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ABSTRACT

In this work, we study the generalization properties of diffusion models in a few-
shot setup, introduce a novel tuning-free paradigm to synthesize the target out-of-
domain (OOD) data, showcase multiple applications of those generalization prop-
erties, and demonstrate the advantages compared to existing tuning-based meth-
ods in data-sparse scientific scenarios with large domain gaps. Our work resides
on the observation and premise that the theoretical formulation of denoising dif-
fusion implicit models (DDIMs), a non-Markovian inference technique, exhibits
latent Gaussian priors independent from the parameters of trained denoising diffu-
sion probabilistic models (DDPMs). This brings two practical benefits: the latent
Gaussian priors generalize to OOD data domains that have never been used in the
training stage; existing DDIMs offer the flexibility to traverse the denoising chain
bidirectionally for a pre-trained DDPM. We then demonstrate through theoretical
and empirical studies that such established OOD Gaussian priors are practically
separable from the originally trained ones after inversion. The above analytical
findings allow us to introduce our novel tuning-free paradigm to synthesize new
images of the target unseen domain by discovering qualified OOD latent encod-
ings within the inverted noisy latent spaces, which is fundamentally different from
most existing paradigms that seek to modify the denoising trajectory to achieve
the same goal by tuning the model parameters. Extensive cross-model and do-
main experiments show that our proposed method can expand the latent space
and synthesize images in new domains via frozen DDPMs without impairing the
generation quality of their original domains.

1 INTRODUCTION

Generalization ability, which enables the model to synthesize data from various domains, has long
been a challenge in deep generative models. The current research trend focuses on leveraging larger
models with more training data to facilitate improved generalization. The popularity of recent large-
scale models such as DALLE-2 (Ramesh et al., 2022), Imagen (Ho et al., 2022a) and StableDiffu-
sion (Rombach et al., 2022) have demonstrated the impressive and promising representation abilities
of the state-of-the-art (SOTA) diffusion generative models when trained on an enormous amount of
images such as LAION-5B (Schuhmann et al., 2022). However, brute-force scaling up is not a
panacea and does not fundamentally solve the generalization challenge. In other words, for data
domains that remain sparse in those already giant natural image datasets, such as the astrophysical
observation and simulation data, even the SOTA models fail to synthesize data suitable for rigorous
scientific research purposes, as those data usually follow physical distributions that are dramatically
distinguishable from natural images in computer vision, illustrated in the Fig. 1. In addition, scaling
up requires exhaustive resources, severely limiting the number of research groups that are able to
participate and contribute to the work, and consequently hindering research progress. Given the
concerns above, our work focuses on studying the generalization ability in a few-shot setup, where a
pre-trained diffusion generative model and a small set of raw data different from its training domain
are provided, with the ultimate objective of generating new data samples for the target OOD domain.

The fundamental challenge of domain generalization in deep generative models lies in learning a
mapping function that accurately captures the structure of a high-dimensional, irregular data space
with an unknown distribution. This is even statistically difficult with large datasets when using non-
parametric machine learning methods, a phenomenon known as the “curse of dimensionality,” and
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SD2.1Real DiscoveryDiff (tuning-free, no auxiliary network) Tuning w./ CLIPRecons. Vanilla tuning

(a) Comparisons of synthesized OOD images across data domains and methods, all using a pre-trained DDPM on AFHQ-Dog-256.

(b) In additional to unconditional synthesis, our proposed method can also achieve bi-directional domain transfers (e.g.. sketch - RGB). 

Figure 1: Our proposed tuning-free DiscoveryDiff method for synthesizing OOD data in a
few-shot setup. Using a pre-trained DDPM on AFHQ-Dog (Choi et al., 2020) RGB images as an
example, we can well reconstruct arbitrary unseen images across domains covering sketch images,
RGB images in other classes (e.g., outdoor churches), and even astrophysical data. By leveraging
such representation abilities from the frozen model, we can establish OOD latent priors through
deterministic inversion (Song et al., 2021) and our effective latent encoding discovery mechanism
to achieve applications such as (a) unconditional synthesis and (b) bi-directional domain transfer,
without modifying original or learning additional parameters. In contrast, tuning the same model
usually fail to generate dramatically different data domains.

becomes even more challenging in few-shot scenarios. As shown in Fig. 1, directly fine-tuning the
entire diffusion model, either with raw images or with additional semantic guidance such as CLIP
loss (Radford et al., 2021) fails to transfer the synthesis domain from the pre-trained model’s original
data (e.g., dog images) to new data domains, especially when the domain gap between the trained
one and the target one is large (e.g., dog-to-church images or astrophysical data). In addition to
the unsatisfactory performance, tuning-based methods have several other drawbacks, for instance,
modifying parameters adversely affects synthesis quality in the model’s originally trained domain.
The tuning cost is also entirely dependent on the pre-trained model, which can be quite high given
the well-known expensive training for diffusion models. Very few existing works have explicitly
investigated this task. Most recent works focus on downstream applications to control pre-trained
models in the context of data editing, manipulations, and styling (Kim et al., 2022; Kwon et al.,
2023; Zhao et al., 2022; Zhang et al., 2023), which brings a certain level of generalization abil-
ity of the original model to different but still related domains (e.g., style transfer). In this work,
unlike the existing trajectory-tuning paradigm, we introduce a heuristic approach featuring a novel
tuning-free paradigm that achieves domain generalization by sampling latent encodings of the un-
seen target domain within the latent spaces of pre-trained diffusion models. Our core idea is to
discover the corresponding OOD latent encodings and denoise them through deterministic trajec-
tories in DDIMs (Song et al., 2021), as depicted in Fig. 2. Intuitively, our approach leverages the
intrinsic mathematical properties of the generative dynamics of diffusion models to reduce the heavy
data dependence typically required by conventional non-parametric distribution modeling methods.

Our work resides on the observation and premise that the theoretical formulation of denoising dif-
fusion implicit models (DDIMs) (Song et al., 2021), a non-Markovian and deterministic inference
technique, exhibits latent Gaussian priors independent from the parameters of trained denoising dif-
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𝑥′𝑇: discovered latent for 𝒟𝑜𝑑

𝑥′0: denoised image for 𝒟𝑜𝑑

𝒟𝑖𝑑

𝒟𝑜𝑑

𝒟𝑖𝑑

𝒟𝑜𝑑

𝑝𝜃: pre-trained DM on 𝒟𝑖𝑑  

𝑝𝜃′: fine-tuned DM on 𝒟𝑜𝑑

Figure 2: Illustration of the trajectory-tuning based paradigm (left) and our proposed latent-
discovery based paradigm (right) for OOD image synthesis with diffusion models. Given a pre-
trained DM pθ on images from domain Did, most existing methods seek to finetune the generation
trajectories pθ′ to synthesis data in a new domain Dod. In contrast, we propose to discover unseen
latent encodings to achieve the same goal via the frozen model pθ by expanding the latent spaces.

fusion probabilistic models (DDPMs) (Ho et al., 2020). In addition, DDIMs also provide a tractable
way of traversing bidirectionally along the generation trajectory, which further demonstrates that
DDPMs trained on single-domain images already have sufficient representation ability to recon-
struct images from arbitrary unseen domains from the inverted OOD latent encodings, as shown in
Fig. 1. The results from the arbitrary image reconstruction test via the deterministic inversion1 (i.e.,
diffusion direction) and denoising (i.e., reserve direction) suggest that an inverse direction to solve
our task objective: by identifying additional qualified OOD latent encodings based on the estab-
lished priors from a limited set of OOD images, we can synthesize unseen images without the need
to adjust the original model parameters. While the reconstruction ability is not entirely novel and
has been widely adopted for a line of downstream works that seek to control the generative output
for tasks such as image editing (Kwon et al., 2023; Zhu et al., 2023a) and customization (Yang et al.,
2024), leveraging such latent representation capacity for new OOD domain generalization further re-
quires two critical prerequisites that have remained underexplored: a (relatively) known OOD prior,
and a clear separability between the target OOD domain and originally trained domain both in the
latent spaces and denoising trajectories. From a high-level perspective, the first prerequisite enables
us to achieve the general unconditional synthesis, thus reducing the reliance on a given known data
point in contrast to specific downstream tasks such as image editing. As for the second prerequisite,
it is vital to generate high-quality OOD images to avoid the “mode interference” issue in Sec. 2.4,
which is also qualitatively illustrated in Fig. 3.

