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Abstract

Nearly all real world tasks are inherently partially observable, necessitating the use
of memory in Reinforcement Learning (RL). Most model-free approaches sum-
marize the trajectory into a latent Markov state using memory models borrowed
from Supervised Learning (SL), even though RL tends to exhibit different train-
ing and efficiency characteristics. Addressing this discrepancy, we introduce Fast
and Forgetful Memory, an algorithm-agnostic memory model designed specifi-
cally for RL. Our approach constrains the model search space via strong structural
priors inspired by computational psychology. It is a drop-in replacement for re-
current neural networks (RNNs) in recurrent RL algorithms, achieving greater
reward than RNNs across various recurrent benchmarks and algorithms without
changing any hyperparameters. Moreover, Fast and Forgetful Memory exhibits
training speeds two orders of magnitude faster than RNNs, attributed to its log-
arithmic time and linear space complexity. Our implementation is available at
https://github.com/proroklab/ffm.

1 Introduction

Reinforcement Learning (RL) was originally designed to solve Markov Decision Processes (MDPs)
[Sutton and Barto, 2018], but many real world tasks violate the Markov property, confining su-
perhuman RL agents to simulators. When MDPs produce noisy or incomplete observations, they
become Partially Observable MDPs (POMDPs). Using memory, we can summarize the trajectory
into a Markov state estimate, extending convergence guarantees from traditional RL approaches to
POMDPs [Kaelbling et al., 1998].

In model-free RL, there are two main approaches to modeling memory: (1) RL-specific architec-
tures that explicitly model a probabilistic belief over Markov states [Kaelbling et al., 1998] and (2)
general-purpose models such as RNNs or transformers that distill the trajectory into a fixed-size
latent Markov state. Ni et al. [2022] and Yang and Nguyen [2021] reveal that with suitable hyperpa-
rameters, general-purpose memory often outperforms more specialized belief-based memory.

Most applications of memory to RL tend to follow Hausknecht and Stone [2015], using RNNs like
Long Short-Term Memory (LSTM) or the Gated Recurrent Unit (GRU) to summarize the trajectory,
with other works evaluating transformers, and finding them tricky and data-hungry to train [Parisotto
et al., 2020]. Morad et al. [2023] evaluate a large collection of recent memory models across many

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/proroklab/ffm


partially observable tasks, finding that the GRU outperformed all other models, including newer
models like linear transformers. Interestingly, they show that there is little correlation between how
well memory models perform in SL and RL. Even recent, high-profile RL work like Hafner et al.
[2023], Kapturowski et al. [2023] use RNNs over more modern alternatives, raising the question
question: why do older memory models continue to overshadow their contemporary counterparts in
modern RL?

Training model-free RL policies today is sample inefficient, alchemical, and prone to collapse
[Schulman et al., 2015, Zhang et al., 2018], and reasoning over the entire trajectory magnifies these
issues. SL can better utilize scale, compute, and dataset advancements than RL, largely remov-
ing the need for strong inductive biases. For example, transformers execute pairwise comparisons
across all inputs, in a somewhat “brute force” approach to sequence learning. Similarly, State Space
Models [Gu et al., 2021] or the Legendre Memory Unit [Voelker et al., 2019] are designed to retain
information over tens or hundreds of thousands of timesteps, growing the model search space with
each additional observation.

Through strong inductive biases, older recurrent memory models provide sample efficiency and sta-
bility in exchange for flexibility. For example, the GRU integrates inputs into the recurrent states in
sequential order, has explicit forgetting mechanics, and keeps recurrent states bounded using satu-
rating activation functions. These strong inductive biases curtail the model search space, improve
training stability and sample efficiency, and provide a more “user-friendly” training experience. If
inductive biases are indeed responsible for improved performance, can we better leverage them to
improve memory in RL?

Contributions We introduce a memory model that summarizes a trajectory into a latent Markov
state for a downstream policy. To enhance training stability and efficiency, we employ strong in-
ductive priors inspired by computational psychology. Our model can replace RNNs in recurrent
RL algorithms with a single line of code while training nearly two orders of magnitude faster than
RNNs. Our experiments demonstrate that our model attains greater reward in both on-policy and
off-policy settings and across various POMDP task suites, with similar sample efficiency to RNNs.

2 Related Work

RL and SL models differ in their computational requirements. While in SL the model training
duration is primarily influenced by the forward and backward passes, RL produces training data
through numerous inference workers interacting with the environment step by step. Consequently,
it’s imperative for RL memory to be both fast and efficient during both training and inference.
However, for memory models, there is often an efficiency trade-off between between the training
and inference stages, as well as a trade-off between time and space complexity.

Recurrent Models Recurrent models like LSTM [Hochreiter and Schmidhuber, 1997], GRUs
[Chung et al., 2014], Legendre Memory Units (LMUs) [Voelker et al., 2019], and Independent
RNNs [Li et al., 2018] are slow to train but fast at inference. Each recurrent state S over a sequence
must be computed sequentially

yj ,Sj = f(xj ,Sj−1), j ∈ [1, . . . , n] (1)

where xj ,yj are the inputs and outputs respectively at time j, and f updates the state S incremen-
tally. The best-case computational complexity of recurrent models scales linearly with the length
of the sequence and such models cannot be parallelized over the time dimension, making them
prohibitively slow to train over long sequences. On the other hand, such models are quick at infer-
ence, exhibiting constant-time complexity per inference timestep and constant memory usage over
possibly infinite sequences.

Parallel Models Parallel or “batched” models like temporal CNNs [Bai et al., 2018] or transformers
[Vaswani et al., 2017] do not rely on a recurrent state and can process an entire sequence in parallel
i.e.,

yj = f(x1, . . . ,xj), j ∈ [1, . . . , n] (2)

Given the nature of GPUs, these models exhibit faster training than recurrent models. Unfortunately,
such models require storing all or a portion of the trajectory, preventing their use on long or infinite
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sequences encountered during inference. Furthermore, certain parallel models like transformers
require quadratic space and n comparisons at each timestep during inference. This limits both the
number of inference workers and their speed, resulting in inefficiencies, especially for on-policy
algorithms.

