
Under review as a conference paper at ICLR 2023

LIMITATIONS OF THE NTK FOR UNDERSTANDING
GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The “Neural Tangent Kernel” (NTK) (Jacot et al., 2018), and its empirical vari-
ants have been proposed as a proxy to capture certain behaviors of real neural
networks. In this work, we study NTKs through the lens of scaling laws, and
demonstrate that they fall short of explaining important aspects of neural network
generalization. In particular, we demonstrate realistic settings where finite-width
neural networks have significantly better data scaling exponents as compared to
their corresponding empirical and infinite NTKs at initialization. This reveals a
more fundamental difference between the real networks and NTKs, beyond just a
few percentage points of test accuracy. Further, we show that even if the empiri-
cal NTK is allowed to be pre-trained on a constant number of samples, the kernel
scaling does not catch up to the neural network scaling. Finally, we show that the
empirical NTK continues to evolve throughout most of the training, in contrast
with prior work which suggests that it stabilizes after a few epochs of training.
Altogether, our work establishes concrete limitations of the NTK approach in un-
derstanding generalization of real networks on natural datasets.

1 INTRODUCTION

The seminal work of Jacot et al Jacot et al. (2018) introduced the “Neural Tangent Kernel” (NTK) as
the limit of neural networks with widths approaching infinity. Since this limit holds provably under
certain initializations, and kernels are more amenable to analysis than neural networks, the NTK
promises to be a useful reduction to understand deep learning. Thus, it has initiated a rich research
program to use the NTK to explain various behaviors of neural networks, such as convergence to
global minima (Du et al., 2018; 2019), good generalization performance (Allen-Zhu et al., 2018;
Arora et al., 2019a), implicit bias of networks (Tancik et al., 2020) as well as neural scaling laws
(Bahri et al., 2021).

In addition to the infinite NTK, the emperical NTK — the kernel with features that are gradients of
a finite-width neural network— can be a useful object to study, since it is an approximation to both
the true neural network and the infinite NTK. This has also been studied extensively as a tool to
understand deep learning (Fort et al., 2020; Long, 2021; Paccolat et al., 2021; Ortiz-Jiménez et al.,
2021).

In this work, we probe the upper limits of this research program: we want to understand the extent
to which understanding NTKs (empirical and infinite) can teach us about the success of neural
networks. We study this question under the lens of scaling (Kaplan et al., 2020; Rosenfeld et al.,
2019)—how performance improves as a function of samples and as a function of time— since the
scaling is an important “signature” of the mechanisms underlying any learning algorithm. We thus
compare the scaling of real networks to the scaling of NTKs in the following ways.

1. Data scaling of initial kernel (Section 3): We show that both the infinite and empirical NTK
(at initialization) can have worse data scaling exponents than neural networks, in realistic
settings (Figure 1). We find that this is robust to various important hyperparameter changes
such as learning rate (in the range used in practice), batchsize and optimization method.

2. Width scaling of initial kernel (Section 3): Since neural networks provably converge to the
NTK at infinite width, we investigate why the scaling behavior differs at finite width. We
show (Figure 2(b), 2(c)) realistic settings where as the width of the neural network increases

1

Under review as a conference paper at ICLR 2023

Figure 1: Summary of results: (A) Neural network scales better than NTK at initialization: We
compare the scaling exponent of a neural network, its corresponding infinite and empirical NTK
at initialization. Details in Section 3. (B) After-kernel continues to improve with more training
samples: We train a neural network with m = {1K, 2K...1024K} samples, extract the empirical
NTK at completion, and use this kernel to fit 500 samples. Details in Section 4. (C) Empirical NTK
improves with constant rate with respect to training time: We extract the empirical NTK at various
times in training and use it to fit the full train dataset. Details in Section 5.

to very large values, the test performance of the network gets worse and approaches the
performance of the infinite NTK, unlike existing results in literature which suggest that
increasing the width in the over-parameterized regime is always good. This also raises new
questions about scaling of neural networks with width, in particular the “variance-limited”
neural scaling regimes (Bahri et al., 2021).

3. Data scaling of after-kernel (Section 4):We consider the after-kernel (Long, 2021) i.e. em-
pirical NTK extracted after training to completion on a fixed number of samples. We show
(Figure 1(B), 4(b)) that the after-kernel continues to improve as we increase the training
dataset size. On the other hand, we find (Figure 4(c)) that the scaling exponent of the after-
kernel, extracted after training on a fixed number of samples remains worse than that of the
corresponding neural network.

4. Time scaling (Section 5): We show (Figure 1(C), 5(a)) realistic settings where the empirical
NTK continues to improve uniformly throughout most of the training. This is in contrast
with prior work (Fort et al., 2020; Ortiz-Jiménez et al., 2021; Atanasov et al., 2021; Long,
2021) which suggests that the empirical NTK changes rapidly in the beginning of the train-
ing followed by a slowing of this change.

We demonstrate these phenomena occur in certain settings which are based on real, non-synthetic
data, and modern architectures (for e.g.: for datasets CIFAR-10 and SVHN and convolutional net-
works). While we do not claim that these phenomena manifest for all possible datasets and architec-
tures, we believe that our examples highlight important limitations to the use of NTK to understand
the test performance of neural networks. Formalizing the set of distributions or architectures for
which these phenomenon occur is an important direction for future theoretical research.

1.1 COMPARISON TO PRIOR WORK ON NTK GENERALIZATION

Our main focus is to understand feature learning occurring due to finite width. To do this, we make
the following deliberate choices in all of our experiments: a) We use the NTK parameterization, this
makes sure that infinite width networks will be equivalent to kernels b) We use the same optimization
setup for the neural network, empirical NTK and Infinite NTK, this makes sure that as width tends
to infinity all 3 models will have the same limit. We make sure that our comparisons are robust
by c) using scaling laws to compare these models and d) doing various hyperparameter ablations
(Figure 3).

Below we describe several lines of related works and how our work differs from them.

2

Under review as a conference paper at ICLR 2023

Small initialization and representation learning at infinite width. Infinite widths neural networks
in the NTK and standard initialization are equivalent to kernels (Jacot et al., 2018; Yang & Hu, 2021).
On the other hand it has been shown (Yang & Hu, 2021; Sirignano & Spiliopoulos, 2019; Nguyen
& Pham, 2020; Araújo et al., 2019; Fang et al., 2020) that with small initialization feature learning
is possible at infinite width. The feature learning displayed in our experiments is not due to small
initialization as we initialize our networks in the NTK parameterization. This was a deliberate choice
as we are interested in feature learning occurring due to finite width as this is the kind of feature
learning displayed by empirical neural networks (which usually do not have a small initialization).

Data Scaling for NTKs and neural networks. Scaling laws have been empirically shown Kaplan
et al. (2020); Rosenfeld et al. (2019) for neural networks and have been theoretically proven Bor-
delon et al. (2020); Canatar et al. (2021); Bordelon & Pehlevan (2022) for NTKs under natural
assumptions. Comparison between the scaling laws for neural network and empirical NTKs has
been previous looked at by Paccolat et al. (2021) and Ortiz-Jiménez et al. (2021) and both find that
neural networks have better scaling than empirical NTK at initialization. Both of these papers do not
compare to infinite NTKs which leaves open the possibility that neural networks and infinite width
NTKs behave the same wrt their scaling constants.