Based on our in-depth analytical studies in Sec. 2, we introduce our paradigmatic design that
achieves unseen domain synthesis in a tuning-free manner by discovering additional latent OOD
encodings based on the inverted priors, as described in Sec. 3. Conceptually inspired by recent
works that seek to manipulate the in-domain semantic attribute direction for data editing (Zhu et al.,
2023a; Baumann et al., 2024), the key idea of our proposed OOD sampling method focuses on
identifying potential latent directions by leveraging the geometric properties of the inverted OOD
domains as additional domain-specific priors. The key takeaway from this part echoes our earlier
analysis, demonstrating that in this latent discovery paradigm, the core technical challenge arises
from the tendency of discovered OOD samples to be interfered with and captured by the original
trained domain. This further underscores its distinguishable nature with intuitive tuning-based meth-
ods, where smaller data domain gaps are preferable for achieving better generalization performance.

Finally, we conduct extensive downstream experiments to demonstrate the effectiveness of our pro-
posed paradigm. As all of our analysis are conducted within the formulation-level, the findings
generalize across different DDPM variants, such as vanilla DDPMs (Ho et al., 2020) and improved
DDPMs (Nichol & Dhariwal, 2021). Notably, our experiments are carefully designed to repre-
sent an increasing level of domain gaps and to showcase versatile application scenarios. For the
target OOD domains, we test with RGB images in different classes, sketch images (Wang et al.,
2019a), scientific images (Willett et al., 2013), and even non-image astrophysical radiation emission
data (Xu et al., 2023a). In addition to the quantitative and qualitative evaluation of natural images

1Inversion refers to the process of converting raw data to noisy encodings in the literature of generative
modeling (Xia et al., 2022), which can also be understood as a diffusion process in the context of DMs.
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widely adopted in the computer vision community, we also involve astrophysicists to independently
assess the quality of generated data in comparison to the astrophysical simulations. These compre-
hensive evaluations further reinforce our findings.

Overall, we hope to provide insights into a novel perspective for understanding the domain gener-
alization abilities of diffusion models through a challenging few-shot scenario in this work, and to
shed light on potential directions for broader interdisciplinary applications. Our main contributions
are summarized below:

• We present an in-depth and comprehensive analytical study to investigate the OOD la-
tent distributions and reveal their separability concerning the models’ originally trained
domains from both theoretical and empirical perspectives.

• We introduce our DiscoveryDiff method, featuring a tuning-free paradigm that aims to dis-
cover additional OOD latent encodings to expand the synthesis domains of frozen DDPMs.

• We conduct extensive experiments with a wide range of diffusion models and datasets,
showcasing the applicable tasks and demonstrating the performance superiority compared
to tuning-based methods in dramatically different domains with astrophysical data.

2 DOMAIN DISCOVERY AND EXPANSION OF DDPMS

This section presents our problem formulation under the few-shot scenario and our analytical studies
on the generalization properties of pre-trained DDPMs in the context of deterministic trajectories
from theoretical and empirical perspectives. The high-level takeaway from our in-depth study is that
the inverted OOD samples establish Gaussian separable from the trained ID prior. The key technical
challenge is to find qualified OOD latent free from the “mode interference”, which is distinguishable
from the common understanding in tuning-based designs.

2.1 PROBLEM FORMULATION AND NOTATIONS

The general goal of DDPMs is similar to most previous generative models, which is to approximate
an implicit data distribution q(x0) with a learned model distribution pθ(x0), as well as providing
an easy-to-sample proxy (e.g., standard Gaussian). For the conventional unconditional generation
process to synthesize x′ ∼ q(x0) , we first draw x′

T ∼ N (0, Id) and obtain x′ = pθ(x
′
0:T ).

In this work, given a DDPM pθ trained on images x0 from a domain Did, we aim to study the
behavior of q(xod,1:T |xod) on other unseen domain Dod using N data samples xod ∈ Dod, with
N to be a relatively smaller number compared to the usual requirements to train a diffusion model
from scratch. The ultimate goal is to obtain new data samples x′

od ∈ Dod, with the assumption to
discover x′

T,od ∼ q(xod,T |xod), such that x′
od = pθ(x

′
od,0:T ).

As for notations, we use ps and pi to represent the stochastic (Ho et al., 2020) and determinis-
tic (Song et al., 2021) generation processes, respectively. We omit θ as we use frozen pre-trained
models. In addition, we use the hyper-parameter η (Song et al., 2021) to characterize the degree
of stochasticity in the generative process, with η = 1 for ps and η = 0 for pi. At intermediate
stochastic levels, we adopt the notation pη=k with k equals a constant between 0 and 1. Similar
to existing literature, T denotes the total diffusion steps. We use Xt to represent the latent (noisy)
spaces formed by xt along denoising.

2.2 REPRESENTATION ABILITY OF LATENT SPACES IN DETERMINISTIC DIFFUSION

A diffusion generative model, trained even on a single-domain small dataset (e.g., dog faces), al-
ready has sufficient representation ability to accurately reconstruct arbitrary unseen images (e.g.,
sketch, church, and astrophysical data), as shown in the second column of Fig. 1. The reconstruc-
tion ability is subject to the deterministic inversion and denoising trajectories (Song et al., 2021),
which can be considered as a special case of vanilla stochastic process (Ho et al., 2020). The find-
ings above suggest that: with a good mapping approximator (i.e., pre-trained DDPM) and proper
tool (i.e., deterministic trajectories with DDIMs), its intermediate latent spaces already have suffi-
cient representation ability for arbitrary images, which opens up the possibility to leverage DDPMs
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(a) Mode interference as  increases. (c) T-SNE of inverted latent encodings and failure cases. 

=0 =0.2 =0.4

=0.6 =0.8 =1.0

Original

=0.1

(b) Test w./ untrained DMs.

Figure 3: Various visualizations of “mode interference” and latent generalization properties.
Given an example of base DDPMs trained on dogs. (a): An interfered image of human faces
gradually becomes similar to its original trained domain as the denoising trajectory shifts from
deterministic (η = 0) to stochastic (η = 1). (b): Untrained DMs can also reconstruct arbitrary images
via DDIMs, but such case only establishes bijective mapping w/o actual generalization abilities.
(c): Failure cases happen when sampled latent OOD encodings are captured by the model’s original
probabilistic concentration mass, leading to generated target OOD data become ”in-distribution”.

for synthesizing images from new domains without tuning the model parameters. The quantitative
evaluation of the reconstruction results is in Tab. 3 in the Appendices.

The core idea in the context of deterministic non-Markovian DDIMs (Song et al., 2021) is to consider
a family of Q of inference distributions, indexed by a real vector σ ∈ RT

≥0:

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), (1)

where qσ(xT |x0) = N (
√
αTx0, (1− αT )I) and ∀t > 1,

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I), (2)

with α1:T ∈ (0, 1]T is a decreasing sequence that parameterizes Gaussian transition kernels.

2.3 MODEL PARAMETER INDEPENDENT PROPERTIES: GAUSSIAN PRIORS

While this deterministic line of works was initially proposed to accelerate the vanilla ancestral sam-
pling, later studies (Kwon et al., 2023; Zhu et al., 2023a; Yang et al., 2024) revealed that the deter-
ministic diffusion can be used as a tractable and lossless way for conducting data inversion to achieve
downstream data editing and customization. However, in addition to this deterministic properties as
the tool for inversion and denoising the unseen images, we note the following property offered by
its original formulation but has been yet under-exploited. The takeaway message is: In theory, the
inverted latent encodings also establish Gaussian priors as presented in Lemma 2.1.2

Lemma 2.1. For qσ(x1:T |x0) defined in Eqn. 1 and qσ(xt−1|xt,x0) defined in Eqn. 2, we have:

qσ(xt|x0) = N (
√
αtx0, (1− αt)I). (3)

As also mentioned in Song et al. (2021), one can derive Lemma 2.1 by assuming for any t ≤ T ,
qσ(xt|x0) = N (

√
αtx0, (1− αt)I) holds, if:

qσ(xt−1|x0) = N (
√
αt−1x0, (1− αt−1)I), (4)

and then prove the statement with an induction argument for t from T to 1, since the base case
(t = T ) already holds by definition. Proof details can be found in Appendix C. We note that
derivations are completed in the forward diffusion direction (i.e., the direction from data to latent
spaces), and make no modification to the trained model. This sets the primary theoretical grounding
for estimating the latent distributions as Gaussian in a model parameter-independent manner.

