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Abstract

It is well known that the local geometric structure of the loss surface
about a particular value of the parameter space for a deep learning model
(and other singular models) determines many of the behavioural proper-
ties of the model with that parameter value. In recent years the learning
coefficient has emerged as a particularly important geometric invariant for
predicting model properties. In this work we explore the interpretation
of the learning coefficient as a fractal dimension of the loss surface, and
show how it relates to more classical notions of fractal dimensions like the
box counting dimension. Using this we show that there is a natural corre-
spondence between the low loss parameters and an infinite depth, locally
finite tree. We then use this to reframe the learning coefficient in terms
of cylinder sets, which draws links between the geometry of parameter
space, information theory, symbolic dynamics, and probability on trees.

1 Introduction

Due to the potential risks posed by powerful AI models it has become increas-
ingly important to understand the “laws” that govern the behaviour of these
models both during inference and training. One important avenue of study is
trying to understand the emergence of structures within these models during
the training process. To this end, recent work has suggested the use of a local
variant of the learning coefficient from singular learning theory [Wat09] (which
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controls the Bayesian posterior over the model parameters) to study how the
internal structures of neural networks change throughout training [LFW+24]
[WHvW+24]. It has been suggested that the learning coefficient is effectively a
fractal dimension that controls the scale of the low-loss pathways that models
can diffuse through during the learning process [HB25] controlling large portions
of the learning dynamics.

One would expect that these local geometric structures should have some
information theoretic description, as modern deep learning models seemingly
learn compressed representations of the data that allow for effective inference
[TZ15]. However, the exact relationship between the geometric structures of the
loss surface and the compression picture is not well understood.

In this work we attempt to remedy this using a fractal geometry inspired
approach. In particular, we show that the learning coefficient λ of some subspace
W ⊂ Rd describes a fractal dimension λ′ like λ = d−λ′ such that λ′ meets some
general conditions for a fractal dimension. Then, we show that under natural
conditions on the loss surface geometry there is a direct relationship between
the learning coefficient and the classical box counting dimension. This allows
one to construct locally finite, infinite depth trees that capture properties of low
loss subspaces of parameter space. From this, one can establish a link between
the “description length” of a parameter specification in the low loss subspace
and the Bayesian posterior over the set of possible model parameters.

2 Singular Learning Theory

Here we give a very brief introduction to singular learning theory through one
of the core results. Let parameter set W ⊂ Rd be a compact subset, and
let L be the population loss (in particular, the KL-divergence) for some data
distribution. Following theorem 7.1 of [Wat09] for a given error tolerance t and
a prior ρ(w) over W , the volume of solutions with error less than t is given by
the integral:

V (t) =

∫
L(w)<t

ρ(w)dw (1)

which is referred to as the singular integral. This takes on the value

V (t) = ctλ(log(
1

t
))m−1 + o(tλ(log(

1

t
))m−1) (2)

where λ is the learning coefficient which is given by

λ = lim
t→0

log(V (at)/V (t))

log a
(3)

Similarly, one can define the “local learning coefficient” λ(w∗) about a parameter
w∗ by taking the compact set W to be an open ball about w∗

We note here that for simplicity we will assume that the prior is the normal-
ized Lebesgue measure over W , however the majority of results hold when the
prior is any (Baire) probability measure.
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3 Fractal Dimensions

Broadly speaking, fractal dimensions capture how some quantity scales under
some particular choice of measurement gauge. The study of fractal geometry
itself is a rich field with many applications ranging from physics and engineering
[MB89] all the way to number theory[LvF00]. With such diverse applications,
it should be unsurprising that there are many different types of fractal dimen-
sions. We make use of one of the simplest fractal dimensions, the box counting
dimension:

Definition 3.1 (Box Counting Dimension). Consider a covering of X ⊂ Rd by
a grid of cubes with sidelength δ. Let M(δ) be the least number of boxes of
sidelength δ needed to cover X. Then we have

Dm = lim
δ→0

logM(δ)

log δ
(4)

and M(δ) ∼ uδ−Dm for some constant u. If this limit does not exist we can
define the lower box counting dimension as

Dm = lim inf
δ→0

logM(δ)

log δ
(5)

and the upper box counting dimension

Dm = lim sup
δ→0

logM(δ)

log δ
(6)