Hybrid Models Linear transformers [Katharopoulos et al., 2020, Schlag et al., 2021, Su et al.,
2021] or state space models [Gu et al., 2021, 2020] provide the best of both worlds by providing
equivalent recurrent and closed-form (parallel) formulations

Sj = f(xj ,Sj−1) = g(x1, . . . ,xj), j ∈ [1, . . . , n] (3)

Training employs the batched formula to leverage GPU parallelism, while inference exploits recur-
rent models’ low latency and small memory footprint. Thus, hybrid models are well-suited for RL
because they provide both fast training and fast inference, which is critical given the poor sample ef-
ficiency of RL. However, recent findings show that common hybrid models typically underperform
in comparison to RNNs on POMDPs [Morad et al., 2023].

3 Problem Statement

We are given a sequence of actions and observations (o1,0), (o2,a1), . . . (on,an−1) up to time n.
Let the trajectory X be some corresponding encoding x = ε(o,a) of each action-observation pair

Xn = [x1, . . . ,xn] = [ε(o1,0), . . . , ε(on,an−1)]. (4)

Our goal is to summarize Xn into a latent Markov state yn using some function f . For the sake of
both space and time efficiency, we restrict our model to the space of hybrid memory models. Then,
our task is to find an f , such that

yn,Sn = f(Xk:n,Sk−1), (5)

where Xk:n is shorthand for xk,xk+1, . . . ,xn. Note that by setting k = n, we achieve a one-step re-
current formulation that one would see in an RNN, i.e., yn,Sn = f(Xn:n,Sn−1) = f(xn,Sn−1).

4 Background

In the search for inductive priors to constrain our memory model search space, we turn to the field of
computational psychology. In computational psychology, we use the term trace to refer to the phys-
ical embodiment of a memory – that is, the discernable alteration in the brain’s structure before and
after a memory’s formation. Computational psychologists model long-term memory as a collection
of traces, often in matrix form

Sn = [x1, . . . ,xn] , (6)

where xj are individual traces represented as column vectors and Sn is the memory at timestep n
[Kahana, 2020].

Composite Memory Composite memory [Galton, 1883] approximates memory as a lossy blend-
ing of individual traces x via summation, providing an explanation for how a lifetime of experiences
can fit within a fixed-volume brain. Murdock [1982] expresses this blending via the recurrent for-
mula

Sn = γSn−1 +Bnxn, (7)

where γ ∈ (0, 1) is the forgetting parameter and Bn is a diagonal matrix sampled from a Bernoulli
distribution, determining a subset of xn to add to memory. In Murdock’s model, S is a vector, not a
matrix. We can expand or “unroll” Murdock’s recurrence relation, rewriting it in a closed form

Sn = γnS0 + γn−1B1x1 + . . . γ0Bnxn, 0 < γ < 1, (8)

making it clear that memory decays exponentially with time. Armed with equivalent recurrent and
parallel formulations of composite memory, we can begin developing a hybrid memory model.
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Contextual Drift It is vital to note that incoming traces x capture raw sensory data and lack con-
text. Context, be it spatial, situational, or temporal, differentiates between seemingly identical raw
sensory inputs, and is critical to memory and decision making. The prevailing theory among com-
putational psychologists is that contextual and sensory information are mixed via an outer product
[Howard and Kahana, 2002]

x̂n = xnω
⊤
n (9)

ωn = ρωn−1 + ηn, 0 < ρ < 1, (10)

where ηn is the contextual state at time n, and ρ ensures smooth or gradual changes between con-
texts. Although context spans many domains, we focus solely on temporal context.

5 Fast and Forgetful Memory

Fast and Forgetful Memory (FFM) is a hybrid memory model based on theories of composite mem-
ory and contextual drift. It is composed of two main components: a cell and an aggregator. The
cell receives an input and recurrent state x,S and produces a corresponding output and updated re-
current state y,S (Figure 1). The aggregator resides within the cell and is responsible for updating
S (Figure 2). We provide the complete equations for both the aggregator and cell and end with the
reasoning behind their design.

Aggregator The aggregator computes a summary Sn of X1:n, given a recurrent state Sk−1 and
inputs Xk:n

Sn = γn−k+1 ⊙ Sk−1 +

n∑
j=k

γn−j ⊙ (xj1
⊤
c ), Sn ∈ Cm×c (11)

γt =
(
exp (−α) exp (−iω)

⊤
)⊙t

=

 exp (−t(α1 + iω1)) . . . exp (−t(α1 + iωc))
...

...
exp (−t(αm + iω1)) . . . exp (−t(αm + iωc))

 ∈ Cm×c.

(12)

where ⊙ is the Hadamard product (or power), m is the trace size, c is the context size, and α ∈
Rm

+ ,ω ∈ Rc are trainable parameters representing decay and context respectively. Multiplying
column a vector by 1⊤

c “broadcasts” or repeats the column vector c times.

In Appendix C, we derive a memory-efficient and numerically stable closed form solution to com-
pute all states Sk:n in parallel over the time dimension. Since our model operates over relative time,
we map absolute time k, . . . , n to relative time p ∈ 0, . . . , t, where t = n − k. The closed form to
compute a state Sk+p given Sk−1 is then

Sk+p = γp+1 ⊙ Sk−1 + γp−t ⊙
p∑

j=0

γt−j ⊙ (xk+j1
⊤
c ), Sk+p ∈ Cm×c. (13)

We can rewrite the aggregator’s closed form (Equation 13) in matrix notation to highlight its time-
parallel nature, computing all states Sk:n = Sk,Sk+1, . . . ,Sk+n at once

Sk:n =

 γ1

...
γt+1

⊙

Sk−1

...
Sk−1

+

γ
−t

...
γ0

⊙


(∑0

j=0 γ
t−j ⊙

(
xk+j1

⊤
c

))
...(∑t

j=0 γ
t−j ⊙

(
xk+j1

⊤
c

))
 , Sk:n ∈ C(t+1)×m×c.

(14)

The cumulative sum term in the rightmost matrix can be distributed across t processors, each requir-
ing O(log t) time using a prefix sum or scan [Harris et al., 2007].

Cell The aggregator alone is insufficient to produce a Markov state y. S is complex-valued and
contains a large amount of information that need not be present in y at the current timestep, making
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1 n
0

x1

1 n
ℜ(−x1)

ℜ(x1)

1 n

1 n
ℑ(−x1)

ℑ(x1)

1 n

⊙ e−tα

x1

· (e−tiω)⊤ S

Figure 1: A detailed example of aggregator dynamics for m = 1, c = 2, showing how a one-
dimensional input x1 contributes to the recurrent state S over time t = [1, n]. At the first timestep,
S1 is simply x1. Over time, the contribution of x1 to S undergoes exponential decay via the α term
(forgetting) and oscillations via the ω term (temporal context). In this example, the contribution
from x1 to Sn approaches zero at time n.