2However, in practice, due to the fact that pre-trained DMs themselves are function approximators, the
samples after inversion do not establish perfect Gaussians but rather approximations, echoing Sec. 3.
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2.4 DATA DEPENDENT PROPERTIES: MODE INTERFERENCE AND SEPARABILITY

In the literature of GANs-based generative models (Goodfellow et al., 2014), “mode collapse” is
a common issue that describes the training failure when generated images tend to be very similar
given randomly sampled starting encodings from the Gaussian prior. Within the context of diffusion
models in our work, we explicitly reveal a phenomenon analog to the “mode collapse” in GANs,
which we refer to as “mode interference”, as qualitatively illustrated in Fig. 3 (a).

Intuitively, “mode interference” describes the case when the denoised images fall into the model’s
original training domain Did instead of the target unseen domain Dod due to the prior interference
in the latent spaces. Specifically, when we sample directly from the standard Gaussian to obtain a
latent encoding xT ∼ N (0, Id), then the denoised image will surely fall into the original training
domain x0 ∈ Did with x0 ∼ pθ(x0), which is the vanilla generation process of a trained DDPM.
However, it contradicts our task objective to synthesize images x′

0 ∈ Dod. As illustrated in Fig. 2,
since we are denoising the latent encoding via deterministic trajectories pi, the remaining critical
technical challenge to generate x′

0 is to find additional qualified latent encoding x′
T free from the

interference of the ID Gaussian mode in the sampling stage.

Notably, a key precondition to achieving the effective OOD latent sampling is that the established
OOD prior mode should be separable from the ID Gaussian prior mode (i.e., a standard Gaussian).
Otherwise, the denoised image would fall into the training domain as in Fig. 3 (c). The separability
is further supported and validated by our empirical verification below in Sec. 2.5.

2.5 ANALYTICAL EXPERIMENTS

We show empirical verification from multiple perspectives to support our model parameter indepen-
dent and data dependent properties described in Sec. 2.3 and Sec. 2.4.

Geometrical Properties of Gaussians. We leverage the geometrical measurements established of
the high-dimensional studies in mathematics (Blum et al., 2020), as additional empirical support
for the Gaussian priors in Sec. 2.3. Specifically, we compute several geometric metrics, including
the pair-wise angles (angles formed by three arbitrary samples), sample-to-origin angles (angles
formed by two arbitrary samples and the origin), pair-wise distance (euclidean distance between
two arbitrary samples) and distance between OOD and ID Gaussian centers, with results in Tab. 1.

The characteristics mentioned above are typical geometric properties of isotropic high-dimensional
Gaussians (Blum et al., 2020). Notably, three randomly sampled points from a high-dimensional
Gaussian distribution almost surely form an approximately equilateral triangle, with pairwise angles
close to 60◦, and are nearly orthogonal to each other, as reflected by the 90◦ sample-to-origin angles
shown in the first and second rows of Tab. 1, respectively. However, it is important to note that while
these geometric properties are common in high-dimensional Gaussians, they are sufficient but not
necessary conditions for identifying such distributions. In other words, these geometric properties
alone are not enough to infer the underlying distribution without additional prior information. More
details about the geometric properties are in Appendix C.

Mode Separability. As revealed by our analysis in Sec. 2.4, the separability between ID and OOD
Gaussian modes is critical for synthesizing target unseen domain images without modifying the
model parameters and for avoiding the “mode interference”. We further provide validation from the
statistical and learning-based classifier perspectives to support the separability claim.

Statistical Validation. The separability of high-dimensional Gaussians follows Lemma 2.2 (Blum
et al., 2020), which states that spherical Gaussians can be relaxingly separated by Ω(d

1
4 ), or even

Ω(1) with more sophisticated algorithms. In other words, for a DDPM trained on 256× 256 images
with dimensionality d = 3× 256× 256, ID and OOD modes can be well separated and avoid inter-
ference given a distance larger than d

1
4 ≈ 21, which is further validated by the empirical distance

between centers, listed in the forth row of Tab. 1. More details about Lemma 2.2 are in Appendix C.

Lemma 2.2. Mixtures of spherical Gaussians in d dimensions can be separated provided their
centers are separated by more than d

1
4 distance (i.e., a separation of Ω(d

1
4 )).

Classifier Validation. Another empirical perspective to validate the separability between modes in
the latent spaces is using the classifiers as in existing literature (Shen et al., 2020; Zhu et al., 2023a).

6
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Table 1: Geometric properties of inverted ID and OOD latent encodings at step T. The results are
computed based on 1K sample pairs. We report the mean and std for each geometric measurement to
ensure the statistical significance. The base model is trained on AFHQ-Dog-256 (Choi et al., 2020).

D Dog (ID) Sketch (O) Human (O) Church (O) Astro. Galaxy (O) Astro. Radiation (O)
Pair-Angle 60.0±0 60.0±0 60.0±0.1 60.0±0.1 60.0±0.1 60.0 ± 0

Angle-Origin 89.7±0.01 89.1±0.01 89.8±0.01 89.7±0.01 89.1±0.01 87.6 ±0.03
Pair-Distance 607.4±0.01 622.5 ± 0.02 619.3±0.07 620.4±0.02 612.37±0.05 609.13 ± 0.1

Center-Distance - 58.0 31.8 30.7 54.7 80.6
Clf. Acc. - 0.96 0.99 0.99 1.0 1.0

Specifically, a linear classifier such as SVMs (Hearst et al., 1998) can be fitted to test the separability
between ID and OOD encodings in the latent spaces. In our analytical experiments, we fit SVMs on
1K inverted ID and OOD samples following the 7:3 training-testing ratio, and report the test accuracy
in Tab. 1. As additional clarification, the classification results are obtained with the test on the latent
space XT . Our rationale behind the choice of T corresponds to the recent findings of DMs (Zhu
et al., 2023a; Yang et al., 2024), which indicates that XT , as the departure latent space, has the
largest probabilistic support for the trained domain. In other words, if the latent ID and OOD modes
can be separated in XT , they can be separated more easily in other Xt, for t = {T − 1, ..., t, ...1}.
As shown in Tab. 1, while performing the binary classification task on the inverted latent encodings,
a simple linear classifier can well separate ID and OOD domains, which further validates the latent
modes are separable. In addition, we also observe that while the unseen images (e.g., human faces)
are visually more similar to the trained domains (e.g., dogs), the inverted latent encodings inherit
such similarity, making those unseen domains more difficult to be separated from the trained mode,
and subsequently cause extra generation difficulties for those target domains via our tuning-free
paradigm (see Sec. 3). We note this is distinguishable from previous tuning-based generalization
works (Zhou et al., 2020; 2021; Wang et al., 2019b), which believe that it is usually easier to gener-
alize model abilities to unseen domains similar to the trained ones, further validated in Sec. 4.

Our findings on the OOD mode separability also align with another thread of recent works that inves-
tigate pre-trained DDMs for discriminative tasks like classification and segmentation (Li et al., 2023;
Clark & Jaini, 2023; Prabhudesai et al., 2023), where they reveal that diffusion models generalize
better to classifying out-of-distribution images.

3 DISCOVERY-BASED OOD SYNTHESIS

Following our extensive analysis, we note that the methodological challenges in this work can be
disentangled into two key points: sample qualified latent encodings from the OOD prior, and avoid
the mode interference. Sampling from the inverted high-dimensional OOD priors, however, is an
open and non-trivial challenging task given the theory-practice gap,3 and points to multiple possible
directions of solutions. In fact, high-dimensional Gaussian estimation itself remains a challenging
research topic, especially in a multi-variant case (Zhou et al., 2011; Bai & Shi, 2011). While we
present our proposed latent sampling method below, we have experimented with many other meth-
ods that may not yield the best performance, such as vanilla Gaussian sampling and MCMC, with
detailed discussions in Appendix D.