Pointwise comparisons of neural networks and corresponding infinite NTKs has also been stud-
ied extensively in the literature (Arora et al., 2019b; Lee et al., 2020; Simon et al., 2021) but the
results have been divided. As discussed earlier we focus on comparing scaling laws. We argue that
scaling laws, instead of point-wise comparisons, are the appropriate tool to compare neural networks
and NTKs. Practically, pointwise comparisons between any two models can be fraught with issues
as the ordering can flip depending on dataset size, as well as the specific choice of hyperparameters.
On the other hand, scaling exponents have been found to be more robust to the choice of hyper-
parameters (Bansal et al., 2022; Kaplan et al., 2020). More importantly, the claim that NTK can
capture ”most” of the performance of the neural network can be subjective, specially when we are
comparing small error or loss values. We show that when we look closely at the scaling exponents
of these objects instead, we find major differences.

Theoretical studied effects of finite width with respect to the NTK regime. Finite width cor-
rections to the NTK theory have been studied by Andreassen & Dyer (2020); Roberts et al. (2021);
Bahri et al. (2021). While these results do not need infinite widths they still require much higher
than practically used widths particularly for the training sizes used in practice. These papers either
consider a) the finite width corrections of empirical NTK or b) they consider the change in NTK but
predict that the higher order analogues of empirical NTK remain constant. For a) we show that the
empirical NTK is very far from the performance of finite width neural networks. Regarding b), in
Appendix D we show that the higher order analogues of empirical NTK change significantly.

After Kernel and Time Dynamics We discuss these in detail in Section 4 and 5.

We describe other related works in Appendix G.

2 EXPERIMENTAL METHODOLOGY

Here we describe the common methodology used in our experiments.

The core object we want to understand is the data-scaling law of real neural networks— that is, what
is its asymptotic performance as a function of the number of train samples? Concretely, in this work
we restrict to classification problems, where we measure performance in terms of test classification
error. For a given classification algorithm, let L(n) be its learning curve: its expected test error
as a function of number of samples n. In practice, many neural networks exhibit power-law decay
in their learning curves (Kaplan et al., 2020). In such settings, we have L(n) ∼ αnβ and we are
interested primarily in the scaling exponent β, which determines the asymptotic rate of convergence.

Empirical and Infinite NTK Let f(w, x) be a neural network with w representing the weights and
x an input. By Taylor expansion around w0 we have:

f(w, x) = f(w0, x) +∇wf(w, x)|w0
(w − w0) +

1

2
(w − w0)

T∇2
wf(w, x)|w0

(w − w0) + . . .

3

Under review as a conference paper at ICLR 2023

Empirical NTK of the neural network around weights w0 refers to the model g1(w, x) =
∇wf(w, x)|w0

(w − w0). Note that this is not the same as linearizing the network as we omit the
f(w0, x) term. Empirical NTK is a linear model with respect to the weights w. Infinite NTK refers
to the limit of the empirical NTK of the network around initial weights as width tends to infinity.

For a given learning problem and given neural network architecture NN, we want to understand its
data-scaling law LNN(n). We consider the infinite NTK of the NN and the empirical NTK of the
NN at initialization and their corresponding learning curves, LNTK(n) and LENTK(n). Now we ask:
is the scaling-exponent of LNN always close to the scaling-exponent of either LENTK or LNTK, in
realistic settings? That is, how well does the NTK approximation capture the generalization of real
networks, on natural distributions?

Recall that this question is especially interesting because the three objects involved (Neural Network,
NTK, and ENTK) all become provably equivalent in the appropriate width → ∞ limit. Thus, at
infinite-width we know their scaling laws must be the equivalent. The question is then, how far
are we from this limit in practice? Are the widths used in practice large enough for their scaling-
behavior to be captured by the infinite-width limit? To probe these questions, we empirically study
scaling laws of these methods on image-classification problems.

Remark on comparisons. We intentionally only compare a neural network to its corresponding
NTK, and not to other kernels. Our motivation not address the question of “can (some) kernel
perform as well as as a given neural network?”— indeed, there may be some better kernel to consider
than the NTK. However, our goal is to study the specific kernels given by the NTK approximation,
in correspondence with real networks.

Datasets. We use the following datasets:

1. A 2 class subset (dog, horse) of CIFAR-5m (Nakkiran et al., 2021) dataset, as a binary
classification problem, which we denote CIFAR-5m-bin. This is a dataset of synthetic but
realistic 32× 32 RGB images similar to CIFAR-10, generated using a generative model.

2. A binary classification task on the SVHN dataset (Netzer et al., 2011) with the labels being
the parity of the digit, denoted by SVHN-parity. For the training data we use a balanced
random subset of ’train’ and ’extra’ partitions, for test data we use the ’test’ partition.

We focus on the CIFAR-5m-bin experiments in the main body. Corresponding SVHN-parity exper-
iments can be found in Appendix F.

We use these particular datasets because we need datasets with a large number of samples in order
to measure data-scaling, and CIFAR-5m-bin and the SVHN dataset both have ≥ 600k samples.
We chose to consider binary tasks as this makes the kernel experiments computationally feasible.
Although there are other datasets with similar sample sizes (e.g. ImageNet), the datasets we use have
the advantage that they are low-resolution and an easier task— thus, scaling-law experiments are far
more computationally feasible. We also do some experiments on a synthetic dataset in Appendix E.

Architectures. We use the following base architectures: Myrtle CNN (Page, 2018; Shankar et al.,
2020) for the CIFAR-5m-bin task and a 5 layer CNN with 64 channels for the SVHN-parity task.
We consider various width scaling for these networks: For the Myrtle CNN we vary the width from
16 to 1024 and from 16 to 4096 for the 5 layer CNN. See Appendix B for more details.

Experimental Details. We describe some subtleties in the experimental setup. We use NTK param-
eterization (Jacot et al., 2018) for both the neural network and the kernels as this is the parameteri-
zation used in proving the equivalence of neural network and NTK at infinite width. We train with
MSE loss and ±1 labels. We use test error as the metric for all the plots except in Appendix I where
we recreate some of the most important plots for test loss. All of our networks are in the overpa-
rameterized regime i.e. are able to reach 0 train error. To preserve the correspondence between the
neural networks, empirical NTKs and infinite NTKs we train all of them with SGD with momentum
with the same hyperparameters (Appendix B.4). This also ensures that in all experiments neural net-
works will be trained below the critical learning rate, i.e. the learning rate at which training of the
empirical and infinite NTK can converge (Appendix B.3). Training for the empirical NTK is done
by linearizing the initialized neural neural network using Novak et al. (2020) library while for infi-
nite NTK we directly use SGD with momentum on the linear system given by the infinite NTK and
the labels. We describe further experimental details for each individual experiment in Appendix B.

4

Under review as a conference paper at ICLR 2023

3 DATA SCALING LAWS OF NEURAL NETWORKS AND NTKS IN THE
OVERPARAMETERIZED REGIME

In this section we compare the data-scaling laws of neural networks to their corresponding emperical
NTKs and infinite NTKs. Our main claim is the following.

Claim 3.1. There exists a natural setting of task and network architecture such that the neural
network trained with SGD has a better scaling constant than its corresponding infinite and empirical
NTK at initialization. Further, this gap in scaling continues to hold over a wide range of widths and
learning rates used in practice.

The above claim can be interpreted as stating that there exists natural settings where the regime in
which real neural networks are trained is meaningfully separated from the NTK regime, and real
neural networks have a better scaling law.