⊕⊙γ

ℓ1(·)⊙ σ(ℓ2(·)) LN(ℓ3(·)) ⊙

σ(ℓ4(·)) (1− σ(ℓ4(·)))⊙ ℓ5(·)

⊕ yk

Sk−1

xk

Sk

x̃k

Figure 2: A visualization of an FFM cell running recurrently for a single timestep (i.e., inference
mode). Inputs xk,Sk−1 go through various linear layers (ℓ), hadamard products (⊙), addition (⊕),
normalization (LN), and sigmoids (σ) to produce outputs yk,Sk. The boxed region denotes the
aggregator, which decays and shifts Sk−1 in time via γ. During training, the aggregator computes
Sk, . . . ,Sn in parallel so that we can compute all yk, . . . ,yn in a single forward pass.

it cumbersome to interpret for a downstream policy. Furthermore, X could benefit from additional
preprocessing. The cell applies input gating to X and extracts a real-valued Markov state y from S.

x̃k:n = ℓ1(xk:n)⊙ σ(ℓ2(xk:n)), x̃k:n ∈ R(t+1)×m (15)

Sk:n = Agg(x̃k:n,Sk−1), Sk:n ∈ C(t+1)×m×c (16)

zk:n = ℓ3(Flatten(ℜ[Sk:n] || ℑ[Sk:n])), zk:n ∈ R(t+1)×d (17)

yk:n = LN(zk:n)⊙ σ(ℓ4(xk:n)) + ℓ5(xk:n)⊙ (1− σ(ℓ4(xk:n)). yk:n ∈ R(t+1)×d (18)

Agg represents the aggregator (Equation 14) and ℓ represents linear layers with mappings ℓ1, ℓ2 :
Rd → Rm, ℓ3 : Rm×2c → Rd, ℓ4, ℓ5 : Rd → Rd. ℜ,ℑ extract the real and imaginary components
of a complex number as reals, Flatten reshapes a matrix (m× c→ mc) and || is the concatenation
operator. LN is nonparametric layer norm, and σ is sigmoid activation. Equation 15 applies input
gating, Equation 16 computes the recurrent states, Equation 17 projects the state into the real domain,
and Equation 18 applies output gating.

Modeling Inductive Biases To justify FFM’s architecture, we detail its connections to computa-
tional psychology. Drawing from the theory of composite memory, we integrate sigmoidal gating to
x in Equation 15, approximating the sparsity-driven Bernoulli term, B, presented in (Equation 7).
This inductive bias represents that only a small subset of each sensory experience is stored in mem-
ory.

Following the blending constraint imposed by composite memory (Equation 8), we sum the traces
together (Equation 11). We suspect this blending prior yields a model that is more robust to the bad
policy updates that plague RL, compared to RNNs that apply nonlinear and destructive transforms
(e.g. deletion) to the recurrent state.
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In Equation 12, the exponential component exp (−tα) ensures that traces are forgotten according to
composite memory decay from Equation 8. We choose an exponential decay e−|α|, approximating
Murre and Dros [2015]. This inductive bias asymptotically decays traces, reducing the size of the
model optimization space. This is in direct contrast to recent SL memory models which aim to store
as much information as possible for as long as possible [Gu et al., 2021, Voelker et al., 2019, Schlag
et al., 2021]. In our ablations, we show that forgetting is critical in RL.

Traditionally, contextual coding and composite memory are separate mechanisms, but we incorpo-
rate both through γ. The exp (−iωt) component of γ in Equation 12 applies temporal context,
enabling relative-time reasoning. Following contextual coding theory, we take the outer product of
a trace vector, in our case decayed by α, with a context vector produced by ω. We can rewrite
γt = γt−1 ⊙ γ, mirroring the gradual recurrent context changes from Equation 10.

The recurrent state S is a complex-valued matrix, so we project it back to the real domain as z
(Equation 17). z can be large for dimensions where α is near zero (minimal decay), so we find it
crucial to apply layer normalization in Equation 18. Finally, we apply a gated residual connection to
improve convergence speed, letting gradient descent find the optimal mixture of input x to memory
z for the Markov state y.

The Mathematics Underpinning FFM The goal of FFM is to produce a memory mechanism
which can be parallelized across the time dimension. As discussed in section 4, we can achieve this
through a summation of sensory information mixed by some arbitrary function ϕ with a temporal
context ωj = ψ(j), generating an aggregator of the form

Sn =

n∑
j=0

ϕ(ψ(j),xj). (19)

Any implementation under this formulation would provide memory with temporal context for abso-
lute time. However, in order to maximize generalization, we wish to operate over relative time. This
introduces a problem, as the relative temporal context ψ(n− j) associated with each xj must be up-
dated at each timestep. Therefore, we must find a function h that updates each temporal context with
some offset: h(ψ(j), ψ(k)) = ψ(j + k). Solving for h, we get: h(j, k) = ψ(ψ−1(j) + ψ−1(k)).
If we also set ϕ = h, then applying a temporal shift h(·, k) to each term in the sum yields the same
result as initially inserting each xj with ψ(j + k):

h(ϕ(ψ(j), xj), k) = ϕ(ψ(j + k), xj) (20)

Consequently, it is possible to update the terms at each timestep to reflect the relative time n − j.
However, it is intractable to recompute n relative temporal contexts at each timestep, as that would
result in n2 time and space complexity for a sequence of length n. To apply temporal context in a
batched manner in linear space, we can leverage the distributive property. If we select ϕ(a, b) = a·b,
then the update distributes over the sum, updating all of the terms simultaneously. In other words,
we can update the context of n terms in constant time and space (see Appendix C for the full
derivation). As ψ is defined as a function of ϕ, we can solve to find ψ(t) = eξt (although any
exponential constitutes a solution, we select the natural base). This yields an aggregator of the form

Sn =

n∑
j=0

eξ(n−j)xj . (21)

If ξ ∈ R+,xj ̸= 0, then the recurrent state will explode over long sequences: limn→∞ eξ(n−j)xj =
∞, so the real component of ξ should be negative. Using different decay rates ξj , ξk ∈ R−, we
can deduce the temporal ordering between terms xj and xk. Unfortunately, this requires both xj , xk
eventually decay to zero – what if there are important memories we do not want to forget, while
simultaneously retaining their ordering? If ξ is imaginary, then we can determine the relative time
between xj ,xk as the terms oscillate indefinitely without decaying. Thus, we use a complex ξ with
a negative real component, combining both forgetting and long-term temporal context. In the fol-
lowing paragraphs, we show that with a complex ξ, the FFM cell becomes a universal approximator
of convolution.