Given that there are many different types of fractal dimensions, one might
expect that there is some set of conditions that must be met for something
to be considered a fractal dimension. Surprisingly, this is not really the case.
Determining whether or not something is a fractal dimension is mostly guided
by intuition as some things that don’t look like a fractal dimension can indeed
behave like one. Despite this, there are some general properties fractal dimen-
sions tend to have. While something might still be a fractal dimension without
these properties, something that has them can reasonably be considered a fractal
dimension. These are given below[Fal13]:

Definition 3.2 (Conditions for a Fractal Dimension). A scaling factor can
generally be considered a fractal dimension if the following hold:

• Monotonicity : If E ⊂ F , then dim E ≤ dim F

• Stability : dim E ∪ F = max(dim E,dim F )

• Lipschitz Invariance: If T is a bilipschitz transformation, dim T (E) =
dim E

• Countable Sets: If E is countable, then dim E = 0.
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• Open Sets: If E is an open subset of Rd then dim E = d

• Smooth Manifolds: If E is a smooth m-manifold then dim E = m

Before continuing, we note that one can use a different type of limit to get
an equivalent definition of the fractal dimension. Suppose you want to know
how the volume scales in relation to some fixed constant a. One then has

lim
δ→0

M(aδ)

M(δ)
∼ aDm (7)

Since fractal dimensions are about how something “scales” with respect to
some measurement, we can now define a method of measurement for our pur-
pose. Let V (h) represent the volume of some liquid in a container at height h.
We can then define the height scaling dimension as:

Definition 3.3 (Height Scaling Method). Let X ⊂ Rd and consider a smooth
height function f : Rd → R+. IfX contains a zero of f , let Ωz = {x ∈ Rd|f(x) =
z}. Now let A(z) =

∫
X
1Ωz

(x)dx. We now define

V (h) =

∫ h

0

A(z)dz (8)

we then have the height scaling dimension defined as

Dh = lim
h→0

log V (h)

log h
(9)

if it exists. One can define the upper and lower dimensions similarly. Further-
more, we can express

Dh = d−D′
h (10)

It is easy to see that this is very similar to the definition of the singular
integral. In the next section we show that the singular integral can be written
in such a form and show that it meets the conditions of a fractal dimension.

4 Results

4.1 Learning Coefficient as a Fractal Dimension

Recently it has been shown that one can interpret the (local) learning coefficient
as being approximately half the Hölder exponent [Fur25]. Here we take a slightly
different approach, and show that the learning coefficient meets the general
criteria of a fractal dimension.

Consider the d-dimensional Lebesgue measure µ on Rd. The Lebesgue mea-
sure can be written as the integral

µ(A) =

∫
Rd

1A(w)dw (11)
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where 1A is the indicator function over A. Suppose that A ⊆ W and that we

normalize µ by simply dividing by µ(W ) = c, giving µ(A) = µ(A)
c . Letting

ρA = 1A
c , we get

µ(A) =

∫
W

ρA(w)dw (12)

Now letting Wt = {w ∈ W |L(w) < t} be a sublevel set, we can consider:

µ(Wt) =

∫
W

ρWt
(w)dw (13)

however notice that outside of Wt we have ρWt(w) = 0. Denoting the compli-
ment W\Wt = W ′ we can rewrite

µ(Wt) =

∫
Wt

ρWt
(w)dw +

∫
W ′

ρWt
(w)dw (14)

but clearly
∫
W ′ ρWt

(w)dw = 0 so we can rewrite

µ(Wt) =

∫
Wt

ρWt
(w)dw (15)

Expanding this integral∫
Wt

ρWt
(w) =

1

c

∫ t

0

∫
Ωt

1Ωt
(w)dw (16)

Now let θ(a) = 1 if a ≥ 0 and 0 otherwise. From the above integral we can
rewrite this as

µ(Wt) =

∫
W

θ(t− L(w))ρ(w)dw (17)

with ρ simply being the uniform distribution. According to Equation 4.9 in
[Wat09] this is V (t), and is a cross sectional integral as is given in definition 3.3.