Few-Shot Latent References. Having obtained xod, T from the N raw images xod, it might seem
intuitive to sample directly from the estimated Gaussian distribution N (µest, σ

2
est) based on these

inverted OOD latent encodings. However, this approach is empirically insufficient to avoid mode
interference because, in practice, the inversion does not yield a perfect Gaussian distribution, even
for well-trained in-domain cases (Zhu et al., 2023a). To establish a more precise starting point in the
OOD latent space, we propose using the inverted samples xod,T as the initial point for navigating the
subsequent sampling process. Furthermore, this concept of latent references can be flexibly adapted
to other downstream applications, where the initial latent encoding is determined by the task setup,
such as in the style translation between GRB and sketch images, as illustrated in Fig. 1(b).
Latent Direction for Target Samples. While the inverted latent sample xod,t serves as a known
starting point, we continue to mine more unknown latent samples that shall lead to new denoised

3As all the generative models can be considered as function approximators between the sampling prior and
the implicit data distributions with certain error levels.
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Algorithm 1 Domain Discovery and Expansion within DDPMs
Input: N raw images xod from the target unseen domain Dod, a pre-trained DDPM p for domain
Did, target latent step t for sampling (t is a pre-defined hyper-parameter discussed in Sec. 4.2).
Output: images of the unseen target x′

od ∈ Dod

// Step 1: get the inverted OOD encodings xod,t

Define {τs}Sinv
s=1 s.t. τ1 = 0, τSinv

= t
for i = 1, 2, ..., N do

for s = 1, 2, ..., Sinv − 1 do
ϵ← p(xi

od,τs
, τs)

xi
od,τs+1

=
√
ατsx

i
od,τs

+
√
1− ατsϵ

end for
Save the OOD latent xi

od,τSinv
as {xod,t}i=1,...,N

end for
// Step 2: find new OOD encodings x′

od,t

µest←Mean({x1od,t,x2
od,t, ...,x

N
od,t}), σ2

est ← V ar({x1od,t,x2
od,t, ...,x

N
od,t})

x̄od,t ∼ N (µest, σ
2
est), xod,t ∼ {xod,t}i=1,...,N

x′
od,t ← Slerp(xod,t, x̄od,t)

If Pass the geometric optimization in Algo. 2
x′
od ← p(x′

od,t, t) // Step 3: get denoised x′
od ∈ Dod

images x′
od. Specifically, inspired by several recent works in image editing through latent direction

guidance (Zhu et al., 2023a; Baumann et al., 2024), we deploy the samples x̄od,t ∼ N (µest, σ
2
est)

drawn from the estimate Gaussian as the ultimate latent directions, and obtain samples x′
od,t along

the spherical interpolation (slerp) (Shoemake, 1985) between xod,t and x̄od,t. The rationale behind
the spherical interpolation comes from the fact that the probabilistic concentration mass of a high-
dimensional Gaussian is mainly centered around a thin annulus around the equator (Blum et al.,
2020). In the meantime, it is critical for discovered latent samples to stay within the area of high
probabilistic concentration mass to ensure denoised data with high quality.

Geometrical Optimization. So far we have localized a trajectory with intermediate samples
x′
od,t ∈ Slerp(xod,t, x̄od,t) connecting two samples xod,t and x̄od,t in this latent OOD space. To

further improve the quality of our discovered latent samples, we leverage the geometric properties
as domain-specific information to optimize the latent samples we have obtained from the previous
step as additional criteria to avoid mode interference. Specifically, we can reject a fraction of initial
samples via the angles and distances as shown in Tab. 1 by setting pre-defined tolerance ranges ω.

Overall Algorithm. The overall pipeline of our proposed method includes the following major
steps: raw image inversion via pi, geometric property computation, latent sampling and optimiza-
tion, and deterministic denoising via pi, as shown in Algo. 1. More details in Appendix D.

4 DOWNSTREAM APPLICATION EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Zoos and Datasets. We adopt multiple pre-trained DDPMs on different single domain
datasets as our base models for experiments 4: improved DDPM (Nichol & Dhariwal, 2021) trained
on AFHQ-Dog (Choi et al., 2020), and DDPM (Ho et al., 2020) trained on CelebA-HQ (Karras
et al., 2017), LSUN-Church (Yu et al., 2015), and LSUN-Bedroom (Yu et al., 2015). Each model
generates images in the original resolution of 256 × 256, resulting in a total dimensionality of the
latent spaces d = 256× 256× 3 = 196, 608.

In addition to the above commonly used natural image datasets, we further experiment with the
ImageNet-Sketch (Wang et al., 2019a) and two astrophysical datasets to cover a wide range of do-
main differences and to showcase the application scenarios. For sketch images, we select the subset

4Our proposed generalization analysis also holds for LDMs, however, the downstream applicable scenarios
and performance induce a nuanced variance, as briefly discussed in our Appendix.
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Table 2: General quality evaluation in cross model and domain setup. We report the FID scores
(↓) for natural image domains and the Mean Opinion Scores (MOS) (↑) from subjective evaluations
for astrophysical data. Ref. denotes if a raw image is provided as the starting point. High FID scores
indicate tuning based methods hardly work given similar resource budget, more examples in Fig. 5.

Methods Ref. Dog CelebA Church Bedroom Sketch Galaxy Radiation
Vanilla tuning ✗ 213.6±4.8 229.7±4.3 192.5±3.7 191.1±4.0 298.4±5.2 - -
CLIP tuning ✗ 204.1±4.2 218.7±4.0 196.4±3.6 193.2±4.1 257.7±4.8 - -
CLIP tuning ✓ 140.4±3.7 126.9±3.9 142.2±4.0 145.1±3.8 136.8±3.5 1.84±0.97 1.35±0.74

Ours w/o Geo. Opt. ✓ 133.4±3.2 129.1±2.9 115.3±3.8 116.4±3.5 124.8±3.9 - -
Ours (tuning-free) ✓ 117.7±3.6 114.4±3.8 103.8±3.0 105.6±3.4 98.7±3.6 2.88±0.93 1.52±0.80

of data with dog class labels. Specifically, we adopt the GalaxyZoo (Willett et al., 2013) and the
radiation simulation data (Xu et al., 2023a), the latter has been investigated using DMs for prediction
purposes. Details about those astrophysical datasets, their scientific interpretations, and evaluations
are included in the Appendix E for interested readers, which differs from the usual interpretation
and evaluation of natural images.

Comparable Methods. We mainly compare the performance with different tuning based methods
on diffusion models. (1) Basic baselines: vanilla fine-tuning with the classic variational lower bound
loss and reconstruction loss as proposed in DDPMs (Ho et al., 2020); (2) Strong baselines: CLIP
based fine-tuning (Kim et al., 2022) with extra semantic supervision from text guidance. It is worth
noting that many fine-tuning works (Kim et al., 2022; Kwon et al., 2023) have been proposed in
the context of data editing and image transferring within the same or related domains (e.g, change a
smiling face to non-smiling one), which is an easier case with much smaller domain gap compared
to this work. For such tuning based methods, it is possible to either directly sample from the tuned
models, or adopt a reference image to perform domain transfer. The latter represents a relatively
easier case as it bypasses the sampling stage. However, as shown in Sec. 4.2 and Fig. 5 in the
appendices, neither works in this proposed few-shot generalization scenario. In addition, we also
note that several recent works (Smith et al., 2023) start to deploy the LoRA (Hu et al., 2021a) based
tuning for text-to-image diffusion models, however, as suggested by recent analysis (Biderman et al.,
2024; Kwon et al., 2024), full fine-tuning generally outperforms LoRA in terms of performance and
sampling efficiency both in LLMs and CV.

Resource Budget and Implementation. We use N = 1000 images for OOD domains, and set the
approximate tuning time for 30 minutes to ensure the fair comparison for baseline methods. For
deterministic diffusion, we adopt the standard DDIMs skipping step technique to accelerate both
processes using 60 steps in total. Each direction takes an average of 3 - 6 seconds. The geometric
optimization tolerance ω is set to be 0.3 for distance for 0.1 for angles, which leads to a rejection rate
of approximately 84.44 % based on initial samples. We use 2 RTX 3090 GPUs for all experiments
including baselines. As for CLIP based tuning, we adapt the released code from DiffusionCLIP (Kim
et al., 2022), lower the ID preservation and L1 loss to be 0, and increase the default tuning rate from
8e-6 to 1e-5 to coordinate larger domain gaps in this work.

4.2 RESULTS, EVALUATIONS AND ANALYSIS

General Quality for Natural Image Synthesis. As a general quality evaluation, we calculate the
FID scores (Heusel et al., 2017) on 5K generated samples for natural images. The FID scores are
averaged over four DDPMs pre-trained on different image domains. As shown in Fig. 1 and Tab. 2,
vanilla tuning with only image supervisions can hardly alter the original generation trajectories and
synthesize desired images, always synthesizing in-domain images after comparable tuning time with
other tuning baselines. As for methods that finetune the model with additional CLIP loss (Radford
et al., 2021), such as DiffusionCLIP (Kim et al., 2022) and Asyrp (Kwon et al., 2023), they relatively
perform better for domains closer to their trained domains. Our proposed method shows an opposite
trend by achieving better performance in data domains with bigger differences, as it is easier to avoid
mode interference with larger domain gaps in the latent spaces.

