

Figure 22: Returns distribution of un-constrained time-series with length 36.

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

100

200

300

400

500

Fr
eq

ue
nc

y

COP-Original
real
syn

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

100

200

300

400

500

600
Fr

eq
ue

nc
y

COP-Brownian
real
syn

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

DiffTime
real
syn

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

RCGAN
real
syn

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

GT-GAN
real
syn

1.0 0.5 0.0 0.5 1.0
AutoCorrelation of Returns

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

TimeGAN
real
syn

real (right)
syn (right)

Figure 23: Auto-correlation distribution of un-constrained time-series with length 36.

1 2 3 4 5 6
Lags

0.130

0.135

0.140

0.145

0.150

0.155

0.160

Co
rre

la
tio

n
Co

ef
fic

ie
nt

COP-Original
Real
Syn

1 2 3 4 5 6
Lags

0.13

0.14

0.15

0.16

0.17

0.18

Co
rre

la
tio

n
Co

ef
fic

ie
nt

COP-Brownian
Real
Syn

1 2 3 4 5 6
Lags

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

Co
rre

la
tio

n
Co

ef
fic

ie
nt

DiffTime
Real
Syn

1 2 3 4 5 6
Lags

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Co
rre

la
tio

n
Co

ef
fic

ie
nt

RCGAN
Real
Syn

1 2 3 4 5 6
Lags

0.15

0.20

0.25

0.30

0.35

Co
rre

la
tio

n
Co

ef
fic

ie
nt

GT-GAN

Real
Syn

1 2 3 4 5 6
Lags

0.14

0.16

0.18

0.20

0.22

0.24

Co
rre

la
tio

n
Co

ef
fic

ie
nt

TimeGAN
Real
Syn

Figure 24: Volatility-clustering and long-range dependence for time-series with length 36.

Figure 23 confirms the superiority of our approaches as the auto-correlation of synthetic returns have
much more similarity to those of real data: our approaches show better overlap between orange and
blue distributions. Finally, in Figure 24 we show the long-range correlation/dependence of returns,
with different lags from 1 to 6 days. The charts show that the volatility decays at increasing number
of the days, and that DiffTime has the best performance in preserving this property: orange and blue
lines are closer.

H.4 Time-Series fine-tuning using COP

In this section we show that COP can be used to fine-tune synthetic samples and enforce constraints,
for any deep learning model. In particular, we recall that COP can take as input synthetic samples
that do not respect a given constraint, and it can slightly alter them (see Algorithm 1 and Figure 1) to
meet the required properties and comply with the input constraint. We consider again the multivariate
constraint of Section F.5, using the multivariate Google stock data. Notice that, COP fine-tuning
procedure minimizes the L2 distance between the input samples and the generated ones, i.e., it
minimizes the number of changes needed to satisfy the constraints.

In Table 12 we show that COP can fine-tune generated samples and highly improve the percentage of
TS that respect the input OHLC constraint. Notice that, COP does not guarantee 100% of satisfaction
rate, as for some samples it is not able to guarantee the constraints (under current settings) without
destroying original data properties (e.g., autocorrelation), thus it fails. However, COP almost doubles
the satisfaction rate, and with different settings it can guarantee even higher satisfaction rate. In
particular, while Guided-DiffTime and TimeGAN achieve a satisfaction rate of 72% and 51%,
respectively, after the fine-tuning they achieve 97.3% and 89.7%. Importantly, Figure 25 confirms
that the data distribution learn by the model is not highly affected by COP fine-tuning procedure.

21

10 5 0 5 10
x-tsne

3

2

1

0

1

2

y-
ts

ne

Guided-DiffTimeTS
Original
Synthetic

(a) Guided-DiffTime

10 5 0 5 10
x-tsne

3

2

1

0

1

2

3

y-
ts

ne

Guided-DiffTimeCOP-tuned TS
Original
Synthetic

(b) COP fine-tuned Guided-
DiffTime

10 5 0 5 10
x-tsne

4

2

0

2

4

6

y-
ts

ne

TimeGANTS
Original
Synthetic

(c) TimeGAN

10 5 0 5 10
x-tsne

4

2

0

2

4

6

y-
ts

ne

TimeGANCOP-tuned TS
Original
Synthetic

(d) COP fine-tuned TimeGAN

Figure 25: A t-SNE visualizations of time-series generated by Guided-DiffTime and TimeGAN for
OHLC, before and after applying COP for fine-tuning. The fine-tuning does not alter or deteriorate
the data distribution.

