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AdaptiveQuery Selection for Camouflaged Instance
Segmentation
Anonymous Authors

ABSTRACT
Camouflaged instance segmentation is a challenging task due to
the various aspects such as color, structure, lighting, etc., of ob-
ject instances embedded in complex backgrounds. Although the
current DETR-based scheme simplifies the pipeline, it suffers from
a large number of object queries, leading to many false positive
instances. To address this issue, we propose an adaptive query se-
lection mechanism. Our research reveals that a large number of
redundant queries scatter the extracted features of the camouflaged
instances. To remove these redundant queries with weak corre-
lation, we evaluate the importance of the object query from the
perspectives of information entropy and volatility. Moreover, we
observed that occlusion and overlapping instances significantly
impact the accuracy of the selection mechanism. Therefore, we de-
sign a boundary location embedding mechanism that incorporates
fake instance boundaries to obtain better location information for
more accurate query instance matching. We conducted extensive
experiments on two challenging camouflaged instance segmenta-
tion datasets, namely COD10K and NC4K, and demonstrated the
effectiveness of our proposed model. Compared with the OSFormer,
our model significantly improves the performance by 3.8% AP and
5.6% AP with less computational cost, achieving the state-of-the-art
of 44.8 AP and 48.1 AP with ResNet-50 on the COD10K and NC4K
test-dev sets, respectively.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Camouflaged instance segmentationAdaptive query selection Trans-
former

1 INTRODUCTION
Camouflage, originally developed in biology, aims to deceive and
confuse prey and predators by using certain concealedmethods [48].
Camouflaged objects are adept at utilizing their own structure, light-
ing, color, and surrounding environment to perfectly imitate other
objects in their vicinity [45]. Due to their ability to blend seamlessly
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Figure 1: The core insight of our idea. Current query-based
architectures commonly use a large number of queries to col-
lect instance semantic information from the training dataset.
However, only a small number of valid queries correspond
to object instances, and a large number of redundant in a
single image, invalid queries are easy to cause false positive
instances. Thus, we propose to promote interactions between
valid queries and extracted features while avoiding interac-
tions between useful feature-related information and invalid
queries. This approach helps to ensure that the model fo-
cuses on the most valid queries, reducing the occurrence of
false positive instances.

into their surroundings, they are difficult to detect. Camouflaged
instance segmentation (CIS) [28, 43] is an essential component of
camouflaged object analysis, and it is more challenging than gen-
eral instance segmentation tasks[1, 8, 18, 20, 50]. The establishment
of CIS systems in computer-aided intervention perception systems
has broad applications in medical diagnosis [13], agriculture [10],
security and surveillance, art, and scientific research.

Unlike the two-stage approach used in the first CIS model [28],
OSFormer [43] introduces a one-stage algorithm using the query
paradigm [3, 19, 35, 41]. This approach employs a concise camou-
flaged instance segmentation pipeline where each query consists
of two functions: content cluster and positional embedding. The
query paradigm assumes that each query corresponds to an object
instance, and a set of object queries are predefined to map the con-
tent and positional information of each query to the corresponding
object instance. However, due to the one-to-one correspondence
between queries and camouflaged instances, only a few queries are
valid, and a large number of queries are redundant, leading to false
positive instances and increasing computational costs. While reduc-
ing the number of queries may seem intuitive, it has been shown
in previous research works that directly reducing the number of
queries significantly reduces the model’s ability [6, 29]. To address
this, we examine the correlation between each query and feature
in the cross-attention module. We observe that only a few queries

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in the cross-attention are strongly correlated with certain features
in the image, while a large number of redundant queries distract
the features of the fake instances.

As shown in Figure 1, our proposed approach aims to address
the issues of redundant queries and false positive instances. From
the perspective of data compression, we want to ensure that after
removing redundant queries, we still have the same attention distri-
bution. We find that valid queries exhibit a strong correlation with
instance features, while invalid queries show a weak correlation
and uniform distribution. To quantify this difference, we use rela-
tive entropy to measure the distance between the two distributions
and combine it with variance to evaluate query volatility. Instead
of using a fixed selection strategy, we propose a multi-head dy-
namic selection strategy that accommodates dynamic numbers of
instances in various scenes. We also observe that overlapping and
occluded instances pose challenges for accurate query selection,
especially when the positional embedding of the query adopts a
random initialization method. To address this issue, we propose
using dynamic positional embedding conditioned on the bound-
ary locations of the query input, which allows for more accurate
query-instance matching.