Data Diversity for Natural Images Synthesis. Data diversity is another coomon evaluation cri-
teria in addition to the general quality in natural image synthesis. In Fig. 4, we qualitatively show
examples of the reference and sampled data after denoising for OOD synthesis, as well as the top 5
nearest raw images from the overall OOD samples. The LPIPS scores (Zhang et al., 2018) between
the generated images and their nearest neighbors are 0.49 ± 0.03 and 0.47 ± 0.06 for sketch and
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Ref. Sample CLIP transfer Ours Top 5 nearest raw images to our synthesized OOD sample

Figure 4: Generated OOD images (in green boxes) of our DiscoveryDiff are different from the
latent reference and the top 5 nearest neighbors raw images. In contrast, direct transfer from an
OOD reference using tuned models fails to synthesize new images (in red boxes).

church OOD domains, respectively. We acknowledge that the diversity of OOD samples is not yet
perfect, but they establish sufficient visual differences to be distinguishable from the references.

Astrophysical Evaluations. Unlike natural images, evaluations of scientific data usually follow
their established evaluation protocols on specific tasks, neither general quality computed on FID nor
the data diversity are applicable in this case. Therefore, we perform the subjective evaluation in a
non cherry-picked manner, and ask astrophysicists to rate the quality using the Mean Opinion Scores
(MOS) of a scale between 1-5, with a maximum score of 5 with respect to the ground truth obser-
vation and simulation data. In general, the quality of galaxy images is assessed based on whether
they contain meaningful morphological information. For radiation data, the evaluation is conducted
independently via the comparison with the simulated physical distribution after transferring back to
different wavelength domains measures in µm, ranging from 10−1 to 108. Our proposed Discov-
eryDiff achieves better performance in both astrophysical datasets compared to the strong baseline
with CLIP tuning and reference image. More details can be found in Appendix E.1.

For other discussions on the impact of N, the latent steps for inversion, and the optimization toler-
ance, please refer to Appendix E.2.

5 RELATED WORKS

This work is closely related to several research fields such as the generalization ability of generative
models (Wang et al., 2022a; Rombach et al., 2022), the diffusion models and their deterministic
variants (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021; 2023), the study on the
latent dynamics and regimes of deep generative models (Karras et al., 2017; Abdal et al., 2019; Gal
et al., 2022; Zhu et al., 2023a; Nitzan et al., 2023), as well as recent downstream applications that use
diffusion models for scientific explorations in a data-rare cases (Xu et al., 2023a;b). Our work adopts
a few-shot scenario to study the generalization abilities, uses the deterministic variant as the tool to
achieve a bidirectional transition between latent noisy and data spaces, and contributes to a better
understanding of those latent spaces. An extended discussion on related work is in Appendix A.

6 FURTHER DISCUSSIONS

Conclusion. To sum up, we study the domain generalization of DDPMs in the few-shot scenario.
From the analytical point of view, we explore the generalization properties of DDPMs on unseen
OOD domains. From the methodological perspective, our analytical results allow us to propose a
novel paradigm for synthesizing images from new domains without tuning the generative trajecto-
ries. We also showcase the superiority of our method in data-sparse cases with large domain gaps.

Limitations and Broader Impact. The current limitations and challenge mainly come from the
OOD sampling. As previously discussed, the sampling from inverted OOD prior in high dimension-
ality is a challenging task and open research question, which also directly impact the synthesized
image quality. Improved sampling methods are worth investigating as future research directions.
This work falls into the category of generative models and their applications, we thus acknowl-
edge that it may pose the same risks of malicious use of synthetic data as other general generative
works. However, the primary objective of our work is not performance-driven but to provide a better
understanding of the generalization properties of diffusion generative models.
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estimation based on gaussian graphical models. The Journal of Machine Learning Research,
2011.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image
editing. In ECCV. Springer, 2020.
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We structure the appendices as follows: We provide a detailed discussion on the related work in
Appendix A. In Appendix B, we present the background of deterministic diffusion models. In Ap-
pendix C, we provide detailed proof for the lemmas used in Sec. 2 of the main paper as part of analyt-
ical studies. Meanwhile, Appendix C includes the necessary background on the geometric properties
of high-dimensional Gaussians. More latent sampling methods are discussed in Appendix D. Ap-
pendix E includes additional details about the generative experiments on unseen OOD domains. We
have also included our core code as part of the supplementary material.

“Dog”

“Church”

“Dog”

“Galaxy”

“Dog”

“Fox”

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7Raw

Figure 5: Fine-tuning methods often fail to transfer the original trained domain to the target
OOD domain with large domain gaps. We qualitatively show how a given ID sample (e.g., a dog
RGB image) changes as the tuning epoch increases, using extra CLIP semantic guidance. We note
that tuning a pre-trained model to an OOD domain with large gap (e.g., dog-to-church and dog-to-
galaxy) usually fails.

A RELATED WORK

Due to the space limitations in the main paper, we present a detailed discussion of related work in
our appendices.

A.1 GENERALIZATION IN GENERATIVE MODELS

Domain Generalization (Wang et al., 2022a) that aims to generalize models’ ability to extended data
distributions has been an important research topic in broad machine learning area (Ganin et al., 2016;
Zhao et al., 2020; Zhou et al., 2021; Muandet et al., 2013; Li et al., 2017), with various computer
vision applications such as recognition (Peng et al., 2019; Rebuffi et al., 2017), detection (Zhang
et al., 2021) and segmentation (Hoffman et al., 2018; Gong et al., 2019). In the vision generative
field, it becomes an even more challenging task with the extra demand to sample from the gener-
alized distributions. One popular recent trend in the computer vision community is scaling up the
model and dataset sizes as the most intuitive and obvious solutions (Ramesh et al., 2022; Ho et al.,
2022a; Rombach et al., 2022). Another scenario to study the domain generalization of generative
models is within the few-shot scenario, where we only have a limited amount of data compared to
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the training set. In this case, fine-tuning the given model on the limited images Kim et al. (2022) is
the most straightforward way to go.

Our work falls into the second category: provided with a pre-trained model and a small set of unseen
images different from the model’s training domain, we seek to better understand the generalization
abilities of DDPMs.

A.2 DIFFUSION MODELS AND DETERMINISTIC VARIANTS

Diffusion Models (DMs) Sohl-Dickstein et al. (2015); Ho et al. (2020); Song & Ermon (2019) are
the state-of-the-art generative models for data synthesis in images (Ramesh et al., 2022; Rombach
et al., 2022; Nichol & Dhariwal, 2021; Gu et al., 2022; Dhariwal & Nichol, 2021; Hu et al., 2021b),
videos (Ho et al., 2022b), and audio (Kong et al., 2020; Zhu et al., 2023b; Mittal et al., 2021).
There are currently two mainstream fundamental formulations of diffusion models, i.e., the denois-
ing diffusion probabilistic models (DDPMs) Ho et al. (2020) and score-based models Song et al.
(2020). One common perspective to understand both formulations is to consider the data generation
as solving stochastic differential equations (SDEs), which characterize a stochastic process. Based
on vanilla models, both branch develops their own deterministic variants, i.e., denoising diffusion
implicit models (DDIMs) Song et al. (2021) and consistency models Song et al. (2023), with their
core idea to follow the marginal distributions in denoising. Compared to initial DDPMs and Score-
based DMs with ancestral sampling, the deterministic variants are solving ODEs instead of SDEs
and largely accelerate the generation speed with fewer steps.

We leverage the deterministic variant (DDIMs Song et al. (2021)) as the tool to achieve bidirectional
transition between latent noisy space and data space in this work.

A.3 LATENT SPACE OF DEEP GENERATIVE MODELS

Comprehensive studies of latent space of generative models (Karras et al., 2017; Abdal et al., 2019;
Gal et al., 2022) help to better understand the model and also benefit downstream tasks such as data
editing and manipulation (Zhu et al., 2016; Shen et al., 2020; Kwon et al., 2023; Zhu et al., 2020).
A large portion of work has been exploring this problem within the context of GAN inversion (Xia
et al., 2022), where the typical methods can be mainly divided into either learning-based (Zhu et al.,
2016; Richardson et al., 2021; Wei et al., 2022; Alaluf et al., 2021) or optimization-based cate-
gories (Abdal et al., 2019; 2020; Huh et al., 2020; Creswell & Bharath, 2018). More recently, with
the growing popularity of diffusion models, researchers have also focused on the latent space under-
standing of DMs for better synthesis qualities or semantic control (Rombach et al., 2022; Zhu et al.,
2023a; Yang et al., 2024).