Before showing that the learning coefficient determines a fractal dimension,
first notice that using equation 7 we can rewrite mass dimensions like:

lim
δ→0

log(M(aδ)/M(δ))

log a
= Dm (18)

Now, from definition 3.3 we know that we can write the coefficient

Dm = lim
t→0

log V (t)

log t
(19)

and from equation 18 we have

lim
t→0

log(V (at)/V (t))

log a
= Dm (20)

and this limit exists by equation 3 and Dm = λ. So, the learning coefficient
meets definition 3.3. Additionally we also need to make use of Rademacher’s
theorem:
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Theorem 4.1 (Rademacher’s Theorem). If U ⊂ Rd is an open set and f : U →
Rm is Lipschitz continuous, then f is differentiable almost everywhere.

It now remains to be seen that the height scaling of the learning coefficient
corresponds to the classical idea of a fractal dimension.

Lemma 4.1. If the loss function is locally Lipschitz about its zeros, then de-
noting the learning coefficient as λ = d− λ′, λ′ is a fractal dimension.

Proof. First, note that the fractal dimension is only defined when the set con-
tains a local minima and that it suffices to prove that definition 3.3 provides
a fractal dimension. Now, monotonicity is immediate from the definition as
an integral over a non-negative function. The countable sets property follows
similarly. Furthermore, if Wt ⊂ E ⊂ Rn is an open set such that the low loss
parameters Wt concentrate on some open subset of E ⊂ Rn with n ≤ d as
t → 0 then we can see that the integral A(z) =

∫
E
1Ωz

(x)dx as z → 0 is then
exactly the Lebesgue measure on Rn so then λ′ = n and thus the volume decays
only outside the low loss subset, meaning that the open sets property is met.
The smooth manifold property follows similarly. Stability can be seen from the
fact that if VE(h), VF (h) are the volumes of E,F respectively and suppose that
λ′
E > λ′

F . If E,F are not disjoint, then by monotonicity λ′
E∩F ≤ λ′

F < λ′
E so

the volume of E is the slowest decaying. We then can write

VE∪F (h) = VE(h) + VF (h)− VE∩F (h) (21)

Then consider that as h → 0 both VF (h), VE∩F (h) are dominated by VE so then

λ = lim
h→0

log VE∪F (h)

log h
(22)

= lim
h→0

log VE(h)

log h
(23)

We are now just left to prove that the scaling exponent is preserved under
Bilipschitz transformations.

Let T be a transformation of W which is Bilipschitz with

1

α
∥w1 − w2∥ ≤ ∥T (w1)− T (w2)∥ ≤ α∥w1 − w2∥ (24)

This tells us that

1

α
∥w1 + h− w1∥ ≤ ∥T (w1 + h)− T (w1)∥ ≤ α∥w1 + h− w1∥ (25)

and by Rademacher’s theorem T is differentiable almost everywhere, so by ap-
plying the limit definition of the derivative we get

1

α
∥w∥ ≤ ∥∂T (w)∥ ≤ α∥w∥ (26)

6



with the derivative operator ∂. It follows then that

(
1

α
)d ≤ |det ∂T (w)| ≤ αd (27)

Now for any Lebesgue measurable set we have

µ(T (A)) =

∫
A

|det ∂T (w)|dw (28)

which tells us that

(
1

α
)dµ(A) ≤ µ(T (A)) ≤ αdµ(A) (29)

Now if we assume that T respects the zeros of the loss so that if L(w1) = 0
then L(T (w1)) = 0 (so that the fractal dimension is still defined under the
transformation) and that the loss itself is locally Lipschitz around each 0, then
we can see from the above that the volume of the level sets changes by at most a
constant factor of α. This means that the change in volume of V (h) under T is
distorted by at most αd but as h → 0 since T must preserve zeros then we must
have that α → 1 so VT (W )(h) ≈ VW (h) so λ′ is preserved under zero-preserving
Bilipschitz transformations.

From the above we get a useful corollary:

Corollary 4.1. The learning coefficient can be expressed as λ = d
2 − λ′

The above corollary is simply a consequence of the fact that λ ≤ d
2 then just

redefining λ′ appropriately.

5 Relating Gauges

We can now show that the learning coefficient can be written in terms of the
box counting dimension. In particular, it can be written in terms of how the
box counting dimension changes as the maximum acceptable error decreases.
We first start with some simple lemmas required for the forthcoming results.