Universal Approximation of Convolution Here, we show that FFM can approximate any tempo-
ral convolutional. Let us look at the z term from Equation 17, given the input x̃, with a slight change
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Model Training Inference
Parallel Time Space Time Space

RNN O(n) O(n) O(1) O(1)
Transformer O(logn) O(n2) O(n) O(n2)
FFM (ours) O(logn) O(n) O(1) O(1)

Table 1: The time and space complexity of memory models for a sequence of length n (training), or
computing a single output recurrently during a rollout (inference).

in notation to avoid the overloaded subscript notation: x̃(τ) = x̃τ , z(n) = zn. For a sequence 1 to
n, z(n), the precursor to the Markov state yn, can be written as:

z(n) = b+A

n∑
τ=1

x̃(τ)⊙ exp (−τα) exp (−τiω⊤). (22)

where A, b is the weight and bias from linear layer ℓ3, indexed by subscript. Looking at a single
input dimension k of x̃, we have

z(n) = b+

(k+1)cm∑
j=kcm

Aj

n∑
τ=1

x̃k(τ) exp (−τ(iω + αk)) (23)

= b+

n∑
τ=1

x̃k(τ)

(k+1)cm∑
j=kcm

Aj exp (−τ(iω + αk)) (24)

Equation 24 is a temporal convolution of x̃k(t) using a Fourier Series filter with c terms (ω ∈ Cc),
with an additional learnable “filter extent” term αk. The Fourier Series is a universal function ap-
proximator, so FFM can approximate any convolutional filter over the signal x̃(τ). Appendix A
further shows how this is related Laplace transform. Unlike discrete convolution, we do not need
to explicitly store prior inputs or engage in zero padding, resulting in better space efficiency. Fur-
thermore, the filter extent αk is learned and dynamic – it can expand for sequences with long-term
temporal dependencies and shrink for tasks with short-term dependencies. Discrete temporal con-
volution from methods like Bai et al. [2018] use a fixed-size user-defined filter extent.

Interpretability Unlike other memory models, FFM is interpretable. Each dimension in S has a
known decay rate and contextual period. We can determine trace durability (how long a trace lasts)
tα and the maximum contextual period tω of each dimension in S via

tα =
log(β)

α1⊤
c

, tω =
2π

1mω
(25)

where β determines the strength at which a trace is considered forgotten. For example, β = 0.01
would correspond to the time when the trace xk contributes 1% of its original value to Sn. FFM
can measure the relative time between inputs up to a modulo of tω .

6 Experiments and Discussion

We evaluate FFM on the two largest POMDP benchmarks currently available: POPGym [Morad
et al., 2023] and the POMDP tasks from [Ni et al., 2022], which we henceforth refer to as POMDP-
Baselines. For POPGym, we train a shared-memory actor-critic model using recurrent using Proxi-
mal Policy Optimization [Schulman et al., 2017]. For POMDP-Baselines, we train separate memory
models for the actor and critic using recurrent Soft Actor Critic (SAC) [Haarnoja et al., 2018] and
recurrent Twin Delayed DDPG (TD3) [Fujimoto et al., 2018]. We replicate the experiments from
the POPGym and POMDP-Baselines papers as-is without changing any hyperparameters. We use a
single FFM configuration across all experiments, except for varying the hidden and recurrent sizes
to match the RNNs, and initialize α,ω based on the max sequence length. See Appendix D for
further details.

Table 2 lists memory baselines, Table 3 ablates each component of FFM, Figure 3 contains a sum-
mary of training statistics for all models (wall-clock train time, mean reward, etc), and Figure 4
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Name Type Paper/Description
MLP Basic 2 layer perceptron
PosMLP Basic MLP w/ positional encoding
Stack Basic Mnih et al. [2015]
TCN Conv Bai et al. [2018]
FWP XFormer Schlag et al. [2021]
FART XFormer Katharopoulos et al. [2020]
S4D Hybrid Gu et al. [2021]

Name Type Paper/Description
LMU RNN Voelker et al. [2019]
IndRNN RNN Li et al. [2018]
Elman RNN Elman [1990]
GRU RNN Chung et al. [2014]
LSTM RNN Hochreiter and Schmid-

huber [1997]
DNC MANN Graves et al. [2016]

Table 2: The memory models used in the POPGym experiments, see Morad et al. [2023] for further
details. Conv stands for convolution, XFormer stands for transformer, and MANN stands for mem-
ory augmented neural network.
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Figure 3: Training statistics computed over ten trials and one epoch of PPO, with FFM in orange.
FFM trains nearly two orders of magnitude faster on the GPU than the fastest RNNs (note the log-
scale x axis). Even on the CPU, FFM trains roughly one order of magnitude faster than RNNs on the
GPU. FFM has sub-millisecond CPU inference latency, making it useful for on-policy algorithms.
FFM memory usage is on-par with RNNs, providing scalability to long sequences. Despite effi-
ciency improvements, FFM still attains greater episodic reward than other models on POPGym.

contains a detailed comparison of FFM against the best performing RNN and transformer on POP-
Gym. Figure 5 evaluates FFM on the POMDP-Baselines tasks and Figure 6 investigates FFM inter-
pretability. See Appendix E and Appendix F for more granular plots. Error bars in all cases denote
the 95% bootstrapped confidence interval.

Practicality and Robustness: FFM demonstrates exceptional performance on the POPGym and
POMDP-Baselines benchmarks, achieving the highest mean reward as depicted in Figure 3 and Fig-
ure 5 without any changes to the default hyperparameters. FFM also executes a PPO training epoch
nearly two orders of magnitude faster than a GRU (Figure 3, Table 1). Without forgetting, FFM
underperforms the GRU, showing that forgetting is the most important inductive prior (Table 3). We
use a single FFM configuration for each benchmark, demonstrating it is reasonably insensitive to
hyperparameters. All in all, FFM outperforms all other models on average, across three RL algo-
rithms and 52 tasks. Surprisingly, there are few occurrences where FFM is noticeably worse than
others, suggesting it is robust and a good general-purpose model.