Our work also contributes to a better understanding of latent spaces, and aims to introduce a new
synthesis paradigm to explore the intrinsic potential of DMs.

A.4 DIFFUSION MODELS IN SCIENCE

While DMs have been extensively applied in data generation and editing within the multimodal
context (Rombach et al., 2022; Ho et al., 2022b; Zhu et al., 2023b; Yang et al., 2024; Zhu et al.,
2023a), recent works have extended their application domains to scientific explorations, such as
astrophysics (Xu et al., 2023b;a), medical imaging (Kazerouni et al., 2023; Wu et al., 2024a), and
biology (Wu et al., 2024b). Compared to conventional computer vision applications, scientific tasks
usually exhibit several distinct features. For instance, data acquisition and annotation are generally
more expensive due to their scientific nature, resulting in a relatively smaller amount of available
data for experiments. Additionally, the evaluation of these works adheres to established conventions
within their respective contexts, which are usually different from image synthesis evaluation based
on perceptual quality.

Our work also experiments with several astrophysical datasets to showcase the potential of applying
our proposed paradigm and method to such specific domains with limited data.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B DETERMINISTIC DIFFUSION

Our analytical studies and methodology designs are built upon a specific variant of diffusion for-
mulations, i.e., the deterministic diffusion process. While the original DDPMs involve a stochastic
process for data generation via denoising (i.e., the same latent encoding will output different de-
noised images every time after the same generative chain), there is a variant of diffusion model that
allows us to perform the denoising process in a deterministic way, known as the Denoising Diffu-
sion Implicit Models (DDIMs) (Song et al., 2021). DDIMs were initially proposed for the purpose
of speeding up the denoising process, however, later research works extend DDIMs from faster
sampling application to other usages including the inversion technique to convert a raw image to its
arbitrary latent space in a deterministic and tractable way. As briefly stated in our main paper, the
core theoretical difference between DDIMs and DDPMs lies within the nature of forward process,
which modifies a Markovian process to a non-Markovian one.

The key idea in the context of non-Markovian forward is to consider a family of Q of inference
distributions, indexed by a real vector σ ∈ RT

≥0:

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), (5)

where qσ(xT |x0) = N (
√
αTx0, (1− αT )I) and for all t > 1,

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I). (6)

The choice of mean function from Eqn. 6 ensures that qσ(xt|x0) = N (
√
αtx0, (1 − αt)I) for

all t, so that it defines a joint inference distribution that matches the “marginals” as desired. The
non-Markovian forward process can be derived from Bayes’ rule:

qσ(xt|xt−1,x0) =
qσ(xt−1|xt,x0)qσ(xt|x0)

qσ(xt−1|x0)
. (7)

In fact, in the original paper, the authors also explicitly stated that: “ The forward process from
Eqn. 7 is also Gaussian (although we do not use this fact for the remainder of this paper)”. 5 While
this Gaussian property was not emphasized and leveraged in the DDIMs paper, we find it useful in
our context to explore the representation and generalization ability of pre-trained DDPMs.

In particular, the hyper-parameters for Gaussian scheduling α and β in the context of DDIMs are
slightly different from the original formulation in DDPMs (Ho et al., 2020). Denote the original
sequences from DDPMs as α′

t, then the αt in this work follows the definition of DDIMs to be
αt =

∏T
t=1 α

′
t.

In addition to DDIMs, we note that the score-based formulation has also recently marked a determin-
istic variant, namely the Consistency Models (Song et al., 2023). The core idea of the consistency
model is, to some extent, similar to DDIMs, which allows the vanilla score-based stochastic diffu-
sion models to achieve “one-step” denoising, by following the marginal distributions.

As mentioned in our main paper, the deterministic diffusion is mainly used as a tool in this work for
our proposed tuning-free paradigm.

C DETAILED PROOFS AND GEOMETRIC PROPERTIES

In this section, we provide detailed proof for the lemmas in Sec. 2. Particularly, Lemma 2.2 is a
known property in high-dimensional Gaussian studies.

C.1 PROOF OF LEMMA 2.1

We restate the lemma below, and provide the detailed proof, which has been introduced in the
original DDIM paper (Song et al., 2021).

5This paper refer to the DDIM paper (Song et al., 2021).
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Table 3: Reconstruction results for arbitrary images via deterministic diffusion. We use an
iDDPM (Nichol & Dhariwal, 2021) trained on AFHQ-Dog and 1K testing OOD images to compute
the MAE (mean absolute error) reconstruction metric. Note DDIMs (Song et al., 2021) was initially
proposed to accelerate DDPMs sampling, but have not been studied in this OOD reconstruction
setting.

Method Recons. Domain MAE (↓)
pSp (Richardson et al., 2021) CelebA (ID) 0.079

e4e (Tov et al., 2021) CelebA (ID) 0.092
ReStyle (Alaluf et al., 2021) CelebA (ID) 0.089
HFGI (Wang et al., 2022b) CelebA (ID) 0.062

DDIMs (Song et al., 2021)

Dog (ID) 0.073 ± 6e-4
CelebA (OOD) 0.073 ± 8e-4
Church (OOD) 0.074 ± 8e-4

Bedroom (OOD) 0.072 ± 7e-4
Galaxy (OOD) 0.067 ± 1e-3

Radiation (OOD) 0.077 ± 9e-4

Lemma C.1. For qσ(x1:T |x0) defined in Eqn. 1 and qσ(xt−1|xt,x0) defined in Eqn. 2, we have:

qσ(xt|x0) = N (
√
αtx0, (1− αt)I). (8)

Proof:
Assume for any t ≤ T , qσ(xt|x0) = N (

√
αtx0, (1− αt)I) holds, if:

qσ(xt−1|x0) = N (
√
αt−1x0, (1− αt−1)I), (9)

then we can prove that the statement with an induction argument for t from T to 1, since the base
case (t = T ) already holds.

First, we have that

qσ(xt−1|x0) :=

∫
xt

qσ(xt|x0)qσ(xt−1|xt,x0)dxt, (10)

qσ(xt|x0) = N (
√
αtx0, (1− αt)I), (11)

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I). (12)

According to (Bishop & Nasrabadi, 2006) 2.3.3 Bayes’ theorem for Gaussian variables, we know
that qσ(xt−1|x0) is also Gaussian, denoted as N (µt−1,Σt−1) where:

µt−1 =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
√
αtx0 −

√
αtx0√

1− αt
=
√
αt−1x0, (13)

Σt−1 = σ2
t I+

1− αt−1 − σ2
t

1− αt
(1− αt)I = (1− αt−1)I. (14)

Therefore, qσ(xt−1|x0) = N (
√
αt−1x0, (1 − αt−1)I), which allows to apply the induction argu-

ment.

Q.E.D

C.2 PROOF OF LEMMA 4.2

Lemma C.2. Mixtures of spherical Gaussians in d dimensions can be separated provided their
centers are separated by more than d

1
4 distance (i.e, a separation of Ω(d

1
4 )), and even by Ω(1)

separation with more sophisticated algorithms.
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Proof:

According to existing established understanding (Lemma 2.8 from Blum et al. (2020)), for a d-
dimensional spherical Gaussian of variance 1, all but 4

c2 e
− c2

4 fraction of its mass is within the
annulus

√
d− 1− c ≤ r ≤

√
d− 1 + c for any c > 0, as illustrated in Fig. 6.

Given two spherical unit variance Gaussians, we have most of the probability mass of each Gaussian
lies on an annulus of width O(1) at radius

√
d− 1. Also, e−|x|2/2 factors into

∏
i e

−x2
i /2 and almost

all of the mass is within the slab {x| − c ≤ x1 ≤ c}, for c ∈ O(1).

Now consider picking arbitrary samples and their separability. After picking the first sample x, we
can rotate the coordination system to make the first axis point towards x. Next, independently pick
a second point y also from the first Gaussian. The fact that almost all of the mass of the Gaussian
is within the slab {x| − c ≤ x1 ≤ c, c ∈ O(1)} at the equator says that y’s component along x’s
direction is O(1) with high probability, which indicates y should be nearly perpendicular to x, and
thus we have |x− y| ≈

√
|x|2 + |y|2.

More precisely, we note x is at the North Pole after the coordination rotation with x = (
√
(d) ±

O(1), 0, ...). At the same time, y is almost on the equator, we can further rotate the coordinate
system so that the component of y that is perpendicular to the axis of the North Pole is in the second
coordinate, with y = (O(1),

√
(d)±O(1), ...). Thus we have:

(x− y)2 = d±O(
√
d) + d±O(

√
d) = 2d±O(

√
d), (15)

and |x− y| =
√
(2d)±O(1).