Recall that a function L is k-Lipschitz on W if we have that for all w1, w2 ∈
W we have that

|L(w1)− L(w2)| ≤ kd(w1, w2) (30)

Now suppose that there is some t such that if L(w∗) < t then there is some
small radius r about w∗, then L is at least k-Lipschitz on the open ball B(w∗, r).
Different values of w∗ can have different values of r and k. However, we can
actually pick fixed values for these that work for all possible points.

Lemma 5.1. If for all w∗ ∈ W such that L(w∗) < t we have that there is
some small radius r about w∗ such that L is at least k-Lipschitz on the open ball
B(w∗, r), then there is some fixed k∗, r∗ such that all such w∗ are k∗-Lipschitz
on a ball of radius r∗.
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Proof. First, note that if w∗ is k-Lipschitz on B(w∗, r), it must also be k-
Lipschitz on B(w∗, r∗) for all 0 < r∗ ≤ r. So, we simply take the value of r∗

to be the smallest radius required by any low loss parameter. Similarly, if w∗ is
k-Lipschitz on B(w∗, r) it must also be k∗-Lipschitz for all k∗ ≥ k.

While a simple result, it allows us to formalize what it means to say that
the function does not oscillate too violently near the low loss subsets. In order
to continue we will need to make use of the implicit function theorem, which we
state below for convenience.

Theorem 5.1 (Implicit Function Theorem). Let f : Rn+m → Rm be a con-
tinuous function, and suppose that there exists x0 ∈ Rm, y0 ∈ Rn such that
f(x0, y0) = 0. If the Jacobian matrix Dyf(x0, y0) is invertible then there
exists neighbourhoods U, V of x0, y0 and a differentiable function ρ such that
f(x, ρ(x)) = 0 for all x ∈ U .

Define the level set of a compact set W with loss function L as W t = {w ∈
W |L(w) = t}. Using this, we give a result that gives conditions that ensure the
level sets are sufficiently “nice”:

Lemma 5.2. Suppose L is at least d differentiable on Rd. Then for any t > 0,
the boundary of Wt = {w ∈ W |L(w) < t} has Lebesgue measure 0 if ∇L(w) ̸= 0
for all w ∈ W t.

Proof. Since ∇L(w) ̸= 0 for all w ∈ W t, there is some direction where the
gradient is non-zero. Let this direction be denoted by wi, so we can rewrite
L(w−i, wi). Furthermore we get ∂L

∂wi
(w−i, wi) ̸= 0 which is the same as the

Jacobian DwiL(w−i, wi). Next note that we can rewrite L(w−i, wi) = t as
L(w−i, wi)−t = 0 so we get by the implicit function theorem that for every point
in W t that there is a function ρ : Rd−1 → R that defines the dth coordinate.
Then if we have U as an open set about w−i we can define a local diffeomorphism
ϕ : U → V ⊂ W t by ϕ(w−i) = (w−i, ρ(w−i)). This means that the boundary
W t is locally at most a d − 1 dimensional submanifold, so one can then define
the submanifold W t by charts (w−i, ϕ). It then follows immediately that we
d-dimensional Lebesgue measure of the boundary must be 0.

While this might seem restrictive, it is simply a formal way of saying that
so long as the level sets themselves are not too fractal, their individual contri-
butions to the volume of the sublevel sets is 0. In fact, the above lemma is
essentially a simplified version of Sard’s theorem. Furthermore we note that the
condition that ∇L(w) ̸= 0 for all w ∈ W t is also necessary for the definition of
the singular integral by theorem 4.3 of [Wat09].

5.1 The Learning Coefficient in Sidelength Gauges

5.1.1 Box Counting Dimension with the Euclidean Metric

Let Wt be the set of low loss parameters as before and consider a rectangular
cover of Wt by a grid of cubes of side length δ. For each cube in this cover Qδ

i , if
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Qδ
i does not contain any parameters in Wt, we remove Qδ

i . The remaining cubes
give us a cover C ′(δ) of Wt. Let |C ′(δ)| be the number of cubes in the cover,
and let C(δ) be the minimal cover of Wt by δ-cubes. By definition we have that
|C(δ)| ≤ |C ′(δ)|. Furthermore, each cube has Lebesgue measure µ(Qδ

i ) = δd.
This method of box counting is sometimes referred to as a dyadic covering, and
defines a fractal dimension that is effectively equivalent to the box counting
dimension [Fal13].

Figure 1: An example of the initial steps in the cube-covering method with
t = 0.001.