In Figure 1 (A), we train a Myrtle CNN (Page, 2018; Shankar et al., 2020), its empirical NTK
at initialization, and its infinite NTK on the CIFAR-5m-bin task. In each case, we train to fit the
train set with SGD and optimal early stopping. We then numerically fit scaling laws, and find,
scaling-exponents β of: .185 (empirical NTK), .213 (infinite NTK), .291 (neural network). Thus, in
this image-classification setting, the real neural network significantly outperforms its corresponding
NTKs with respect to data-scaling. We show the statistical significance of this result in Appendix A.
See the Appendix B for full experimental details.

We now investigate how robust this result is to changes in the width of the architecture and optimizer,
within realistic bounds.

(a) (b) (c)

Figure 2: On the Effect of width. In Figure 2(a) we plot data scaling laws of the Myrtle-CNN at
small (16) and large (1024) widths and its the infinite NTK. We observe that both finite widths have
similar scaling constant which is better than that of the infinite NTK. In Figure 2(b) we plot the
performance of Myrtle-CNN and its empirical NTK for a fixed training size while varying width. In
Figure 2(c) we do the same for a 5-layer CNN and the SVHN-parity task. Both Figure 2(b) and 2(c)
we observe that (a) the empirical NTK performance continues to improve with width, moving to-
wards the infinite NTK performance while (b) neural network performance improves initially and
then starts to deteriorate towards the infinite NTK performance. Error bars represent estimated stan-
dard deviation. See Appendix B for more details.

Effect of Width. We explore the effect of width. In Figure 2(a) we train neural networks with
widths much smaller (16) and much larger (1024) than the width (64) used in Figure 1(A). We
find that these networks behaved similarly with respect to their scaling constants (.276 and .279
respectively), and performed better than the infinite width NTK (scaling constant: .213), confirming
that real neural networks are far from the NTK regime. However, we know that in the truly infinite
width limit, all these methods will perform identically. Moreover, as mentioned in Section 2 we are
careful to ensure this limit is preserved by our optimization and initialization setup. This implies that
at some point, increasing width of the real network will start to hurt performance— although it may
be computationally infeasible to observe such large widths. To explore the width-dependency, in
Figure 2(b) we plot the expected performance of empirical NTK and Neural network as we increase
the width, using a fixed training size of 4000. Here we see that (a) the empirical NTK at initialization

5

Under review as a conference paper at ICLR 2023

continues to improve with larger width and approaches the infinite NTK’s error from above, while
(b) the neural network improves initially and then starts to deteriorate and approach the infinite
NTK’s error from below. In Figure 2(c) we repeat the experiment for the SVHN-parity task. In
this setup it was computationally feasible to try out much larger width (upto 4096) with a smaller
training size of 1000. Hence in this experiment as the width increases, we can observe stronger
deterioration of the performance of neural network, towards the infinite NTK performance.

Together these results suggest that “intermediate” widths (not too large, not too small) are important
for the performance of overparameterized neural networks, and any explanatory theory must be
consistent with this.

Effect of Learning Rate. We now study how robust our results are to changes in the learning rate,
within practically used bounds. Note that changing the learning rate only affects the neural network
training, and does not affect any of their corresponding NTKs. In Figure 3(a) we train networks in the
same setting as Figure 2, but with varying learning rates. We find that after moderate modifications
of the the learning rate the neural network still has a better scaling law than infinite and empirical
NTK at initialization, suggesting that practically used learning rates (for practically used widths)
are far from the NTK regime. The scaling constants are .333, .262, .213 for the 3x higher learning
rate, 10x lower learning rate and the infinite neural network. We discuss the effects of more drastic
changes (1000x) in the learning rate in Appendix C.

(a) (b) (c) (d)

Figure 3: Neural networks continue to have a better scaling constant under various hyperpa-
rameter choices. We compare the data-scaling for a Myrtle-CNN, its empirical NTK and its infinite
NTK on CIFAR-5m-bin task under various hyperparameter changes: (a) Higher and lower learning
rate compared to Figure 1 (b) GD instead of SGD (c) SGD without momentum (d) Training until
convergence (no early stopping)

Other Changes in Optimization. We now study whether our results hold under other changes to
optimization parameters. In Figure 3(b), 3(c), 3(d), we see the effect of doing GD instead of SGD,
effect of training without momentum and of using the final test error instead of doing optimal early
stopping respectively. We see that in all of these cases, while there is some change in the scaling
laws, the neural network scaling constant is still always better than the one for infinite NTK. The
scaling constants for neural networks in Figure 3(b), 3(c), 3(d) are .294, .310 and .292 respectively.
The scaling constant for the infinite NTK is .213 in Figure 3(b), 3(c) and .219 for Figure 3(d). This
suggests that these optimization factors (within commonly used values) are not the fundamental
reason behind the improved scaling laws of neural networks.

Various extensions to the NTK regime have been proposed (Roberts et al., 2021; Andreassen &
Dyer, 2020) in the literature which allow for the change in empirical NTK but posit that higher
order analogues of the NTK remain constant. This would predict that higher order analogues of the
empirical NTK at initialization would be sufficient to match the performance of neural networks. In
Appendix D we show that this is not the case suggesting that these theories may also not be sufficient
to explain the performance of practical neural networks.

Discussion and Future Questions. The equivalence between neural networks and corresponding
NTKs applies when width ≫ train-size. On the other hand nearly all overparameterized networks
and natural tasks fall in the regime of width ≪ train-size (though width is still large enough to fit
the dataset). The results of this section — showing separations between neural networks in the latter
regime and NTKs lead to following concrete question on the gap between theory and practice which
could guide future work.

6

Under review as a conference paper at ICLR 2023

Question 3.1. How can we understand the the behavior of overparameterized networks in the
width ≪ train-size regime?

4 EXPLORATION OF AFTER-KERNEL WRT DATASET SIZE

In the previous section, we studied the empirical NTK when linearized around weights at initial-
ization. In this section we will study the behaviour of empirical NTK when linearized around the
weights obtained at the end of training. This is known as the after-kernel for empirical NTK, in
the terminology of Long (2021). We will show, in the more precise sense defined below, that (1)
the after-kernel continues to improves with dataset size, and thus (2) no fixed-time after-kernel is
sufficient to capture the data scaling law of its corresponding neural network.

Formally, denote the after-kernel from the neural network trained on m samples as Km. We will
denote the accuracy of Km when fit on n samples as Km(n). Here, the n samples are a subset of
the original m samples. When we use fresh n samples to fit we use the notation KF

m(n). We study
the after-kernel as improved performance of neural networks over NTKs has been attributed (Ortiz-
Jiménez et al., 2021; Atanasov et al., 2021) to the adaptation of the empirical NTK of the neural
network to the task. Concretely, prior works (Long, 2021; Paccolat et al., 2021) have shown that
this explanation is complete in the following sense: The behaviour of Kn(n) is similar to that of the
neural network fit on n samples. In other words, when we fit an after-kernel obtained from training
on n samples to the same n samples we get an accuracy very close1 to that of the neural network fit
on the same n samples. We verify this for our setup in Figure 4(a). This tells us that the following
two factors are sufficient to explain the behaviour of neural networks fit on n samples: (1) Change
in empirical NTK from empirical NTK around initial weights to the after-kernel due to training on
n samples. (2) Fitting the after-kernel on n samples.

What this does not tell us is how these two improvements scale with training size n. In particular,
we know that K0(n) i.e. the empirical NTK at initialization fit on n samples does not match the
neural network trained on n samples on the other hand Kn(n) does. This raises the following natural
question: How data dependent does the kernel need to be to recover the performance of the neural
network? For example, it is possible that for some sample size m0 and all m ≥ m0, the after-kernel
Km is roughly constant, and has same scaling law as the neural network itself. We find that this is
not the case– the after kenel continuously improves with dataset size m.