Given two spherical unit variance Gaussians with centers p and q separated by a distance δ, the
distance between a randomly chosen point x from the first Gaussian and a randomly chosen point y
from the second is close to

√
δ2 + 2d, since x−p, p−q, and q−y are nearly mutually perpendicular,

with:
|x− y|2 ≈ δ2 + |z− q|2 + |q− y|2 = δ2 + 2d±O(

√
d). (16)

To ensure that the distance between two points picked from the same Gaussian are closer to each
other than two points picked from different Gaussians requires that the upper limit of the distance
between a pair of points from the same Gaussian is at most the lower limit of distance between
points from different Gaussians. This requires the following criterion to be satisfied:

√
2d+O(1) ≤

√
2d+ δ2 −O(1), (17)

which holds when δ ∈ Ω(d1/4).

Thus, mixtures of spherical Gaussians can be separated provided their centers are separated by more
than d1/4.

Q.E.D

C.3 GEOMETRIC PROPERTIES

We consistently observe three geometric properties for the inverted OOD latent encodings. We
provide a more detailed discussion on what each property implies in this sub-section.

Recall the three geometric properties as below:

Observation 1: For any OOD sample pairs xout
inv,i and xout

inv,j from the sample set, the Euclidean
distance between these two points is approximately a constant do.

Observation 2: For any three OOD samples xout
inv,i, x

out
inv,j and xout

inv,k from the sample set, the angle

formed between ⃗xout
inv,kx

out
inv,i and ⃗xout

inv,kx
out
inv,j is always around 60◦.

Observation 3: For any OOD sample pairs xout
inv,i and xout

inv,j from the sample set, let O denote

the origin in the high-dimensional space, the angle formed between ⃗Oxout
inv,i and ⃗Oxout

inv,j is always
around 90◦.
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Figure 6: Illustration of various geometric properties of high-dimensional Gaussians. (a) and
(b) show the probability concentration mass is mainly centered around a thin annulus around the
equator. (c) illustrates the geometric observation on the orthogonality of sample pairs. (d) illustrates
the idea of separating two Gaussian distributions in high-dimensional spaces.

For the first observation, when the sample pairs keep approximately the same distance, the direct
implication is that those samples are likely to be drawn from some convex region in the high-
dimensional space (Wang, 2012). One typical example is the spherical structure, where every data
points exhibit an equal distance from the center.

The second geometric property suggests that the unknown samples could lie on a regular lattice
near a low-dimensional manifold or sub-manifold, where the local geometry of the manifold is
approximately Euclidean. However, a less evident implication is that for samples drawn from a high-
dimensional Gaussian, this property also holds, as detailed in the next section C.4, and illustrated in
Fig. 6(c).

The third geometry property implies that the sample points might be isotropic in nature, who are
rotationally symmetric around any point in the space. Therefore, any two points drawn from the
distribution are equally likely to lie along any direction in the space. This property is also observed
for a high-dimensional Gaussian (Blum et al., 2020), whose covariance matrix is proportional to the
identity matrix.

We acknowledge that to deduce a distribution in high-dimensional space solely based on its geo-
metric properties is very challenging, and there may exist other complex distributions that exhibit
similar properties we have observed. However, combined with our theoretical analysis and empirical
observations, the OOD Gaussian assumption seems to hold well. Explicitly, we find the above geo-
metric properties do not hold for images x0 from the data space. For instance, the angle of samples
to the origin is approximately 75◦ rather than 90◦.

C.4 HIGH-DIMENSIONAL GAUSSIAN

Gaussian in high-dimensional space establishes various characteristic behaviors that are not obvious
and evident in low-dimensionality. A better understanding of those unique geometric and proba-
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bilistic behaviors is critical to investigate the latent spaces of DDMs, since all the intermediate latent
spaces along the denoising chain are Gaussian as demonstrated and proved in our previous sections.

We present below several properties of high-dimensional Gaussian from (Blum et al., 2020), note
those are known and established properties, we therefore omit the detailed proofs in this supplement,
and ask readers to refer to the original book if interested.

Property D.1. The volume of a high-dimensional sphere is essentially all contained in a thin slice
at the equator and is simultaneously contained in a narrow annulus at the surface, with essentially
no interior volume. Similarly, the surface area is essentially all at the equator.

This property above is illustrated in Fig. 6(a)(b), where the sampled ID encodings are presented in a
narrow annulus.

Lemma D.2. For any c > 0, the fraction of the volume of the hemisphere above the plane x1 =
c√
d−1

is less than 2
c e

− c2

2 .

Lemma D.3. For a d-dimensional spherical Gaussian of variance 1, all but 4
c2 e

−c2/4 fraction of its
mass is within the annulus

√
d− 1− c ≤ r ≤

√
d− 1 + c for any c > 0.

The lemmas above imply that the volume range of the concentration mass above the equator is in the
order of O( r√

d
), also within an annulus of constant width and radius

√
d− 1. In fact, the probability

mass of the Gaussian as a function of r is g(r) = rd−1e−r2/2. Intuitively, this states the fact that the
samples from a high-dimensional Gaussian distribution are mainly located within a manifold, which
matches our second geometric observation.

Lemma D.4. The maximum likelihood spherical Gaussian for a set of samples is the one over center
equal to the sample mean and standard deviation equal to the standard deviation of the sample.

The above lemma is used as the theoretical justification for the proposed empirical search method
in (Zhu et al., 2023a). We also adopt the search method using the Gaussian radius for identifying
the operational latent space along the denoising chain to perform the OOD sampling.

Property D.5. Two randomly chosen points in high dimension are almost surely nearly orthogonal.

The above property corresponds to the Observation 3, where two inverted OOD samples consistently
form a 90◦ angle at the origin.

D MORE DEATILS ABOUT THE LATENT SAMPLING METHODS

We present here the detailed algorithms for our proposed latent sampling methods, and discuss many
other sampling methods that we have tested during experiments.

D.1 ALGORITHMS

While we have described the procedure of our proposed latent sampling method in Sec. 3, the fol-
lowing Algo. 2 includes details of the geometric optimizations.

D.2 OTHER SAMPLING METHODS

In addition to the main sampling method introduced in the main paper, we have tested many other
sampling methods for mining the qualified OOD latent encodings.

We list those sampling methods below as extra information and provide a brief discussion for each.

Approach 1: Estimated Gaussian Sampling. An intuitive way to achieve the OOD sampling based
on our analytical understanding from Sec. 2 is to directly fit the latent encodings with a Gaussian dis-
tribution and then sample from the estimated Gaussian. However, we note that the high-dimensional
Gaussian estimation itself remains as a challenging and complex research topic, especially in a
multi-variant case (Zhou et al., 2011; Bai & Shi, 2011). In general, a reliable estimation of means
and variances requires data samples at least 10 times the dimensionality, known as the “rule of
ten” (Johnson et al., 2002), which contradicts our few-shot setup. Empirically, we also observe that
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Algorithm 2 Latent Sampling with Geometric Optimizations
Input: A sampled OOD latent encoding x′

od,t, N inverted OOD latent {x1
od,t,x

2
od,t, ...,x

N
od,t},

distance tolerance ωd, angle tolerance ωa, Nref OOD reference samples
Output: True or False
// Step 1: get pair-wise distance from the inverted OOD encodings xod,t

dod ← 0
for i = 1, 2, ..., n do
(p, q)← RandomInt(0, N − 1)
dod += Euclidien distance(xp

od,t, x
q
od,t)

end for
dod ← dod/n
// Step 2: Geometric optimization based on pre-defined tolerances
for i = 1, ..., Nref do
d← Euclidien distance(xi

od,t, x
′
od,t)

if d < dod − ωd or d > dod + ωd then
return False

end if
end for
for i = 1, ..., Nref do
(p, q)← RandomInt(0, Nref − 1)

φ← Angle( ⃗x′
od,tx

p
od,t,

⃗x′
od,tx

q
od,t)

if φ < 60− ωa or φ > 60 + ωa then
return False

end if
end for
return True

the synthesis quality with vanilla Gaussian sampling is not very promising. The key reason for this
is the gap between the theoretical foundation and practical model training, as also discussed in our
main paper.