Consider that for a cube of sidelength δ in Rd, one can fit 2d cubes of
sidelength δ

2 into said cube. Given a cover C ′(δ) we can define a new cover by

cubes of sidelength δ
2 by splitting each cube Qδ

i into cubes Q
δ
2
i,j and removing

any cubes which don’t contain true parameters. One can iterate on this process
ad infinitum. With this process in mind, we are now equipped to show the
following:

Theorem 5.2 (Learning Coefficient in the Sidelength Gauge). If Dm(t) is the
box counting dimension of Wt in the sidelength gauge δ. Assuming the conditions
of lemmas 5.1 and 5.2 hold then for small δ we have that

λ log a+ o(1) ≈ bδDm(t)−Dm(at) + o(1) (31)

with b being a constant.
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Proof. First note that by lemma 5.1 that for all points w ∈ Wt such that
L(w) < t − ε where ε > 0 is some arbitrary constant, then there is some
sidelength scale δ such that if cube Q contains such if w ∈ Wt then Q ⊂ Wt.
Or, in other words, there is a scale such that one point in the cube with small
error means all points in the cube have small error, unless the cube contains a
point with loss arbitrarily close to t, meaning it contains some amount of points
in exterior of Wt.

Now let Qn
i denote a cube after n steps of the iteration process described

previously such that Qn
i ⊂ Wt and let Q

n

i denote cubes that contain exterior
points. We then have the following inequality∑

i

µ(Qn
i ) ≤ V (t) ≤

∑
i

µ(Qn
i ) +

∑
j

µ(Q
n

j ) (32)

We can see as well that
∑

i µ(Q
n
i ) ≤

∑
i µ(Q

n+1
i ) because if a cube is completely

contained in Wt it doesn’t lose any volume during the pruning process, and at
the n+1 step some set of cubes which contain some number of exterior points can
be shrunk and pruned, leaving them containing only interior points. This also

means that
∑

j µ(Q
n

j ) ≥
∑

j µ(Q
n+1

j ). In fact, one can see that this inequality

must be strict near the boundary, so
∑

j µ(Q
n

j ) is decreasing in n. This implies

as well that
∑

i µ(Q
n
i ) is increasing proportional to the change in

∑
j µ(Q

n

j ).
By monotone convergence we have that

lim
n→∞

∑
i

µ(Qn
i ) +

∑
j

µ(Q
n

j ) = µ(Wt) + µ(W t) (33)

but under the assumptions of lemma 5.2 we know that µ(W t) = 0, so

lim
n→∞

∑
i

µ(Qn
i ) = V (t) (34)

Furthermore this tells us that for large n,
∑

j µ(Q
n

j ) can be made arbitrarily
small.

In the above construction we used the cube division process we know that
|C(δ)| ≤ |C ′(δ)| so we can replace the n → ∞ limit with δ → 0 and rewrite

lim
δ→0

∑
i

µ(Qδ
i ) = V (t) (35)

since the total volume of the minimal cover is at most equivalent to the volume
of the cube cutting cover, and the volumes must agree in their respective limits.

Consider now the cover by cubes of sidelength δ for small δ such that

V (t)−
∑
i

µ(Qδ
i ) + o(δ) (36)

we know that µ(Qδ
i ) = µ(Qδ

j) for all i, j since each Qi are cubes of identical size.
We have then

V (t) = |C(δ)|µ(Qδ
i ) + o(δ) = |C(δ)|δ

d

c
+ o(δ) (37)
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since the Lebesgue measure of a d-cube is δd. By definition 3.1 we get

V (t) = utδ
−Dm(t) δ

d

c
+ o(δ) (38)

=
ut

c
δd−Dm(t) + o(δ) (39)

Consider then that
V (at)

V (t)
=

uatδ
d−Dm(at) + o(δ)

utδd−Dm(t) + o(δ)
(40)

It then follows that

uatδ
d−Dm(at) + o(δ)

utδd−Dm(t) + o(δ)
= bδDm(t)−Dm(at) + o(1) (41)

where b is some scalar b = uat

ut
and since V (at)

V (t) = λ log a+ o(1) we get

bδDm(t)−Dm(at) + o(1) = λ log a+ o(1) (42)

as desired.