4.1 EXPERIMENTAL RESULTS

After-Kernel continues to improve with dataset size. In Figure 4(b) we plot Km(500) versus m
for our base Myrtle CNN from Figure 1. We observe that Km(500) improves as m goes from 500
to 1024k showing that the after-kernel keeps improving with larger dataset sizes. Corresponding
SVHN-parity experiments can be found in Appendix F.

Fixed after-kernel is not sufficient to capture neural network data scaling. In Figure 4(b) we plot
the data scaling curves for the base Myrtle-CNN, its empirical NTK at initialization, K16k, K64k

with scaling constants .291, .185, .103, .097 respectively. We find that the neural network has the
best scaling constant. This shows that the scaling of the after-kernel with training size is an important
component of neural network scaling laws as even the after-kernel learnt with 64k samples (on the
simple CIFAR-5m-bin task) is not sufficient to explain the data scaling of neural networks. We also
see that K64k has better performance than K16k, another evidence towards the fact that after-kernel
improves with dataset size.

5 TIME DYNAMICS

In the previous section, we saw that the change in the empirical NTK from initialization to the end
of training (the after-kernel) is sufficient to explain the improved performance of neural networks.
Thus the empirical NTK must have evolved throughout training, and in this section we take a closer

1We again note that empirical NTK does not refer to the linearization of the network (See Section 2 for
an exact definition). If we had linearized the network this statement would be trivially true as the linearized
network around final weights would start out with an accuracy matching that of the trained neural network.

7

Under review as a conference paper at ICLR 2023

(a) (b) (c)

Figure 4: After-Kernel continues to improve with dataset size. In Figure 4(a) we plot data scaling
curves of Kn(n),K

F
n (n) and the neural network and observe that they behave very similarly. In

Figure 4(b) we plot KF
m(500) versus m and observe that the performance improved with increasing

m. In Figure 4(c) we plot data scaling curves of empirical NTK at initialization, K16k, K64k and
the neural network. We observe that the neural network has the best scaling law amongst these.

(a) (b)

Figure 5: Empirical NTK keeps improving uniformly throughout most of the training. In
Figure 5(a) we plot the test error of Myrtle-CNN, its empirical NTK at initialization and Kt

fit at
time t. We observe that the slope Kt

fit does not decrease with time suggesting that the change in
kernel does not slow down after an initial part of training. Using this same setup, we plot the data
scaling curves of Kt for various t and the data scaling of Myrtle-CNN in Figure 5(b). We observe
that the Myrtle-CNN has the best scaling law.

look at this evolution. Our main focus in this section is to investigate the following informal proposal
in the literature (Fort et al., 2020; Long, 2021) about how the empirical NTK evolves:
Hypothesis 5.1 ((Informal, from Fort et al. (2020); Long (2021)). The empirical NTK evolves
rapidly in the beginning of training (< 5 epochs), but then undergoes a “phase transition” into
a slower regime.

One way to interpret the above hypothesis is that there is both a qualitative and quantitative differ-
ence in the empirical NTK between the “early phase” of training (the first few epochs) and the later
stage of training. This is called a “phase transition” in the literature, in analogy to physics, where
systems undergo discontinuities between two regimes with quantitatively different dynamics.

In this section we will give evidence that suggests, contrary to prior work, that there is no such
“phase transition”. We show that if empirical NTK performance is measured at the appropriate
scale, performance appears to continuously improve throughout training (from early to late stages),
at approximately the same “rate.” Our experiments are in fact compatible with the experiments in

8

Under review as a conference paper at ICLR 2023

prior work (e.g. Fort et al. (2020)): we simply observe that if performance and time are measured
on a log-log scale (as is appropriate for measuring multi-scale dynamics), then the NTK is seen to
improve continuously throughout most of the training.

5.1 EXPERIMENTS

Setup. We now describe the setup more formally. Let Kt refer to the empirical NTK (as described
in Section 2) extracted at time t in the training, where we measure time in terms of number of
SGD batches seen in optimization. Kt

fit denotes the model Kt fit to the whole training data. Prior
works (Fort et al., 2020; Long, 2021) have used the slope of the curve of test error of Kt

fit versus t to
decide if the kernel is changing rapidly or not. We will do the same with one crucial difference: We
will measure this slope on a log-log plot instead of directly plotting test error and time. We do this
as empirically scaling laws with respect to time (or tokens processed) have been observed (Kaplan
et al., 2020) for natural language tasks in neural networks and formally proved for kernels (Velikanov
& Yarotsky, 2021) for natural tasks. These results suggest the need for log-log plots to observe
qualitative phase transitions in training dynamics.

Results. Our main claim is that the test error of Kt
fit as a function of time t is approximately linear

on a log-log scale, throughout the course of training. Recall that Kt
fit is the model obtained by

extracting the empirical NTK after t batches of training the real neural network.

In Figure 5(a) we compare the test error of the base Myrtle-CNN at time t, test error of empirical
NTK at initialization at time t and Kt

fit when trained on 64k samples with the same hyperparameters
as Figure 1. Since we want to probe Hypothesis 5.1, which is about the beginning of training, we
plot these quantities until train error reaches < 5% (which requires 32 epochs in our experiments).
This should be sufficient to cover any reasonable definition of “beginning of training”.

Observe that in Figure 5(a) we do not observe a “phase transition” after which the improvement in
kernel test error (in red) slows down. In fact, we observe that the kernel starts out being essentially
constant and then starts and continues to improve uniformly.

We instead observe the following two regimes: (1.) In the first regime (before the dashed vertical
line) the empirical NTK at initialization and the neural network have very similar behaviour, and
Kt

fit is nearly constant. This only lasts for around 140 batches ≈ 0.5 epochs2. (2.) In the next
regime (after the dashed line) the empirical NTK at initialization and the neural network diverge.
As they diverge, the extracted kernel Kt

fit also starts to improve with a constant slope, and this
improvement continues uniformly until the terminal stage of training.

Importantly, the kernel Kt
fit does not transition into a “slower phase” of learning at any point3 in

our experiments. Corresponding SVHN experiments can be found in Appendix F.

Next, we measure the performance of Kt in terms of its data scaling law. Due to computational
limitations (since measuring data-scaling is expensive), we can only measure the scaling law for
several selected values of time t, instead of every batch (as in Figure 5(a)). In Figure 5(b) we plot
data-scaling of Kt for t = 0 (empirical NTK at initialization), 3308 (10 epochs), 11861 (32 epochs),
in the same setup as Figure 5(a). We also plot the data scaling of the base Myrtle-CNN with the same
hyperparameters. As in Figure 4(c) of Section 4 we again observe that the neural network has the
best scaling law, outperforming any of the extracted kernels. This shows that representations learnt
after any constant time t of training are not sufficient to explain the data scaling of neural networks.
Rather, these representations improve throughout training, and the entire course of training must be
considered to recover the correct scaling law.

REFERENCES

Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple descent
and a multi-scale theory of generalization. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of

2Note that this means that if we plot per epoch this phase would not be visible at all.
3As we keep training at some point train loss will tend to 0 and Kt

fit will converge to a fixed value. This
does not affect our results as we are only interested in the initial part of training as described in Hypothesis 5.1

9

Under review as a conference paper at ICLR 2023

Machine Learning Research, pp. 74–84. PMLR, 2020. URL http://proceedings.mlr.
press/v119/adlam20a.html.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.