Explainability and Prior Knowledge: Figure 6 demonstrates that FFM learns suitable and in-
terpretable decay rates and context lengths. We observe separate memory modes for the actor and

FFM FFM-NI FFM-NO FFM-NC FFM-FC FFM-ND FFM-FD FFM-HP
µ 0.399 0.392 0.395 0.382 0.383 0.333 0.390 0.395
σ 0.005 0.001 0.006 0.005 0.005 0.005 0.006 0.010

Table 3: Ablating FFM components over all POPGym tasks. FFM-NI removes input gating, FFM-
NO removes the output gating, FFM-NC does not use temporal context, FFM-FC uses fixed (non-
learned) context, FFM-ND does not use decay, and FFM-FD uses fixed (non-learned) decay. FFM-
HP uses the Hadamard product instead of the outer product to compute γ in Equation 12. FFM-HP
requires additional parameters but ensures independence between rows and columns of the state.
FFM-ND (no decay) validates our assumption that forgetting is an important inductive bias.
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Figure 4: FFM compared to the GRU, the best performing model on POPGym. See Appendix F for
comparisons across all other POPGym models, such as linear transformers. Error bars denote the
bootstrapped 95% confidence interval over five trials. FFM noticeably outperforms state of the art
on seventeen tasks, while only doing noticeably worse on four tasks.
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Figure 5: Comparing FFM with tuned RNNs on the continuous control tasks from POMDP-
Baselines. Ni et al. [2022] selects the best performing RNN (either GRU or LSTM) and tunes
hyperparameters on a per-task basis. Error bars denote the bootstrapped 95% confidence inter-
val over five random seeds. The task suffix V or P denotes whether the observation is velocity-only
(masked position) or position-only (masked velocity) respectively. Untuned FFM outperforms tuned
RNNs on all but one task for SAC. For TD3, FFM meets or exceeds RNN performance on all but
one task.
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Figure 6: A case study on FFM explainability. We investigate the task RepeatPreviousMedium,
where the episode length is 104 timesteps and the agent must output the observation from 32
timesteps ago. (Left two) We visualize γ using trace durability tα, β = 0.1 and context period tω .
Both tα, tω demonstrate modes for the actor and critic, which we highlight in the figures. The critic
requires the episode’s current timestep to accurately predict the discounted return, while the actor
just requires 32 timesteps of memory. (Left) The tω critic mode converges to the maximum episode
length of 104. The actor mode converges to 2x the necessary period (perhaps because cos( 2πtω ), the
real component of exp−tiω, is monotonic on the half-period 0.5tω). (Middle) The tα terms con-
verge to 32 for the actor and a large value for the critic. (Right) We initialize α,ω to encapsulate
ideal actor and critic modes, such that tα ∈ [32, 104], tω ∈ [32, 104]. We find FFM with informed
initialization outperforms FFM with the original initialization of tα ∈ [1, 1024], tω ∈ [1, 1024].
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critic, and we can initialize α,ω using prior knowledge to improve returns (Figure 6). This sort of
prior knowledge injection is not possible in RNNs, and could be useful for determining the number
of “burn-in” steps for methods that break episodes into fixed-length sequences, like R2D2 [Kaptur-
owski et al., 2019] or MEME [Kapturowski et al., 2023].

Limitations and Future Work

Scaling Up: We found that large context sizes c resulted in decreased performance. We hypoth-
esize that a large number of periodic functions results in a difficult to optimize loss landscape with
many local extrema. Interestingly, transformers also employ sinusoidal encodings, which might ex-
plain the difficulty of training them in model-free RL. We tried multiple configurations of FFM cells
in series, which helped in some tasks but often learned much more slowly. In theory, serial FFM
cells could learn a temporal feature hierarchy similar to the spatial hierarchy in image CNNs. In
many cases, serial FFM models did not appear fully converged, so it is possible training for longer
could solve this issue.

Additional Experiments: Hyperparameter tuning would almost guarantee better performance,
but would also result in a biased comparison to other models. We evaluated FFM with on-policy and
off-policy algorithms but did not experiment with offline or model-based RL algorithms. In theory,
FFM can run in continuous time or irregularly-spaced intervals simply by letting t be continuously
or irregular, but in RL we often work with discrete timesteps at regular intervals so we due not
pursue this further.

Numerical Precision: FFM experiences a loss of numerical precision caused by the repeated mul-
tiplication of exponentials, resulting in very large or small numbers. Care must be taken to prevent
overflow, such as upper-bounding α. Breaking a sequence into multiple forward passes while prop-
agating recurrent state (setting n− k less than the sequence length) fixes this issue, but also reduces
the training time efficiency benefits of FFM. We found FFM performed poorly using single preci-
sion floats, and recommend using double precision floats during multiplication by γ. We tested a
maximum sequence length of 1024 per forward pass, although we could go higher by decreasing
the maximum decay rate. With quadruple precision floats, we could process sequences of roughly
350,000 timesteps in a single forward pass with the max decay rate we used. Unfortunately, Pytorch
does not currently support quads.

7 Conclusion

The inductive priors underpinning FFM are key to its success, constraining the optimization space
and providing parallelism-enabling structure. Unlike many memory models, FFM is interpretable
and even provides tuning opportunities based on prior knowledge about individual tasks. FFM pro-
vides a low-engineering cost “plug and play” upgrade to existing recurrent RL algorithms, improving
model efficiency and reward in partially observable model-free RL with a one-line code change.
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and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 7487–7498. PMLR, July 2020.
URL https://proceedings.mlr.press/v119/parisotto20a.html.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym:
Benchmarking Partially Observable Reinforcement Learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
chDrutUTs0K.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains
through World Models. arXiv preprint arXiv:2301.04104, 2023.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakicevic, Hado van Hasselt, Charles
Blundell, and Adria Puigdomenech Badia. Human-level atari 200x faster. In The Eleventh In-
ternational Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=JtC6yOHRoJJ.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A Study on Overfitting in Deep
Reinforcement Learning. arXiv, 2018. URL https://arxiv.org/pdf/1804.06893.pdf.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
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A Relationship to the Laplace Transform

We often think of RL in terms of discrete timesteps, but the sum in Equation 11 could be replaced
with an integral for continuous-time domains, where x̃ is a function of time:

S(n) =

∫ n

0

x̃(τ)⊙ exp (−τα) exp (−τiω)
⊤
dτ. (26)

If we look at just a single dimension of x̃, we have

S(n) =

∫ n

0

x̃(τ) exp (−τ(α+ iω)) dτ, (27)

which is equivalent to the Laplace Transform L of a function x̃(τ). One way to interpret the connec-
tion between our aggregator and the Laplace transform is that the aggregator transforms the memory
task into a pole-finding task in the S-plane, a well-known problem in control theory. When we train
FFM for an RL task, we are attempting to find the poles and zeros that minimize the actor/critic loss
for a batch of sequences.