What this tells us is that the learning coefficient controls how the box count-
ing dimension changes in the error gauge. We also note that if the conditions
of lemma 5.2 do not hold, we still have that equations 32 and 33 hold. In this
case however, the measure of the boundary µ(W t) has some constant irreducible
volume. One can view this as a by-product of the fact that we care about the ap-
proximation by “inner covers”, which end up effectively tracking the boundary.
Considering this case, we still have that in the limit the interior sets

lim
n→∞

∑
i

µ(Qn
i ) = V (t) (43)

still holds, however we have that

bδd−Dm(t) − µ(W t) ≥ V (t) (44)

instead of some vanishing term in δ.
One reason why casting the learning coefficient as a box counting dimension

is useful is that it gives what one might consider a “generalization” since the
learning coefficient depends on the existence of a local minima where the rate
of change of the box counting dimension can be defined anywhere. More im-
portantly however, it allows us to cast the learning coefficient as a property of
a family of trees.
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Figure 2: How the cube cover in the bottom right frame of figure 1 changes as
t decreases.

5.2 Tree Structure and the Learning Coefficient

Why should one care about the box counting dimension? It turns out that the
box counting dimension effectively tells us how to embed the set of low loss
parameters within an infinite depth, locally finite tree.

Lemma 5.3. Wt ⊆ W be the set of parameters with loss t. Every such subset
has an associated infinite depth, locally finite tree.

Proof. Similar to the process outlined at the start of section 5.1.1, letWt ⊂ W ⊆
Q0 where Q0 is a closed cube. For simplicity we assume that the sidelength of
Q0 is normalized to 1. Starting with Q0, for each positive integer k we subdivide
the cubes of sidelength 2−k that intersect Wt into 2n cubes of sidelength 2−k+1.
One then forms a tree by selecting the vertices at depth k to be all cubes of
sidelength 2−k that intersect Wt and defining edges between vertices vki , v

k+1
j if

vk+1
j is a sub-cube defined by the initial division of the cube associated to the

vertex vki . We can see from this as well that for any vertex v, v must have a
finite amount of children.
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Denote the tree constructed by the above process as TWt . Notice then that
for any w ∈ Wt one can associate a unique infinite sequence of cubes ... ⊂
Q1(w) ⊂ Q0(w). This sequence of nested cubes defines an infinite ray/branch
γw in the tree. Let ∂TWt

represent the set of all such rays for the tree. We see
then that the map π : Wt → ∂TWt

given by π(w) = γw defines an embedding of
Wt into the boundary of an infinite depth, locally finite tree.

Figure 3: The tree (up to depth 4) corresponding to the cube counting steps in
figure 1.

There is an issue of ambiguity where one point can have multiple rays if it
lies on the boundary of a cube. However, one can resolve this by picking a side
of the boundary to assign to the point. This is effectively the same as binary
fractions having two binary expansions.

Importantly there is a natural metric on ∂TWt
.

Definition 5.1 (Ultrametric). For w1, w2 ∈ Wt let

r = min
k

{Qk(w1) ̸= W2} (45)

then the the ultrametric on ∂TWt
is

dτ (γw1
, γw1

) = 2−r (46)

Intuitively we can see that two points which are close in Wt are close in
∂TWt

. We can show this formally:
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Lemma 5.4. The value d(w1, w2) gives a lower bound on the distance dτ (π(w1), π(w2))
and the distance dτ (π(w1), π(w2)) gives an upper bound on the Euclidean dis-
tance between w1 and w2.

Proof. Notice that for any cube Qk in the subdivision process that the diameter
is 2−k then if w1 and w2 are in Qk then in Euclidean space d(w1, w2) ≤ 2−k

and since w1, w2 both belong to Qk we know that they must agree up to k
vertices so dτ (π(w1), π(w2)) ≤ 2−k. Similarly, if dτ (π(w1), π(w2)) ≤ 2−k then
d(w1, w2) ≤ 2−k since they must both be contained in the same cube up to
iteration at least k.

Now for tree TWt
let TWt

(n) be the set of vertices at depth n. When dis-
cussing trees, there are ways to define the rate at which trees grow. We give
such a definition below:

Definition 5.2 (Tree Growth Rate). Let T be an infinite depth, locally finite
tree with |T (n)| vertices at depth n. The upper growth rate is

log grT = lim sup
n→∞

log |T (n)|
n

(47)

with the lower growth rate

log grT = lim inf
n→∞

log |T (n)|
n

(48)

and the growth rate

log grT = lim
n→∞

log |T (n)|
n

(49)

if it exists.