Anders Andreassen and Ethan Dyer. Asymptotics of wide convolutional neural networks. CoRR,
abs/2008.08675, 2020. URL https://arxiv.org/abs/2008.08675.

Dyego Araújo, Roberto I. Oliveira, and Daniel Yukimura. A mean-field limit for certain deep neural
networks, 2019. URL https://arxiv.org/abs/1906.00193.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8139–8148, 2019b. URL https://proceedings.neurips.cc/paper/2019/hash/
dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect, 2021.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neu-
ral scaling laws. CoRR, abs/2102.06701, 2021. URL https://arxiv.org/abs/2102.
06701.

Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao Zhang, Maxim Krikun, Colin Cherry,
Behnam Neyshabur, and Orhan Firat. Data scaling laws in NMT: the effect of noise and ar-
chitecture. CoRR, abs/2202.01994, 2022. URL https://arxiv.org/abs/2202.01994.

David G. T. Barrett and Benoit Dherin. Implicit gradient regularization. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net, 2021. URL https://openreview.net/forum?id=3q5IqUrkcF.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning
practice and the bias-variance trade-off, 2019.

Mathieu Blondel. kernel sgd.py. https://gist.github.com/mblondel/2573392,
2012. Accessed: 2022-11-15.

Blake Bordelon and Cengiz Pehlevan. Learning curves for SGD on structured features. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=WPI2vbkAl3Q.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 1024–1034. PMLR, 2020. URL http://proceedings.
mlr.press/v119/bordelon20a.html.

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model alignment
explain generalization in kernel regression and infinitely wide neural networks. Nature communi-
cations, 12(1):1–12, 2021.

Amit Daniely and Eran Malach. Learning parities with neural networks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html.

10

http://proceedings.mlr.press/v119/adlam20a.html
http://proceedings.mlr.press/v119/adlam20a.html
https://arxiv.org/abs/2008.08675
https://arxiv.org/abs/1906.00193
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://arxiv.org/abs/2102.06701
https://arxiv.org/abs/2102.06701
https://arxiv.org/abs/2202.01994
https://openreview.net/forum?id=3q5IqUrkcF
https://gist.github.com/mblondel/2573392
https://openreview.net/forum?id=WPI2vbkAl3Q
https://openreview.net/forum?id=WPI2vbkAl3Q
http://proceedings.mlr.press/v119/bordelon20a.html
http://proceedings.mlr.press/v119/bordelon20a.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html

Under review as a conference paper at ICLR 2023

Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of overfitting:
where & why do they appear? In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/1fd09c5f59a8ff35d499c0ee25a1d47e-Abstract.html.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685. PMLR, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
S1gFvANKDS.

Cong Fang, Jason D. Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field
framework for over-parameterized deep neural networks, 2020. URL https://arxiv.org/
abs/2007.01452.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M.
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study
of loss landscape geometry and the time evolution of the neural tangent kernel. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
405075699f065e43581f27d67bb68478-Abstract.html.

Mario Geiger, Stefano Spigler, Stéphane d’ Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio Biroli,
and Matthieu Wyart. Jamming transition as a paradigm to understand the loss landscape of deep
neural networks. Physical Review E, 100(1), Jul 2019. ISSN 2470-0053. doi: 10.1103/physreve.
100.012115. URL http://dx.doi.org/10.1103/PhysRevE.100.012115.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 8580–8589, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Prov-
able feature learning in neural networks beyond kernels. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural Infor-
mation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 24883–
24897, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
d064bf1ad039ff366564f352226e7640-Abstract.html.

11

https://proceedings.neurips.cc/paper/2020/hash/1fd09c5f59a8ff35d499c0ee25a1d47e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1fd09c5f59a8ff35d499c0ee25a1d47e-Abstract.html
https://openreview.net/forum?id=S1gFvANKDS
https://openreview.net/forum?id=S1gFvANKDS
https://arxiv.org/abs/2007.01452
https://arxiv.org/abs/2007.01452
https://proceedings.neurips.cc/paper/2020/hash/405075699f065e43581f27d67bb68478-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/405075699f065e43581f27d67bb68478-Abstract.html
http://dx.doi.org/10.1103/PhysRevE.100.012115
https://proceedings.neurips.cc/paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d064bf1ad039ff366564f352226e7640-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d064bf1ad039ff366564f352226e7640-Abstract.html

Under review as a conference paper at ICLR 2023

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as lin-
ear models under gradient descent. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8570–8581, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
0d1a9651497a38d8b1c3871c84528bd4-Abstract.html.

Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical
study. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
ad086f59924fffe0773f8d0ca22ea712-Abstract.html.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. CoRR, abs/2003.02218, 2020. URL
https://arxiv.org/abs/2003.02218.

Zhu Li, Zhi-Hua Zhou, and Arthur Gretton. Towards an understanding of benign overfitting in neural
networks. CoRR, abs/2106.03212, 2021. URL https://arxiv.org/abs/2106.03212.

Xin Liu and Zhisong Pan. Provable convergence of nesterov accelerated method for over-
parameterized neural networks. CoRR, abs/2107.01832, 2021. URL https://arxiv.org/
abs/2107.01832.

Philip M. Long. Properties of the after kernel. CoRR, abs/2105.10585, 2021. URL https:
//arxiv.org/abs/2105.10585.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/forum?id=B1g5sA4twr.

Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework: Good
online learners are good offline generalizers. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=guetrIHLFGI.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of mul-
tilayer neural networks. CoRR, abs/2001.11443, 2020. URL https://arxiv.org/abs/
2001.11443.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
International Conference on Learning Representations, 2020. URL https://github.com/
google/neural-tangents.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard.
What can linearized neural networks actually say about generalization? In An-
nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
2021. URL https://proceedings.neurips.cc/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric
compression of invariant manifolds in neural networks. Journal of Statistical Mechanics: Theory
and Experiment, 2021(4):044001, 2021.

12

https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2106.03212
https://arxiv.org/abs/2107.01832
https://arxiv.org/abs/2107.01832
https://arxiv.org/abs/2105.10585
https://arxiv.org/abs/2105.10585
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=guetrIHLFGI
https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/2001.11443
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html

Under review as a conference paper at ICLR 2023

David C. Page. How to train your resnet 4: Architecture. https://web.
archive.org/web/20210512184210/https://myrtle.ai/learn/
how-to-train-your-resnet-4-architecture/, 2018. Accessed: 2022-01-25.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory. CoRR,
abs/2106.10165, 2021. URL https://arxiv.org/abs/2106.10165.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley, Ludwig
Schmidt, and Benjamin Recht. Neural kernels without tangents. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 8614–8623. PMLR, 2020. URL
http://proceedings.mlr.press/v119/shankar20a.html.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
CoRR, abs/2004.10802, 2020. URL https://arxiv.org/abs/2004.10802.

James B. Simon, Madeline Dickens, and Michael Robert DeWeese. Neural tangent kernel eigenval-
ues accurately predict generalization. CoRR, abs/2110.03922, 2021. URL https://arxiv.
org/abs/2110.03922.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks, 2019.
URL https://arxiv.org/abs/1903.04440.

Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=rq_Qr0c1Hyo.

Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

Maksim Velikanov and Dmitry Yarotsky. Explicit loss asymptotics in the gradient descent training
of neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=EHUsTBGIP17.

Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural net-
works. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 11727–11737. PMLR, 2021. URL http:
//proceedings.mlr.press/v139/yang21c.html.