B Weight Initialization

We find that our model is sensitive to initialization of the α,ω values. We compute the upper limit
for α such that memory will retain β = 0.01 = 1% of its value after some elapsed number of
timesteps we call te. This can be computed mathematically via

log β

te
. (28)

The lower limit is set based on the maximum value a double precision float can represent, minus a
small ϵ

log 1.79× 10308

te
− ϵ. (29)

Note that if needed, we can choose a smaller lower bound, but the input must be chunked into
sequences of length te and run in minibatches. Since we can compute minibatches recurrently,
the gradient spans across all minibatches rather than being truncated like a quadratic transformer.
Nonetheless, we did not need to do this in any of our experiments. We set α to be linearly spaced
between the computed limits

α = [α1, . . . αj . . . αn]
⊤ (30)

αj =
j

m

log β

te
+ (1− j

m
)

(
log 1.79× 10308

te
− ϵ

)
(31)

We initialize the ω terms using a similar approach, with linearly spaced denominators between one
and te

ω = 2π/[ω1, ω2, . . . , ωn]
⊤ (32)

ωj =
j

c
+ (1− j

c
)te (33)

All other parameters are initialized using the default Pytorch initialization.

C Computing States in Parallel with Linear Space Complexity

Here, we show how the recurrent formulation can be computed in parallel. A naive implementation
would use O(n2) space, but using a trick, we can accomplish this in O(n) space.

Assume we have already computed hidden state Sk−1 for some sequence. Our job is now to compute
the next n−k+1 recurrent states Sk,Sk+1, . . . ,Sn in parallel. We can rewrite Equation 11 in matrix

14



form:

Sk:n =


Sk

Sk+1

Sk+2

...
Sn

 =


γ0 ⊙ (xk1

⊤
c ) + γ1 ⊙ Sk−1

γ0 ⊙ (xk+11
⊤
c ) + γ1 ⊙ (xk1

⊤
c ) + γ2 ⊙ Sk−1

γ0 ⊙ (xk+21
⊤
c ) + γ1 ⊙ (xk+11

⊤
c ) + γ2 ⊙ (xk1

⊤
c ) + γ3 ⊙ Sk−1

...(∑n
j=k γ

j ⊙ (xk+j1
⊤
c )

)
+ γn+1 ⊙ Sk−1

 (34)

We can write the closed form for the pth row of the matrix, where 0 ≥ p ≥ n− k

Sk+p =

 p∑
j=0

γp−j ⊙ (xk+j1
⊤
c )

+ γp+1 ⊙ Sk−1 (35)

Unfortunately, it appears we will need to materialize (n−k+1)2

2 terms:

γ0 ⊙ (xk1
⊤
c ) (36)

γ1 ⊙ (xk1
⊤
c ), γ

0 ⊙ (xk+11
⊤
c ) (37)

... (38)

γn−k ⊙ (xk1
⊤
c ), γ

n−k+1 ⊙ (xk+11
⊤
c ), . . . γ

0 ⊙ (xn1
⊤
c ) (39)

However, we can factor out γ−p from Equation 35 via a combination of the distributive property and
the product of exponentials

Sk+p = γp ⊙

 p∑
j=0

γ−j ⊙ (xk+j1
⊤
c )

+ γp+1 ⊙ Sk−1 (40)

Now, each γj is associated with a single xj , requiring just n− k + 1 terms:

γ0 ⊙ (xk1
⊤
c ) (41)

γ0 ⊙ (xk1
⊤
c ), γ

1 ⊙ (xk+11
⊤
c ) (42)

... (43)

γ0 ⊙ (xk1
⊤
c ), γ

1 ⊙ (xk+11
⊤
c ), . . . , γ

n ⊙ (xn1
⊤
c ) (44)

We can represent each of these rows as a slice of a single n − k + 1 length tensor, for a space
complexity of O(n− k) or for k = 1, O(n).

Finally, we want to swap the exponent signs because it provides better precision when working with
floating point numbers. Computing small values, then big values is more numerically stable than
the other way around. We want to compute the inner sum using small numbers (γ+ results in small
numbers while γ− produces big numbers; n − k is positive and k − n is negative). We can factor
γk−n out of the sum and rewrite Equation 40 as

Sk+p = γk−n+p ⊙

 p∑
j=0

γn−k−j ⊙ (xk+j1
⊤
c )

+ γp+1 ⊙ Sk−1 (45)

If we let t = n− k, this is equivalent to Equation 13:

Sk+p = γp+1 ⊙ Sk−1 + γp−t ⊙
p∑

j=0

γt−j ⊙ (xk+j1
⊤
c ), Sk+p ∈ Cm×c. (46)

We also need to compute 2(n − k + 1) gamma terms: γk−n, . . . γn−k+1, resulting in linear space
complexity O(n) for a sequence of length n.
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D Benchmark Details

We utilize the episodic reward and normalized episodic reward metrics. We record episodic rewards
as a single mean for each epoch, and report the maximum reward over a trial.

We do not modify the hyperparameters for PPO, SAC, or TD3 from the original benchmark papers.
We direct the reader to [Morad et al., 2023] for PPO hyperparameters and [Ni et al., 2022] for SAC
and TD3 hyperparameters.

D.1 Hardware and Efficiency Information

We trained on a server with a Xeon CPU running Torch version 1.13 with CUDA version 11.7,
with consistent access to two 2080Ti GPUs. Wandb reports that we used roughly 161 GPU days of
compute to produce the POMDP-Baselines results, 10 GPU days for the POPGym results, and 45
GPU days for the FFM ablation using POPGym. This results in a total of 216 GPU days. Since we
ran four jobs per GPU, this corresponds to 54 days of wall-clock time for all experiments.