Approach 2: MCMC Sampling. As an improved statistical method over vanilla Gaussian sam-
pling, we also tested the MCMC sampling technique, which should provide a better and more
precise estimation of the distribution based on the inverted latent samples. However, one practi-
cal challenge we encountered during the experiments is that MCMC sampling takes an extremely
long time for high-dimensional data in this context (i.e., several days using Metropolis-Hastings
and Gibbs, which even exceeds the time required to tune the entire model). Therefore, we do not
recommend or include this method in our main paper.

Approach 3: Gaussian Sampling w/ Geometric Optimization. A more practical implementation
of the Gaussian sampling is to leverage the geometric properties as the domain-specific criteria to
further optimize the quality of latent encodings, just as described in Algo. 2. We note this improves
over the vanilla Gaussian sampling, but still qualitatively suffers from the mode interference issue.

E MORE DETAILS FOR GENERATIVE EXPERIMENTS

E.1 BACKGROUND AND EVALUATION ABOUT THE ASTROPHYSICAL DATA

Galaxy Data. The images from the GalaxyZoo dataset (Willett et al., 2013) are observation data
of galaxies that belong to one of six categories - elliptical, clockwise spiral, anticlockwise spiral,
edge-on, star/don’t know, or merger. The original data format of those galaxy images are also
RGB images, thus “somewhat” similar to natural images, but they contain important morphological
information to study the galaxies in astronomy.

The evaluation of the synthesized galaxy data is based on the expertise of astrophysicists if they
could reliably classify the generated images into one of the known categories.
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Radiation Data. For the radiation data from (Xu et al., 2023a), the original format is physical
quantity instead of RGB images, which correspond to the dust emission.

Dust is a significant component of the interstellar medium in our galaxy, composed of elements such
as oxygen, carbon, iron, silicon, and magnesium. Most interstellar dust particles range in size from
a few molecules to 0.1 mm (100 m), similar to micrometeoroids. The interaction of dust particles
with electromagnetic radiation depends on factors like their cross-section, the wavelength of the
radiation, and the nature of the grain, including its refractive index and size. The radiation process
for an individual grain is defined by its emissivity, which is influenced by the grain’s efficiency factor
and includes processes such as extinction, scattering, absorption, and polarization.

In RGB images of dust emission, different colors represent emissions at three wavelengths: blue for
4.5 µm, green for 24 µm, and red for 250 µm. The blue color typically indicates short-wavelength
dust emission from point sources, such as young stars or young stellar objects. The green color
represents mid-wavelength dust emission from warm and hot dust. The red color signifies long-
wavelength dust emission from cold dust.

Warm/hot dust emission (green) is usually found around stars, which appear as blue-colored dots.
Since warm dust often mixes with cold dust on the outer edges of bubble structures, the resulting
color is often yellowish. Cold dust extends farther from the stars, giving the background or areas
outside star clusters a red appearance. In the case of massive star clusters, stellar feedback, such
as radiation and stellar winds, can blow away the surrounding gas and dust, creating black or blank
areas. Typically, RGB images show more extensive red emission with some orange/yellow emis-
sion, displaying filamentary and bubble structures, along with blue and/or white dotted point source
emissions.

The above background is considered as part of the underlying evaluation criteria when performing
subjective evaluation on the quality of generated radiation data.

E.2 MORE EXPERIMENTAL RESULTS

We provide extended discussions in this section for the readers who are interested in more subtitle
experimental details.

E.2.1 DISCUSSION ON THE LATENT STEP t, STOCHASTICITY AND MODE INTERFERENCE

In our main paper, we briefly discuss the impact of the latent diffusion step t where we perform
the inversion and OOD latent sampling. While we empirically find that t ≈ 800 is a reasonable
range for the choice of t, we note there exists an entangled mechanism for the trade-off between the
sampling difficulty and the mode interference issue.

For the diffusion step t, recent studies (Zhu et al., 2023a; Yang et al., 2024) suggest that t character-
izes the formation of image information at different stages of the denoising process. Intuitively, the
early stage of the denoising process (e.g., t > 800) represents a rather chaotic process, the mixing
step tm (Zhu et al., 2023a) signifies a critical stage where the image semantic information starts to
form, and the later stage where t is close to 0 demonstrates a stage during which more fine-grained
pixel-level information are introduced to the final generated data. From the distribution point of
view, the influence of t can be interpreted as the convergence of distributions, where t = T is a stan-
dard Gaussian by definition, thus the ID and OOD modes are more difficult to separate. However, as
the denoising process gets closer to the real image space at t = 0, the sampling difficulty increases
as the implicit distribution moves away from the standard Gaussian.

Meanwhile, the diffusion step t is not the only factor that impacts the trade-off between sampling dif-
ficulty and mode interference. While scarcely discussed in the main paper, we note the stochasticity
of the denoising trajectory also plays a similar role as the diffusion step in this work. The stochas-
ticity of the denoising trajectory in DMs has been proven to be generally beneficial in improving the
synthesis quality (Karras et al., 2022; Kim et al., 2022; Kwon et al., 2023; Zhu et al., 2023a). In this
work, while we choose the η = 0 for the main paper, a tolerance for a certain range of stochasticity
allows us to follow a “relatively deterministic” denoising process pη=k, with k ̸= 0, instead of the
completely deterministic pi. We hereby refer to it as “bandwidth of the unseen trajectories,” denoted
as Bη,t, which can be used to quantify the “mode interference”. Another interpretation is to analog
the trajectory bandwidth Bη,t to the actual subspace volume occupied by the OOD latent samples.
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Figure 7: Illustration of unseen trajectory bandwidth at different diffusion steps. We show
qualitative examples using the iDDPM (Nichol & Dhariwal, 2021) trained on AFHQ-Dog-256 as
the base model, the examples of church and cat are both unseen domain images. The image in green
boxes indicates the bandwidth we have empirically selected to preserve the reconstruction quality.
Compared to the trained image domain (i.e., dogs), cats have a smaller domain gap than churches.
Different from the conventional understanding that a smaller domain gap is beneficial for better
and easier generalization from a trained model, we observe a larger domain gap signifies a larger
bandwidth, making it easier to perform the OOD sampling and synthesis.

Fig. 7 shows more qualitative results for the bandwidth search in the reconstruction task and reveals
its connection to the diffusion step t. Overall, the bandwidth is a hyper-parameter that relates to the
base model and the unseen domains, and the diffusion step t, while the bandwidth gets larger at the
latent spaces closer to the raw image domains, sampling from OOD unseen distributions also gets
more difficult.

E.2.2 DISCUSSION ON MODEL DESIGNS

Among four base DDPMs we have tested, there are two architecture variants namely the improved
DDPM (Nichol & Dhariwal, 2021) and vanilla DDPM (Ho et al., 2020). The difference between
the two variants lies within the scheduler design for the Gaussian perturbation kernels: improved
DDPM uses a cosine scheduler while vanilla DDPM adopts a linear one. Our experiments suggest
that iDDPM in general synthesizes images with better quality in terms of FID scores, which aligns
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with previous studies (Nichol & Dhariwal, 2021; Zhu et al., 2023a). One implication from the above
observation is that the domain generalization abilities studied in this context is inherited from the
performance of model’s original performance.

E.2.3 DISCUSSION ON THE NUMBER OF OOD IMAGES AND REJECTION CRITERIA

While increasing the number of OOD raw images is generally beneficial, there is always a trade-off
between resource requirements and performance. Given the constraints of our experimental setup,
we selected N = 1000 for our experiments. In practice, we find that the number of OOD samples,
N , is quite robust for computing geometric properties across different base diffusion models, with
values ranging from 800 to 1200.

Regarding the rejection criteria, there is a trade-off between performance and the rejection rate,
which depends on how different OOD domains behave in inverted latent spaces. While stricter
criteria result in a higher rejection rate, we find that a distance tolerance between 0.2 and 0.3, along
with an angle tolerance around 0.1, are reasonable empirical choices.

E.2.4 MORE QUALITATIVE RESULTS

In particular, we present qualitative examples from tuning-based methods in Fig. 5 and observe that
these methods often fail when there is a relatively large gap between the target OOD domain and the
original trained domain.

More synthesized examples of our proposed method are included in Fig. 8. We also show part of the
raw natural image samples used in our work in Fig. 9, Fig. 10, and Fig. 11, which helps to evaluate
the diversity of the generated data.
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Figure 8: Additional qualitative results from our proposed method for synthesizing OOD data
without tuning the model parameters.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 9: Examples of raw human face images used as OOD samples.

Figure 10: Examples of raw church images used as OOD samples.
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Figure 11: Examples of raw bedroom images used as OOD samples.
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