13

https://web.archive.org/web/20210512184210/https://myrtle.ai/learn/how-to-train-your-resnet-4-architecture/
https://web.archive.org/web/20210512184210/https://myrtle.ai/learn/how-to-train-your-resnet-4-architecture/
https://web.archive.org/web/20210512184210/https://myrtle.ai/learn/how-to-train-your-resnet-4-architecture/
https://arxiv.org/abs/2106.10165
http://proceedings.mlr.press/v119/shankar20a.html
https://arxiv.org/abs/2004.10802
https://arxiv.org/abs/2110.03922
https://arxiv.org/abs/2110.03922
https://arxiv.org/abs/1903.04440
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=EHUsTBGIP17
https://openreview.net/forum?id=EHUsTBGIP17
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21c.html

Under review as a conference paper at ICLR 2023

A STATISTICAL SIGNIFICANCE OF FIGURE 1(A)

In Figure 1(A), for each of the dataset sizes 500, 1000, 2000, . . . , 64000 we have ¿= 4 neural network
runs. Taking our distribution to be the cross product over there runs and dataset sizes we calculate the
distribution of scaling constants of the neural network. We get that the mean is .292 and the standard
deviation is .0106. The infinite NTK scaling constant (.213) is 7.5 standard deviations away. The
mean and the standard deviations were calculated with a sample size of 10000. Even the minimum
scaling constant across these 10000 samples was .265 which is closer to the neural network mean
scaling constant (.292) than it is to the infinite NTK scaling constant (.213). The empirical NTK
scaling constant: .185 is even smaller and hence the result is even more statistically significant (10.5
standard deviations away).

B EXPERIMENTAL DETAILS

B.1 ARCHITECTURE

The exact architecture of the Myrtle-CNN we use is the following: 3 Conv Layer with c channels,
Relu, 3 Conv Layer with 2c channels,V Relu, 2 × 2 Avg-pooling, 3 Conv Layer with 4c channels,
Relu, 2 × 2 Avg-pooling, 3 Conv Layer with 8c channels, Relu, 2 × 2 Avg-pooling, 4 × 4 Avg-
pooling, Dense Layer with 1 output. Stride is always 1. Here is our code for the network in the stax
module of the Neural Tangents (Novak et al., 2020) library:

i n i t f n , a p p l y f n , k e r n e l f n = s t a x . s e r i a l (
s t a x . Conv (c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . Conv (2* c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . AvgPool ((2 , 2) , (2 , 2)) ,
s t a x . Conv (4* c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . AvgPool ((2 , 2) , (2 , 2)) ,
s t a x . Conv (8* c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . AvgPool ((2 , 2) , (2 , 2)) ,
s t a x . AvgPool ((4 , 4) , (4 , 4)) ,
s t a x . F l a t t e n () ,
s t a x . Dense (1)

)

We refer to c as the “width” of the network. Our base network in Figure 1 has c = 64.

We use the following 5 layer CNN for the SVHN-parity task:

i n i t f n , a p p l y f n , k e r n e l f n = s t a x . s e r i a l (
s t a x . Conv (c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . Conv (c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . Conv (c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . Conv (c , (3 , 3) , s t r i d e s = (1 , 1) , padd ing = ’SAME’) , s t a x . Relu () ,
s t a x . F l a t t e n () ,
s t a x . Dense (1)

)

The base network has c = 64.

The MLP that we use in our synthetic dataset experiments is a depth-4 MLP with the following
code:

i n i t f n , a p p l y f n , k e r n e l f n = s t a x . s e r i a l (
s t a x . F l a t t e n () ,
s t a x . Dense (c) , s t a x . Relu () ,
s t a x . Dense (c) , s t a x . Relu () ,
s t a x . Dense (c) , s t a x . Relu () ,
s t a x . Dense (1)

)

14

Under review as a conference paper at ICLR 2023

B.2 SCALING LAWS

In our plots we use the scaling laws for the form L(n) = A(1/n+α)β where β is referred to as the
scaling constant. This is take into account the fact that any given neural network has a maximum
possible accuracy. Note that as our task is a deterministic there is no label-noise to be accounted
for. We calculate A,α, β by solving the least squares problem between log(L(n)) and the log of
empirically found test errors.

B.3 SGD WITH MOMENTUM, EQUIVALENCE BETWEEN INFINITE NTKS AND NEURAL
NETWORKS

The standard equivalence between neural networks and infinite NTKs (Lee et al., 2019) used GD
with no momentum. Recent works (Dyer & Gur-Ari, 2020; Liu & Pan, 2021) have extended this to
SGD and SGD with momentum.

B.4 KERNEL-SGD

We optimize our neural network with SGD, the empirical NTK (as the the linearized neural network)
with SGD and the infinite NTK with kernel-SGD (described later), all with the same optimization
hyperparameters. For all of the experiments we use early stopping except in Figure 3(d). This allows
us to ensure that the limiting behaviour of all 3 models as width tends to infinity will exactly be the
same in contrast with prior works which have usually optimized these 3 models in different ways.
This is important for having a fair comparison between all three models.

We now describe kernel-SGD. Intuitively, kernel-SGD refers to doing SGD in the kernel space. We
now define it more formally, beginning with the notation. Let

• n denote the number of samples.

• K = FFT where K is the n× n NTK matrix and F is a n× d feature matrix. The row of
F corresponding to training sample x is given by f(x)T where f is the function that maps
a training sample to their features. Define k(x) as Ff(x) and k(x, x′) as f(x)T f(x′)

• yx be the label corresponding to sample x.

• ∥Fw − y∥2 be the loss function. As we will be doing SGD start with 0 initialization we
can equivalently state the loss function as ∥Kz − y∥2 where w = FT z.

Kernel-SGD refers to doing SGD on the loss ∥Kz − y∥2, optimizing for z. Specifically if our batch
contains a single sample x then we do one step of GD on the loss ∥k(x)T z − yx∥2. See Blondel
(2012) for an implementation.

In the following claim we show that this is equivalent to doing SGD on the loss ∥Fw − y∥2 as long
as our selection of the the batches and SGD hyperparameters is the same. The following claim only
works for one step and SGD with batch size 1 but can be easily generalized. The result is easy to
prove and probably follows from prior works. But we were not able to find a reference so we present
it here for completeness.

Claim B.1. The prediction on a input sample x′ is the same in the following two cases

• We start from w = FT z0 and do one step of SGD on input sample x in the feature space
i.e. one step of GD with loss (f(x)Tw − yx)

2. The learning rate is η.

• We start from z = z0 and do one step of SGD on input sample x in the kernel space i.e. one
step of GD with loss (k(x)T z − yx)

2. The learning rate is η.

Proof. The update in the first case leads to

w′ = w0−2η(f(x)Tw0−yx)f(x) = FT z0−2η(f(x)TFT z0−yx)f(x) = FT z0−2η(k(x)T z0−yx)f(x)

The prediction on sample x′ changes to

f(x′)Tw′ = f(x′)T (FT z0 − 2η(k(x)T z0 − yx)f(x)) = k(x′)T z0 − 2ηk(x, x′)(k(x)T z0 − yx))

15

Under review as a conference paper at ICLR 2023

The update in the second case leads to

z′ = z0 − 2η(k(x)T z − yx)k(x)

The prediction on sample x′ changes to

k(x′)T z′ = k(x′)T (z0 − 2η(k(x)T z − yx)k(x)) = k(x′)T z0 − 2ηk(x, x′)(k(x)T z0 − yx))

which is exactly the same as the update in the first case.