D.2 PPO and POPGym Baselines

Morad et al. [2023] compares models along the recurrent state size, with a recurrent state size of 256.
For fairness, We let m = 32 and c = 4, which results in a complex recurrent state of 128, which
can be represented as a 256 dimensional real vector. We initialize α,ω following Appendix B for
te = 1024, β = 0.01. We run version 0.0.2 of POPGym, and compare FFM numerically with the
MMER score from the paper in Table 4.

D.3 SAC, TD3, and POMDP-Baselines

[Ni et al., 2022] does not compare along the recurrent state size, but rather the hidden size, while
utilizing various hidden sizes h. In other words, the LSTM recurrent size is twice that of the GRU.
We let c = h/32 and m = h/c, so that mc = h. This produces an equivalent FFM configuration
to the POPGym baseline when h = 128, with equivalent recurrent size in bytes to the LSTM (or
equivalent in dimensions to the GRU). The paper truncates episodes into segments of length 32 or 64
depending on the task, so we let te = 128 to ensure that information can persist between segments.
Thanks to the determinism provided in the paper, readers should be able to reproduce our exact
results using the random seeds 0, 1, 2, 3, 4. We utilize separate memory modules for the actor and
critic, as done in the paper. We base our experiments off of the most recent commit at the time of
writing, 4d9cbf1.

Model MMER

MLP 0.067
PosMLP 0.064
FWP 0.112
FART 0.138
S4D -0.180
TCN 0.233
Fr.Stack 0.190
LMU 0.229
IndRNN 0.259
Elman 0.249
GRU 0.349
LSTM 0.255
DNC 0.065
FFM 0.400

Table 4: MMER score comparison from the POPGym paper
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E Benchmark Lineplots

We provide cumulative max reward lineplots in Figure 9, Figure 7, and Figure 8 for all the experi-
ments we ran.
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Figure 7: SAC lineplots for POMDP-Baselines, where each trial is plotted separately.
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Figure 8: TD3 lineplots for POMDP-Baselines, where each trial is plotted separately.

17



0.50

0.45

0.40

0.35

0.30

0.25

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = AutoencodeEasy

0.51

0.50

0.49

0.48

0.47

0.46

0.45

0.44

0.43
Env = AutoencodeHard

0.50

0.48

0.46

0.44

0.42

0.40
Env = AutoencodeMedium

0.6

0.5

0.4

0.3

0.2

Env = BattleshipEasy

0.7

0.6

0.5

0.4

Env = BattleshipHard

0.60

0.55

0.50

0.45

0.40

0.35

0.30

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = BattleshipMedium

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Env = ConcentrationEasy

0.865

0.860

0.855

0.850

0.845

0.840

0.835

0.830

0.825
Env = ConcentrationHard

0.6

0.5

0.4

0.3

0.2

Env = ConcentrationMedium

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Env = CountRecallEasy

0.9

0.8

0.7

0.6

0.5

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = CountRecallHard

0.9

0.8

0.7

0.6

0.5

0.4

Env = CountRecallMedium

0.0

0.1

0.2

0.3

0.4

0.5

Env = HigherLowerEasy

0.0

0.1

0.2

0.3

0.4

0.5

Env = HigherLowerHard

0.0

0.1

0.2

0.3

0.4

0.5

Env = HigherLowerMedium

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = LabyrinthEscapeEasy

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Env = LabyrinthEscapeHard

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Env = LabyrinthEscapeMedium

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Env = LabyrinthExploreEasy

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Env = LabyrinthExploreHard

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = LabyrinthExploreMedium

0.2

0.0

0.2

0.4

0.6

Env = MineSweeperEasy

0.40

0.35

0.30

0.25

0.20

Env = MineSweeperHard

0.4

0.3

0.2

0.1

0.0

Env = MineSweeperMedium

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Env = MultiarmedBanditEasy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = MultiarmedBanditHard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Env = MultiarmedBanditMedium

0.2

0.4

0.6

0.8

1.0

Env = NoisyStatelessCartPoleEasy

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Env = NoisyStatelessCartPoleHard

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Env = NoisyStatelessCartPoleMedium

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = NoisyStatelessPendulumEasy

0.1

0.2

0.3

0.4

0.5

0.6

Env = NoisyStatelessPendulumHard

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Env = NoisyStatelessPendulumMedium

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Env = RepeatFirstEasy

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Env = RepeatFirstHard

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = RepeatFirstMedium

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Env = RepeatPreviousEasy

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Env = RepeatPreviousHard

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Env = RepeatPreviousMedium

0.2

0.4

0.6

0.8

1.0

Env = StatelessCartPoleEasy

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 C
um

ul
at

iv
e 

R
ew

ar
d

Env = StatelessCartPoleHard

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1.0

Env = StatelessCartPoleMedium

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Env = StatelessPendulumEasy

0 50 100 150 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Env = StatelessPendulumHard

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Env = StatelessPendulumMedium

Model
DNC
Elman
FART
FFM
FWP
GRU
IndRNN
LMU
LSTM
MLP
PosMLP
S4D
Stack
TCN

Figure 9: Lineplots for POPGym, where the shaded region represents the 95% bootstrapped confi-
dence interval.
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F POPGym Comparisons by Model

We provide Figure 10, Figure 11, Figure 12 showing the relative FFM return compared to the other
12 POPGym models, including temporal convolution, linear transformers, and more.
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Figure 10: Relative POPGym returns compared to FFM.