Table 12: OHLC-Constrained Generation
Algo COP Fine-Tuning Satisfaction-Rate

Guided-DiffTime False 0.72±0.02
TimeGAN False 0.51±0.02
Guided-DiffTime True 0.97±0.03
TimeGAN True 0.90±0.02

I Extended related work comparison

In recent years, there has been a growing body of research dedicated to the exploration of synthetic
data, with particular emphasis on its application within the financial and healthcare domain van
Breugel et al. [2023], Yoon et al. [2019], Jeon et al. [2022], Esteban et al. [2017], Mogren [2016],
Coletta et al. [2022], Chen et al. [2021], Coletta et al. [2021]. This surge in interest can be attributed
to the escalating utility demonstrated by synthetic data across a diverse array of studies, particularly
in scenarios where access to genuine data is restricted due to privacy constraints Alaa et al. [2022],
van Breugel and van der Schaar [2023], Coletta et al. [2023], Esteban et al. [2017].

In this section we survey additional related work for synthetic time-series generation. In particular,
we consider the following state-of-art approaches: COSCI-GAN Seyfi et al. [2022], RTSGAN Pei
et al. [2021], and LS4 Zhou et al. [2023]. COSCI-GAN is a promising GAN-based approach that
focuses mostly on synthetic multivariate time series, which originates from a single source (i.e.,
biometric measurements from a medical patient; or open-high-low-close time-series from financial
markets). We consider such work as it shows promising results, especially for the preservation of
inter-channel/feature dynamics: we may expect such work to easily capture the OHLC constraint from
data itself. The second work, namely RTSGAN, focuses on real-world time series, where sequences
can have variable lengths, missing data, and noisy observations. The work proposes a novel generative
framework where an encoder-decoder module learns a mapping between a time series instance and a
fixed dimension latent vector, and the generative model works on such lower dimensional latent space.
To the best of our knowledge, this work shows state-of-art results on multivariate stock data. Finally,
LS4 is a generative model that uses latent variables evolving according to a state space ODE to
increase modeling capacity. However, differently from us, it focuses on long-sequence modelling and
continuous time-series. Therefore, we do not consider this last work as benchmark in our extended
comparison.

Furthermore, we recall that none of the above mentioned models directly support constrained
generation. Thus, we first consider them within the domain of unconstrained time-series (TS)
generation. Then, we modified the training procedure of such models by introducing a penalty loss,
which penalizes the generative models proportional to how much the generated time-series violate the
input constraint. For the constrained generation we specifically focus on the Open-High-Low-Close
(OHLC) constraint. We chose OHLC constraint for comparing the new baselines since COSCI-GAN
is intended for multivariate time series and OHLC is a constraint on the relative values between 4
time series. For both COSCI-GAN and RTSGAN we follow the official authors’ implementation.

22

I.1 Un-Constrained Generation

We first focus on uncontrained time-series scenarios for multivariate stock-data. We report the
quantitative metrics, Discr. and Pred. Score, in Table 13 , while t-SNE analysis is shown in Figure 26.
From the results, COP still shows the best distributional similarity w.r.t. to real data, which is
empirically evaluated in the t-SNE plot, where blue and red dots almost always overlap. RTSGAN
achieves notable performance in terms of Discr. and Pred. scores, with good distributional similarity
in the t-SNE chart. However, with respect to properties pertinent to financial data introduced in
Section H.3, RTSGAN shows higher autocorrelation than real data, potentially stemming from
multiple GRU layers (see Figure 27); and more shallow return distribution.