B.5 ADDITIONAL EXPERIMENTAL DETAILS FOR FIGURES

64 bit versus 32 bit precision Our neural network experiments are done with 32 bit precision while
kernel experiments are done with 64 bit precision. To verify that this difference is not the cause of
better performance of neural networks we ran the experiment in Figure 1 with 64 bit precision for
train size of 64k. The test error actually improved, test error with optimal early stopping was .03993
while it was .04118 at 32 bit precision.

Starting with 0 output neural networks The convergence between neural networks, empirical
NTK and the infinite NTK as width tends to infinity needs that the neural networks have 0 output
at initialization. This can be done by subtracting the initial outputs from the neural network output.
While we do not do this for the experiments in the paper, we verify in Table 1 that this makes almost
not difference for Figure 1. We use a table instead of a plot as most of the differences are too small
to be visible on a plot.

Dataset Size 500 1k 2k 4k 8k 16k 32k 64k
Usual Neural Networks .1504 .1177 .09655 .08083 .0658 .0545 .04958 .04118
Neural Netwoks with 0 output .1501 .1204 .09672 .08302 .0668 .05462 .04585 .04152

Table 1: Performance of usual neural networks and their 0 output counterparts.

We now describe additional experimental details for each figure beyond those described in Section 2.

In Figure 1 all 3 models were trained with batch size of 200 and SGD with learning rate of 4.0 and
momentum of .9 (as implemented in jax.experimental.optimizers.momentum). For all models
we used optimal early stopping where the test error is logged after an increase of 1.1 multiplicative
factor in the number of gradient steps. Unless mentioned otherwise this will the optimization setup
we will use. For neural network and empirical NTK each model is averaged over 4 random ini-
tializations and error bars denote standard deviations (except the last two points of empirical NTK
which we were not able to rerun due to computational constraints). The infinite NTK is a determin-
istic model hence we only have only have a single run for it. We also trained the kernels by directly
solving the linear system with optimal L2-regularization but that yielded worse test performance.

In Figure 2(b), for empirical NTK with large widths (128, 256) the values across different initializa-
tions were very similar hence we did not do multiple runs of even higher widths (512, 1024). For
the neural network standard error of the mean (SEM) was calculated using 6 runs for widths up to
128 and 4 runs for higher widths.

In Figure 2(c) the models are trained with SGD: batch size of 200, learning rate of 10, .9 momentum.
All models are averaged across 8 random initializations. In this figure we report the final test error
at convergence (train loss ≤ 2× 10−6 for neural network) for all models.

In Figure 3(c) we train with learning rate of 10.0 with no momentum.

In Figure 3(d) we train the width 512 version of the Myrtle-CNN till it reached train loss ≤ .001 by
which point their test error converges to a nearly fixed value.

In Figure 4 all after-kernels are extracted at the optimal early stopping point of training. In Fig-
ure 4(a) and 4(b) the train sizes used are 500, 1k, 2k, 4k, 8k, 16k, 32k, 64k, 256k, 1024k.

In Figure 5 with fit Kt to the data with same optimization hyperparameters used in Figure 1: batch
size 200, SGD with learning rate 4.0 and momentum .9.

16

Under review as a conference paper at ICLR 2023

C EFFECT OF VERY LOW LEARNING RATE

(a) (b) (c)

Figure 6: In Figure 6(a) we redo the experiment from Figure 1 except that training the neural network
with a 1000x smaller learning rate. This leads to a significant drop in the performance and the scaling
constant of the neural network. In Figures 6(b) and 6(c) we explore the effect of learning rate on a
fixed training size.

In this section we explore the effects of very low learning rate. The motivation is to understand the
gradient flow limit i.e. the limiting behaviour of trained neural networks as the learning rate tends to
0. In Figure 6(a) we repeat Figure 1 except that we train the neural network with learning rate .004.
The measured scaling constants are reasonably close by: .204, .185, .213 for the Myrtle-CNN, its
empirical NTK and infinite NTK respectively. This suggests a natural question:

Question C.1. Do the benefits (with respect to scaling constant) of finite width networks over cor-
responding empirical NTK vanish in the gradient flow limit?

To answer this question affirmatively we would would need to repeat the plot of Figure 6(a) for
various widths which was computationally infeasible for us. We leave this for future work.

We now move to considering the effect of learning rate on a fixed training size.

In Figure 6(b) we plot the performance with respect to learning rate for training sizes 4000 (From
the setup in Figure 1) and observe that at low learning rates performance is worse4 than infinite NTK
but still better than empirical NTK at initialization. From this plots it is not clear if at the lowest
learning rates which we could train the performance has converged to the gradient flow performance.
In this setup it was computationally infeasible for us to explore smaller learning rates. To do this
we move to the synthetic setting (with the same setup as in Figure 8) in Figure 6(c). Here the
performance (final test error) converges as we go towards smaller learning rates which indicates that
we have converged to the gradient flow limit. In this limit the neural network performs better than
the infinite and empirical NTK at initialization. Note that higher learning rates still leads to even
better performance.

We interpreted all of these experiments as suggesting that while high learning rate plays an im-
portant role in the performance of empirical networks it may not be necessary in having a
improved performance over corresponding NTKs.. But more experimental evidence is needed
to understand the role of learning rate and in understanding the gradient flow limit, particularly for
natural tasks.

Related Works: Barrett & Dherin (2021) and Smith et al. (2021) describe regularizers which po-
tentially explain the benefits of high learning rate in GD and SGD. The effect of higher than critical
learning rate on very wide networks has been studied by Lewkowycz et al. (2020). They claim that
perhaps the improved generalization of neural networks can be explained by the use of higher than
critical learning rate. This does not apply to our experiments as all of our experiments use learning
rates which are below the critical learning rate.

4Note that this is just for a single width. We do not know how width affects these results. We do know that
at infinite width the learning rate does not have any effect, other than due to optimal early stopping.

17

Under review as a conference paper at ICLR 2023

D HIGHER ORDER ANALOGUES OF THE NTK

Let f(w, x) with w representing the weights and x a sample. By Taylor expansion around w0 we
have:

f(w, x) = f(w0, x) +∇wf(w, x)|w0
(w − w0) +

1

2
(w − w0)

T∇2
wf(w, x)|w0

(w − w0) + . . .

The empirical NTK of the neural network around weights w0 refers to the model g1(w, x) =
∇wf(w, x)|w0(w − w0).

We consider the following two second order analogue of the NTK: gonly2 (w, x) = 1
2 (w −

w0)
T∇2

wf(w, x)|w0
(w − w0) and gfull2 (w, x) = f(w0, x) + ∇wf(w, x)|w0

(w − w0) +
1
2 (w −

w0)
T∇2

wf(w, x)|w0(w − w0)

(a) (b)

Figure 7: Higher order analogues of Empirical NTK.

In Figure 7(a) we use the setup of Figure 1 to plot the performance of the 2nd order analogue of
the empirical NTK (gfull2 , referred by Hfull in the plot). This shows that even this higher order
analogue is not sufficient to recover the scaling law of neural networks.

In Figure 4(a) we saw that the after-kernel was sufficient to explain the improved performance of
neural network over the empirical NTK. We now show an analogous result for the 2nd order analogue
of NTK. As we want to understand the effect of change in the higher order terms we need to remove
the influence on the after-kernel. We do so by defining the higher order analogue of after-kernel as
the model gonly2 which does not contain the after-kernel. We will denote this by Honly

m when we use
the weights after training on m samples. In Figure 7(b) we show that the performance of Honly

n (n)
is very close to that of the neural network.