19



ConcentrationEasy

RepeatPreviousEasy

CountRecallHard

HigherLowerHard

MineSweeperEasy

NoisyStatelessCartPoleHard

RepeatFirstEasy

StatelessCartPoleMedium

StatelessCartPoleHard

StatelessCartPoleEasy

HigherLowerMedium

NoisyStatelessCartPoleEasy

RepeatFirstMedium

HigherLowerEasy

LabyrinthExploreEasy

NoisyStatelessCartPoleMedium

StatelessPendulumHard

RepeatFirstHard

AutoencodeHard

AutoencodeMedium

BattleshipHard

MultiarmedBanditEasy

AutoencodeEasy

BattleshipMedium

MineSweeperMedium

BattleshipEasy

RepeatPreviousHard

MineSweeperHard

StatelessPendulumEasy

MultiarmedBanditMedium

MultiarmedBanditHard

RepeatPreviousMedium

NoisyStatelessPendulumHard

ConcentrationMedium

StatelessPendulumMedium

NoisyStatelessPendulumMedium

ConcentrationHard

NoisyStatelessPendulumEasy

CountRecallMedium

LabyrinthExploreMedium

LabyrinthExploreHard

CountRecallEasy

LabyrinthEscapeEasy

LabyrinthEscapeHard

LabyrinthEscapeMedium

Env

-10%

-1%
0%
1%

10%

100%

R
ew

ar
d 

R
el

at
iv

e 
to

 In
dR

N
N

RepeatPreviousMedium

RepeatPreviousHard

MineSweeperEasy

RepeatPreviousEasy

ConcentrationMedium

ConcentrationHard

RepeatFirstEasy

StatelessCartPoleEasy

StatelessCartPoleMedium

StatelessCartPoleHard

StatelessPendulumHard

StatelessPendulumMedium

HigherLowerEasy

HigherLowerMedium

HigherLowerHard

NoisyStatelessCartPoleHard

NoisyStatelessCartPoleEasy

BattleshipHard

StatelessPendulumEasy

NoisyStatelessPendulumHard

CountRecallHard

AutoencodeHard

LabyrinthEscapeEasy

LabyrinthExploreEasy

NoisyStatelessPendulumMedium

AutoencodeEasy

NoisyStatelessCartPoleMedium

BattleshipEasy

BattleshipMedium

AutoencodeMedium

ConcentrationEasy

MineSweeperHard

NoisyStatelessPendulumEasy

MineSweeperMedium

CountRecallMedium

RepeatFirstMedium

MultiarmedBanditEasy

LabyrinthExploreMedium

MultiarmedBanditMedium

MultiarmedBanditHard

LabyrinthExploreHard

LabyrinthEscapeHard

CountRecallEasy

LabyrinthEscapeMedium

RepeatFirstHard

Env

-10%

-1%
0%
1%

10%

100%

R
ew

ar
d 

R
el

at
iv

e 
to

 L
M

U

MineSweeperEasy

RepeatPreviousEasy

CountRecallHard

ConcentrationHard

AutoencodeEasy

ConcentrationMedium

StatelessCartPoleMedium

StatelessCartPoleEasy

RepeatFirstEasy

StatelessCartPoleHard

HigherLowerEasy

HigherLowerHard

NoisyStatelessCartPoleEasy

StatelessPendulumMedium

StatelessPendulumHard

HigherLowerMedium

NoisyStatelessCartPoleHard

NoisyStatelessPendulumHard

StatelessPendulumEasy

NoisyStatelessCartPoleMedium

LabyrinthEscapeEasy

AutoencodeMedium

NoisyStatelessPendulumMedium

RepeatFirstMedium

RepeatPreviousMedium

BattleshipHard

AutoencodeHard

NoisyStatelessPendulumEasy

RepeatPreviousHard

MultiarmedBanditEasy

BattleshipMedium

MultiarmedBanditMedium

MineSweeperHard

MineSweeperMedium

ConcentrationEasy

CountRecallMedium

MultiarmedBanditHard

BattleshipEasy

LabyrinthExploreEasy

CountRecallEasy

RepeatFirstHard

LabyrinthExploreMedium

LabyrinthEscapeHard

LabyrinthExploreHard

LabyrinthEscapeMedium

Env

-10%

-1%
0%
1%

10%

100%

R
ew

ar
d 

R
el

at
iv

e 
to

 L
S

TM

LabyrinthEscapeHard

LabyrinthExploreHard

ConcentrationMedium

LabyrinthExploreMedium

LabyrinthExploreEasy

LabyrinthEscapeEasy

HigherLowerHard

HigherLowerMedium

HigherLowerEasy

ConcentrationHard

BattleshipHard

BattleshipMedium

AutoencodeHard

BattleshipEasy

ConcentrationEasy

MineSweeperHard

AutoencodeMedium

NoisyStatelessCartPoleHard

StatelessCartPoleEasy

MultiarmedBanditHard

MultiarmedBanditEasy

MineSweeperMedium

NoisyStatelessPendulumHard

StatelessPendulumHard

NoisyStatelessPendulumMedium

MultiarmedBanditMedium

RepeatPreviousHard

NoisyStatelessCartPoleMedium

AutoencodeEasy

StatelessPendulumMedium

MineSweeperEasy

NoisyStatelessCartPoleEasy

StatelessPendulumEasy

RepeatFirstEasy

NoisyStatelessPendulumEasy

StatelessCartPoleMedium

RepeatPreviousMedium

StatelessCartPoleHard

LabyrinthEscapeMedium

RepeatPreviousEasy

RepeatFirstHard

RepeatFirstMedium

CountRecallHard

CountRecallMedium

CountRecallEasy

Env

-100%

-10%

-1%
0%
1%

10%

100%

1000%

R
ew

ar
d 

R
el

at
iv

e 
to

 M
LP

Figure 11: Relative POPGym returns compared to FFM.
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Figure 12: Relative POPGym returns compared to FFM.
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G Efficiency Statistic Details

This section explains how we computed the bar plots showing efficiency statistics. We construct the
POPGym models and perform one PPO training epoch. The train time metric corresponds to the
time spent doing forward and backward passes over the data. One epoch corresponds to the epoch
defined in POPGym: 30 minibatches of 65,336 transitions each, with an episode length of 1024, a
hidden dimension of 128, and a recurrent dimension of 256. We do this 10 times and compute the
mean and confidence interval. Torch GRU, LSTM, and Elman networks have specialized CUDA
kernels, making them artificially faster than LMU and IndRNN which are written in Torch and
require the use of for loops. We utilize the pure python implementation of these models, wrapping
them in a for loop instead of utilizing their hand-designed CUDA kernels. We consider this a fair
comparison since this makes the GRU, Elman, and LSTM networks still run slightly faster than
IndRNN and LMU (Torch-native RNNs). FFM is also written in Torch and does not have access
to specialized CUDA kernels. CUDA programmers more skilled than us could implement a custom
FFM kernel that would see a speedup similar to the GRU/LSTM/Elman kernels.

To compute inference latency, we turn off Autograd and run inference for 1024 timesteps, computing
the time for each forward pass. We do this 10 times and compute the mean and 95% confidence
interval.

To compute memory usage, we utilize Torch’s GPU memory tools and record the maximum memory
usage at any point during the training statistic. Memory usage is constant between trials.

For reward, we take the mean reward over all environments, split by model and trial. We then report
the mean and 95% confidence interval over trials and models.
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