Table 13: Unconstrained Time-Series Generation - Stock data
Algo Discr-Score Pred-Score Inference-Time
COP (Ours) .050 ± .017 .041 ± .001 1.01 ± 0.00
DiffTime (Ours) .097 ± .016 .038 ± .001 0.02 ± 0.00
COSCI-GAN .412 ± .002 .088 ± .000 0.00±0.00
RTSGAN .024 ± .007 .036 ± .000 0.00±0.00

(a) COP (b) DiffTime

15 10 5 0 5 10
x-tsne

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y-
ts

ne

RTSGAN
Original
Synthetic

(c) RTSGAN

10 5 0 5 10
x-tsne

10

5

0

5

10

y-
ts

ne

COSCI-GAN
Original
Synthetic

(d) COSCI-GAN

Figure 26: A t-SNE visualizations of unconstrained time-series generation. Our models show among
the best performance.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
AutoCorrelation of Returns

0

100

200

300

400

500

Fr
eq

ue
nc

y

COP-Original
real
syn

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
AutoCorrelation of Returns

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

DiffTime
real
syn

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
AutoCorrelation of Returns

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

RTSGAN
real
syn

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
AutoCorrelation of Returns

0

20

40

60

80

100

Fr
eq

ue
nc

y

COSCI-GAN
real
syn

real (right)
syn (right)

Figure 27: Autocorrelation of returns distribution for un-constrained time-series.

I.2 OHLC-Constrained Generation

We now focus on OHLC constrained time-series scenarios for multivariate stock-data. Table 14
shows the quantitative results. Figure 28 shows the distributional similarity of the new approaches,
empirically evaluated through the t-SNE plot. From the results we can observe similar performance
as in the unconstrained setting for COSCI-GAN and RTSGAN, both in terms of distributional
similarity, discr. and pred. scores. However, looking at the satisfaction rate (i.e., percentage of
time-series respecting the input constraint), our methods outperform the two benchmarks. Most
importantly, our Guided-DiffTime model stands out for its remarkable capacity to accommodate new
constraints without any retraining, constituting a fundamental innovative contribution to the literature
on generating TS data.

23

Table 14: OHLC Constrained - Stock data
Algo Discr-Score Pred-Score Inference-Time Satisfaction Rate
COP (Ours) 0.04 ± 0.02 0.04±0.00 2.17 ± 0.10 1.00±0.00
GuidedDiffTime (Ours) 0.08 ± 0.00 0.04±0.10 0.15 ± 0.00 0.72 ± 0.02
LossDiffTime (Ours) 0.35 ± 0.04 0.04±0.01 0.14 ± 0.00 0.69 ± 0.01
COSCI-GAN 0.45 ± 0.01 0.09 ± 0.00 0.00±0.00 0.02 ± 0.00
RTSGAN 0.02±0.01 0.04±0.00 0.00±0.00 0.54 ± 0.02

10 5 0 5 10
x-tsne

2

1

0

1

2

3

y-
ts

ne

COP
Original
Synthetic

(a) COP

10 5 0 5 10
x-tsne

4

3

2

1

0

1

2

3

y-
ts

ne

Loss-DiffTime

Original
Synthetic

(b) Loss-DiffTime

10 5 0 5 10
x-tsne

3

2

1

0

1

2

3

y-
ts

ne

Guided-DiffTime

Original
Synthetic

(c) Guided-DiffTime

10 5 0 5 10
x-tsne

3

2

1

0

1

2

3

y-
ts

ne

RTSGAN
Original
Synthetic

(d) RTSGAN

7.5 5.0 2.5 0.0 2.5 5.0 7.5
x-tsne

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y-
ts

ne

COSCI-GAN

Original
Synthetic

(e) COSCI-GAN

Figure 28: A t-SNE visualizations of OHLC constrained time-series generation. Our models show
among the best performance.

Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Coȧnd its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

Data Description

We now report all the statistical properties of used datasets.