Both of these experiments suggest that theories which assume that higher order analogues of the
NTK remain fixed throughout the training may not be sufficient to explain the performance of neural
networks.

E EXPERIMENTS ON SYNTHETIC DATA

Some of our experiments were not feasible on the CIFAR-5m-bin and SVHN-parity tasks. We did
these experiments on the following synthetic task: Sample z ∼ {−1, 1}30, ϵ ∼ N (0, .25 · I30), the
input sample is x = z + ϵ and the label is y = z1z2.

Experiments on very low learning rates for this synthetic task can be found in Appendix C.

In Figure 8 we do an analogous experiment to Figure 2(b) and 2(c) for this synthetic task. We again
observe that neural networks at small width improve with increase in width but at high width they
start to worsen off with increase in width. The models are trained with SGD: batch size of 100,

18

Under review as a conference paper at ICLR 2023

learning rate of 10, no momentum. All models are averaged across 8 random initializations. In this
figure we report the final test error at convergence (train loss ≤ 2× 10−6 for neural network) for all
models.

Figure 8: Analogous experiment to Figure 2(b) and 2(c) for the synthetic task

F SVHN-PARITY EXPERIMENTS

(a) (b) (c)

Figure 9: Experiments for the SVHN-parity task, analogous to Figure 1. Error bars in Figure 9(a)
denote standard deviation.

In Figure 9 the analogue of Figure 1. The scaling constants in Figure 9(a) are .28, .22 and .19 for the
neural network, infinite NTK and the empirical NTK at initialization respectively. We also observe
that unlike the CIFAR-5m-bin task here the neural network outperforms the infinite NTK even at
small dataset sizes. This may be because the inductive bias of the NTKs is not suited for a the
parity task. In Figure 9(c) we plot the more extensive figure corresponding to Figure 5(a). We again
observe that the kernel continues to improve for most of the training.

All of the above models are trained with SGD: batch size of 200, learning rate of 10, .9 momentum.
In Figure 9(a) the neural network and empirical NTK experiments are averaged over 4 runs with
error bars denoting standard deviation. The infinite NTK is a deterministic model and hence we
only do a single run.

Figure 2(c) is another SVHN-parity experiment.

G OTHER RELATED WORK

Beyond Double Descent: Double descent (Belkin et al., 2019; Geiger et al., 2019; Nakkiran
et al., 2020) predicts that in the regime of overparameterized models increasing the width improves
the test error. We observe that the performance of overparameterized models is better than that
of infinite width models showing that there is a natural setting where there is at least one more

19

Under review as a conference paper at ICLR 2023

ascent after the double descent phenomena. Behaviours beyond the double descent phenomena
have been predicted (Adlam & Pennington, 2020; d’Ascoli et al., 2020; Li et al., 2021) and also
observed (Lee et al., 2020) in empirical neural networks. Our works is different from these works
as we show that in our setup simultaneously a) empirical NTK displays a monotonic improvement
in the overparameterized regime towards the infinite NTK performance while b) the neural network
performs better than the infinite NTK. This directly points towards another ascent after the double
descent and also pinpoints its cause as the divergence between finite width neural networks and the
empirical NTK at initialization.

After Kernel The empirical NTK after the training of neural network has been termed as after-
kernel (Long, 2021). It has been shown (Long, 2021; Paccolat et al., 2021). We extend these works
by studying how the after-kernel changes with dataset size and show that it continues to improve
with dataset size.

Time dynamics of training from the NTK perspective. has been studied by Fort et al. (2020);
Ortiz-Jiménez et al. (2021); Atanasov et al. (2021); Long (2021). These papers suggest that the
empirical NTK changes rapidly in the beginning of the training followed by a slowing of this change.
We argue against this interpretation in Section 5.

Explanations for Scaling Laws Current explanations of scaling laws (Sharma & Kaplan, 2020;
Bahri et al., 2021) rely on a fixed representation space. Operationalizing representation as the after-
kernel, our results suggest that in practical neural networks the representation itself improves as
data-size increases. Hence we may need more refined theories for explaining scaling laws of neural
networks which take this into account.

Provable differences between neural networks and NTKs have been shown (Ghorbani et al.,
2020; Daniely & Malach, 2020; Karp et al., 2021) though they have been restricted to synthetic
datasets.

Effect of learning rate: See the last paragraph of Appendix C.

H SCALING CURVES OF VARIOUS AFTER-KERNELS

In Figure 4(c) we saw that the neural network has a better scaling constant than any fixed after-
kernel. Another curious observation from the plot is the comparison between the empirical NTK
and K16k scaling curve. We observe that

• K16k outperforms the empirical NTK of all training sizes we tested.

• The empirical NTK has a better scaling constant than K16k.

We start by noting that this issue of having worse scaling but always generalizing better does not
arise for other comparisons in the paper which involve the neural network. This is because the neural
network has better a scaling constant and it also starts to perform better for larger dataset sizes.

Going back to empirical NTK and K16k we can ask the following question: Does empirical NTK
having a better scaling constant imply that for large enough sample sizes empirical NTK would
outperform K16k? Not necessarily, see Figure 10(a) for an example of two scaling curves5 where
the curve with the worse scaling constant (.25) always outperforms the curve with the better scaling
constant (.5). We think this will also hold for empirical NTK and K16k. The intuition behind this is
that both empirical NTK and K16k have the same number of parameters and both are linear models
but K16k has a better implicit bias (as it has better performance6).

On the other hand, our current scaling curves do not predict this i.e. extrapolating them predicts that
empirical NTK would outperform K16k at n = 5 million, see Figure 10(b). But we think this is not
a credible prediction for multiple reasons:

5The irreducible component of the error is necessary for this situation to arise. Irreducible error refers to
error that the model will have at n = ∞.

6This intuition does not apply to a NTK model and a neural network as they are models of different types,
linear and nonlinear respectively.

20

Under review as a conference paper at ICLR 2023

• At n = 5 million we will have more samples than parameters (∼ 1.5 million). This means
that we might no longer be overparameterized and hence extrapolating data scaling curves
is not valid.

• This could occur due to small fluctuations in the fitting of the scaling curves (particularly
as we are extrapolating a lot, factor of 100). Specifically we think that our estimation of
irreducible loss for these two curves is noisy.

(a) (b)

Figure 10:

I PLOTS WITH TEST LOSS

Throughout the paper we have focused on the test error. Here we recreate some of the important
plots for test loss instead of test error. These correspond to Figure 1(a), 2(b) and 5(a) respectively.
All the phenomena that we observed for test error in these plots continue to hold for test loss.

(a) (b) (c)

Figure 11: Plotting some of our important figures with test loss as the metric.

The scaling constants in Figure 11(a) are .22, .171 and .135 for the neural network, infinite NTK
and the empirical NTK respectively.

21

	Introduction
	Comparison to Prior Work on NTK Generalization

	Experimental Methodology
	Data Scaling Laws of Neural Networks and NTKs in the Overparameterized Regime
	Exploration of After-Kernel wrt Dataset size
	Experimental Results

	Time Dynamics
	Experiments

	Statistical Significance of Figure 1(A)
	Experimental Details
	Architecture
	Scaling Laws
	SGD with momentum, equivalence between infinite NTKs and neural networks
	Kernel-SGD
	Additional Experimental Details for Figures

	Effect of Very Low Learning rate
	Higher order analogues of the NTK
	Experiments on Synthetic Data
	SVHN-parity Experiments
	Other related work
	Scaling curves of various after-kernels
	Plots with Test Loss