We can now prove the following:

Lemma 5.5. The box counting dimension Dm of Wt is equivalent to the growth
rate of the tree associated to Wt (up to a factor of log 1

2).

Proof. For simplicity, assume that both the upper and lower limits exist so we
can work simply with lim case (as the proof is identical for both the upper and
lower dimensions). Now consider the box counting dimension of Wt given by
the cube covering method:

Dm(Wt) = lim
δ→0

logM(Wt, δ)

log δ
(50)

Now we can rewrite δ = 2−n which gives

Dm(Wt) = lim
n→∞

logM(Wt, 2
−n)

−n log 2
(51)
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By the construction in lemma 5.3 we know that M(Wt, 2
−n) is the same as

|TWt(n)| and the factor of − log 2 in the above is constant so we can rewrite

(− log 2)Dm(Wt) = lim
n→∞

log |TWt
(n)|

n
(52)

which is exactly the definition of the growth rate of the tree.

Converting the box counting dimension to the growth rate of the tree is
useful as it allows one to talk more information theoretically about quantities
relating to low-loss parameters. In fact, it tells us that the learning coefficient
describes the growth of “cylinder sets”.

5.3 Learning Coefficient as the Growth Rate of Cylinder
Sets

First, in the tree picture if our parameter space has dimension d then we know
that the number of cubes of sidelength δ

2 that can fit in the cube of sidelength
δ is 2d so each node in the tree associated with the parameter set Wt has at
most 2d children. What we can do is define an alphabet Σ consisting of 2d

symbols and pick some canonical symbol assignment scheme since every cube
(and thus possible subcube inside of it) are identical. Each ray then in the tree
corresponds to a unique infinite length string which specifies a model with loss
less than t. Assuming the loss is bounded above, if we take t large enough we
get Wt = W .

We can now give a functional definition of cylinder sets, which relate trees
to information theory and symbolic dynamics.

Definition 5.3 (Cylinder Sets). Let Σ be an alphabet of symbols, let Σ∗ be the
set of all finite words formed by symbols in Σ, and let Σ∞ be all (left rooted)
infinite length words. For each sequence s ∈ Σ∗ define the cylinder set Γ(s) as
the set of all s∞ ∈ Σ∞ that begin with s.

Cylinder sets have many different, equivalent definitions but we simply pick
this definition as it is well-suited for our purposes. Now if one picks any vertex
v in an infinite depth tree, v corresponds to some finite length prefix and thus
all points in the boundary of the tree which can be “traced back” to v form a
subset of the cylinder set Γ(v). Based on this, we give the following:

Lemma 5.6. The learning coefficient captures the growth rate of the sequence
of trees associated with the sets Wt as t → 0.

Proof. Suppose W is a cube (or take a cube which encloses W ), we can see that
for any W the first node in the tree effectively corresponds to the whole of W .
We can call this node e, corresponding to the empty word. Now taking W0 as
the set of all parameters such that L(w) = 0. Associating the tree TW0 gives a
boundary ∂TW0

. This forms a subset of the cylinder set Γ(e). We then have a
sequence of nested trees/sets {∂TWt

}t∈[0,∞). Since L is bounded there is some
finite t such that ∂TWt

= ∂TW and we can see that ∂TW = Γ(e).
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Let F : W → Σ∞ denote the embedding of W into an infinite depth tree.
Notice that we get a measure on the space of infinite length strings by a push-
forward µ∗ of the normalized Lebesgue measure µ on W by µ∗(A) = µ(F−1(A))
for A ⊂ Γ(e). By equation 17 this says:

µ∗(∂TWt
) =

∫
W

θ(t− L(w))ρ(w)dw (53)

= V (t) (54)

It follows straightforwardly then that the learning coefficient captures how the
growth rate of the sequence of trees associated with Wt changes as t → 0 by
theorem 5.2.

Figure 4: Visualizing how the tree in figure 4 changes as t decreases.

While it has been suggested before that there is a direct relationship between
the size of a local minima and the number of bits needed to specify that minima
up to some precision [LFW+24] [HS97]. Using the cylinder set/tree picture, we
can give a somewhat more formal description of this phenomena.