Table 15: Stock Dataset (GOOG)

Feature mean std min 25% 50% 75% max

Open 453.23 305.02 49.27 233.25 306.95 621.22 1271.00
High 457.33 307.45 50.54 235.40 309.35 627.55 1273.89
Low 448.81 302.55 47.67 230.75 304.51 612.40 1249.02
Close 453.15 305.13 49.68 233.44 306.44 622.69 1268.33
Adj-Close 453.15 305.13 49.68 233.44 306.44 622.69 1268.33
Volume 7391935.77 8197565.12 7900.00 1959200.00 4674500.00 9723900.00 82768100.00

24

Table 16: Synthetic Dataset (Sine)

Feature mean std min 25% 50% 75% max

Sine-1 0.49 0.32 0.0 0.20 0.46 0.80 1.0
Sine-2 0.50 0.32 0.0 0.20 0.46 0.80 1.0
Sine-3 0.50 0.32 0.0 0.19 0.46 0.81 1.0
Sine-4 0.50 0.32 0.0 0.20 0.46 0.80 1.0
Sine-5 0.49 0.32 0.0 0.19 0.46 0.80 1.0

Table 17: Energy Dataset
Feature mean std min 25% 50% 75% max

Appliances 97.69 102.52 10.00 50.00 60.00 100.00 1080.00
lights 3.80 7.94 0.00 0.00 0.00 0.00 70.00
T1 21.69 1.61 16.79 20.76 21.60 22.60 26.26
RH_1 40.26 3.98 27.02 37.33 39.66 43.07 63.36
T2 20.34 2.19 16.10 18.79 20.00 21.50 29.86
RH_2 40.42 4.07 20.46 37.90 40.50 43.26 56.03
T3 22.27 2.01 17.20 20.79 22.10 23.29 29.24
RH_3 39.24 3.25 28.77 36.90 38.53 41.76 50.16
T4 20.86 2.04 15.10 19.53 20.67 22.10 26.20
RH_4 39.03 4.34 27.66 35.53 38.40 42.16 51.09
T5 19.59 1.84 15.33 18.28 19.39 20.62 25.80
RH_5 50.95 9.02 29.82 45.40 49.09 53.66 96.32
T6 7.91 6.09 -6.06 3.63 7.30 11.26 28.29
RH_6 54.61 31.15 1.00 30.02 55.29 83.23 99.90
T7 20.27 2.11 15.39 18.70 20.03 21.60 26.00
RH_7 35.39 5.11 23.20 31.50 34.86 39.00 51.40
T8 22.03 1.96 16.31 20.79 22.10 23.39 27.23
RH_8 42.94 5.22 29.60 39.07 42.38 46.54 58.78
T9 19.49 2.01 14.89 18.00 19.39 20.60 24.50
RH_9 41.55 4.15 29.17 38.50 40.90 44.34 53.33
T_out 7.41 5.32 -5.00 3.67 6.92 10.41 26.10
Press_mm_hg 755.52 7.40 729.30 750.93 756.10 760.93 772.30
RH_out 79.75 14.90 24.00 70.33 83.67 91.67 100.00
Windspeed 4.04 2.45 0.00 2.00 3.67 5.50 14.00
Visibility 38.33 11.79 1.00 29.00 40.00 40.00 66.00
Tdewpoint 3.76 4.19 -6.60 0.90 3.43 6.57 15.50
rv1 24.99 14.50 0.01 12.50 24.90 37.58 50.00
rv2 24.99 14.50 0.01 12.50 24.90 37.58 50.00

25

References
Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela van der Schaar. How faithful

is your synthetic data? sample-level metrics for evaluating and auditing generative models. In
International Conference on Machine Learning, pages 290–306. PMLR, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press
Cambridge, MA, USA, 2017.

Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In
Proceedings of the 3rd international conference on knowledge discovery and data mining, pages
359–370, 1994.

Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, quotes and
prices: financial markets under the microscope. Cambridge University Press, 2018.

Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction models
of energy use of appliances in a low-energy house. Energy and buildings, 140:81–97, 2017.

Richard J Chen, Ming Y Lu, Tiffany Y Chen, Drew FK Williamson, and Faisal Mahmood. Synthetic
data in machine learning for medicine and healthcare. Nature Biomedical Engineering, 5(6):
493–497, 2021.

Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini, Aymeric
Moulin, Svitlana Vyetrenko, and Tucker Balch. Towards realistic market simulations: a generative
adversarial networks approach. In Proceedings of the Second ACM International Conference on AI
in Finance, pages 1–9, 2021.

Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. Learning to simulate
realistic limit order book markets from data as a world agent. In Proceedings of the Third ACM
International Conference on AI in Finance, pages 428–436, 2022.

Andrea Coletta, Svitlana Vyetrenko, and Tucker Balch. K-SHAP: Policy clustering algorithm for
anonymous multi-agent state-action pairs. In Proceedings of the 40th International Conference
on Machine Learning, pages 6343–6363. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/coletta23a.html.

Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, and Andrea
Passerini. Efficient generation of structured objects with constrained adversarial networks. Ad-
vances in neural information processing systems, 33:14663–14674, 2020.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. arXiv preprint
arXiv:1802.04208, 2018.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General
purpose time series synthesis with generative adversarial networks. Advances in Neural Information
Processing Systems, 35:36999–37010, 2022.

Nocedal Jorge and J Wright Stephen. Numerical optimization, 2006.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

26

https://proceedings.mlr.press/v202/coletta23a.html
https://proceedings.mlr.press/v202/coletta23a.html

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks.
Advances in neural information processing systems, 29, 2016.

Benoit B Mandelbrot and Richard L Hudson. The (mis) behaviour of markets: a fractal view of risk,
ruin and reward. Profile books, 2010.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv
preprint arXiv:1611.09904, 2016.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
2019.

Hengzhi Pei, Kan Ren, Yuqing Yang, Chang Liu, Tao Qin, and Dongsheng Li. Towards generating
real-world time series data. In 2021 IEEE International Conference on Data Mining (ICDM),
pages 469–478. IEEE, 2021.

Martin Sewell. Characterization of financial time series. Rn, 11(01):01, 2011.

Ali Seyfi, Jean-Francois Rajotte, and Raymond Ng. Generating multivariate time series with common
source coordinated gan (cosci-gan). Advances in Neural Information Processing Systems, 35:
32777–32788, 2022.

Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly sampled
time series. In International Conference on Learning Representations, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based dif-
fusion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804–24816, 2021.

Boris van Breugel and Mihaela van der Schaar. Beyond privacy: Navigating the opportunities and
challenges of synthetic data. arXiv preprint arXiv:2304.03722, 2023.

Boris van Breugel, Zhaozhi Qian, and Mihaela van der Schaar. Synthetic data, real errors: how (not)
to publish and use synthetic data. arXiv preprint arXiv:2305.09235, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

27

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela
Veloso, and Tucker Hybinette Balch. Get real: Realism metrics for robust limit order book market
simulations, 2019.

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela
Veloso, and Tucker Hybinette Balch. Get real: Realism metrics for robust limit order book market
simulations. In ACM International Conference on AI in Finance (ICAIF), 2020.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for
deep learning with symbolic knowledge. In International conference on machine learning, pages
5502–5511. PMLR, 2018.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state
space models for time-series generation. In International Conference on Machine Learning, pages
42625–42643. PMLR, 2023.

28

	Datasets
	Benchmarks
	Implementation details
	Constrained Optimization Method (COP)
	Algorithm and Details
	Realism constraints for Time Series
	WGAN-based Constrained Optimization (WGAN-COP)

	Diffusion Models
	DiffTime
	Loss-DiffTime
	Guided-DiffTime
	Modelling the diffusion function

	Experimental details and results
	Unconstrained generation
	Trend constraint
	Fixed-values constraint
	Global Minimum constraint
	Multivariate constraint

	Ablation Study
	Diffusion steps
	Noise Variance
	Diffusion model architecture
	COP-method Initial seed
	COP performance using different distance metrics
	The impact of the scale parameter to Guided-DiffTime

	Additional Experiments
	The computational cost of constrained-generation
	Longer time-series using DiffTime
	Financial properties
	Time-Series fine-tuning using COP

	Extended related work comparison
	Un-Constrained Generation
	OHLC-Constrained Generation