Theorem 5.3 (Local Description Length). Let w1, w2 be two points in W such
that L(w1), L(w2) = 0 and suppose L is at least k-Lipschitz about its zeros, and

16



let t be some error rate such that t > k. Then there is a natural association
of w1, w2 to cylinder sets Γ(w1),Γ(w2) described by prefixes s1, s2 such that
µ∗(Γ(w1)) ≥ µ∗(Γ(w2)) if and only if Len(s1) ≤ Len(s2).

Proof. First notice that by the Lipschitz assumption there must exist cubes
Q1, Q2 described by the iteration process described in section 5.1.1 for each
w1, w2 such that for all w ∈ Qi, we have L(w) < t where each Qi is associated
to some prefix si, and Len(si) = n where n is the number of steps taken to
get box Qi within the iteration process. Let Qi be the largest such box for
each wi so each subtree rooted at si must have full growth rate, and and where
the rays of this subtree correspond to the cylinder set Γ(si). We can see that
µ(Qi) ∝ 1

2Len(si)
so boxes whose associated prefix is shorter have a larger volume.

In the other direction, suppose without loss of generality, suppose Q1 is
larger than Q2. Then we must have that Q1 corresponds to a shorter prefix
than Q2 by construction, and the same measure argument as applied previously
gives the result.

This tells us that the learning coefficient describes how hard it is to specify
a model as our error tolerance decreases.

6 Discussion and Conclusion

6.1 Related Work

The relationship between model description length and performance (namely
the generalization behaviour) has been well-known for over 50 years [Sol64].
However, particularly in the case of neural networks, it is known that the gen-
eralization of the model is related to flat minima [HS97] [MM20], but the exact
relationship between flat minima and description length has not had an adequate
formal explanation.

There has also been recent work in relating singular learning theory to
information theory via program synthesis. In particular, [CMW21] explores
programs as singularities of analytic varieties which correspond to phases in
a Bayesian posterior. This direction of investigation was expanded upon in
[MT25] which effectively relates internal structure of Turing machines to the lo-
cal geometry of a parameter space that encodes them. While there is seemingly
a correspondence to the geometric structure of program synthesis and the work
done here, the formal relationship is unclear.

One of the primary goals of framing the learning coefficient as a more in-
formation theoretic quantity is to help interpret the internal phases of a neural
network during training. The local learning coefficient has been used to study
phase transitions in neural networks [LFW+24]. Using a refined verion of the
LLC, [WHvW+24] was able to study how attention heads take on different func-
tional roles during training. While the learning coefficient is a Bayesian quan-
tity, its relationship with phase transitions in SGD was explored more directly
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in [CLM+23], providing insight into the influence of the Bayesian psoterior on
the dyanmics of stochastic gradient descent.

6.2 Future Work

Here we outline some potential directions for future work. While the work here
provides a more information theoretic perspective on singular learning theory,
opening up new routes of analysis. In particular, the use of infinite depth, locally
finite trees provides a direct link to symbolic dynamics through the cylinder set
topology and suggests that one might be able reframe singular learning theory
in terms of symbolic dynamics in some cases, though this has not yet been
explored. In a similar way, one can use the notion of an infinite length string to
relate models to the Kolmogorov complexity through the lower incompressibility
ratio, however the formal relationship of the lower incompressibility ratio with
quantities like the LLC is not clear. Finally, one should be able to use the theory
of probability on trees to study different properties of the Bayesian posterior by
looking at “flows” through the tree. This is probably the most straightforward
way to extend some of the results here as theorem 5.3 can be reframed in terms
of probability flows through trees in a straightforward way.

6.3 Conclusion

Here we have shown that the structure of low loss parameter sets is fractal,
then relating the learning coefficient to other more classical notions of fractal
dimensions. Using this, we showed how one can reconceptualize the space of
low loss parameters as an infinite depth tree and that this tree captures many
meaningful properties about the low loss parameters in a natural way and that
the learning coefficient corresponds to effectively to how this tree changes as the
maximum allowable loss decreases. By doing this, we have built a bridge be-
tween singular learning theory, computable analysis, and trees, and information
theory. We hope that such theoretical insights can be used further the under-
standing of the internal structure of AI systems and how they evolve during
training.
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