By combining the proposed components, we present a novel
Adaptive Query Selection Transformer (AQSFormer), which offers
an improved end-to-end camouflaged instance segmentation system
with adaptive query selection and boundary positional embedding.
Our model outperforms the OSFormer and UQFormer by achieving
44.9 AP and 48.1 AP on the COD10K and NC4K test-dev sets with
ResNet-50, respectively. This indicates a significant increase of 3.8%
AP and 5.6% AP over the previous OSFormer.

2 RELATEDWORKS
2.1 Camouflaged Instance Segmentation
Camouflage is a survival skill resulting from adaptation and natural
selection during biological evolution [11]. As a result, biologists
have explored numerous examples of camouflage and explained
the principles behind it. Inspired by this phenomenon, camouflaged
segmentation has become an important research topic in the com-
puter vision community [17, 46, 52, 58], particularly in the context
of camouflaged instance segmentation (CIS). Fan et al.[16, 17] con-
ducted a comprehensive study of camouflage and published the
COD10K dataset, which contains 10K images in 69 categories with
rich semantic and instance annotations. To address the challenge
of parsing complex scenes with camouflaged objects, researchers
have developed various approaches, such as graph convolution[55],
uncertainty-guided methods [53], texture difference modeling [31],
implicit motion handling [9], receptive field methods [14], and
zoom-in and zoom-out methods [42]. However, these approaches
only focus on foreground-background separation and cannot dis-
tinguish between camouflaged instances.

Recently, Le et al.[28] proposed the camouflaged instance seg-
mentation task and designed a two-stage scheme network to address
it. Subsequently, Peiet al.[43] proposed the first one-stage CIS archi-
tecture, which greatly advanced the field of CIS[28, 43]. However,
accurate CIS is still a daunting task that faces three major chal-
lenges: (i) Camouflaged objects tend to change their appearance
to perfectly blend into their surroundings, making it challenging

to identify them accurately. (ii) Camouflaged objects have various
appearances, such as size and shape, which reduce the robustness
of the CIS model. (iii) Wild animals often live in complex natu-
ral environments, which means that images often have complex
backgrounds, further exacerbating the difficulty of CIS.

2.2 General Query Paradigm
The query paradigm [7, 19, 35, 41] originated from object detection
and has evolved into a concise object detection pipeline. The query
serves as a learnable external vector, independent of the current
input image’s content. It aggregates the features of specific object
instances in the sequence output from the encoder through cross-
attention, models the relationship between object queries using
self-attention pairs, and finally, the feed-forward network (FFN) re-
gresses classification detection boxes according to the object query
after feature aggregation. The query paradigm has demonstrated
strong performance not only in object detection but also in other
domains such as panoptic segmentation [6, 54], instance segmenta-
tion [8, 18, 43], semantic segmentation [7, 56], crowd counting [33],
text detection [38], and human-object interaction detection [25, 26].
Our main structure also builds upon the query paradigm, on which
we propose an adaptive query selection strategy for CIS.

2.3 Selection Strategy in Transformer
The transformer architecture employs selection strategies [32, 36,
40, 44, 49] to achieve model compression and acceleration by re-
taining valuable information and removing redundant content. Dy-
namic ViT [44] uses unstructured sparse hierarchical pruning to
dynamically filter tokens for the next layer based on the scores of
additional prediction modules. Evit [32] determines the importance
of other tokens for the classification task using the class token,
and retains valuable tokens based on a fixed ratio while discard-
ing the rest via simple fusion. KVT [49] selects the most similar
tokens through KNN clustering to calculate self-attention, thereby
removing irrelevant tokens and speeding up training and inference.
Adaptive Sparse ViT [36] proposes a minimal-cost adaptive sparse
token sparse architecture that discriminates the importance of to-
kens using a learnable threshold and an inexpensive multi-head
attention importanceweighted evaluationmechanism. Evo-ViT [51]
leverages the global attention advantage in transformers for un-
structured instantiated token selection combined with path update
and designs a self-motivated slow-fast token evolution method.
However, these selection strategies have two limitations: (i) They
primarily aim to reduce tokens in self-attention to lower computa-
tional overhead, which is not suitable for cross-attention with an
invalid query. (ii) Unifying scenes and objects in classification tasks
reduces the challenge of token selection. Applying these strategies
directly to complex dense prediction tasks, particularly in CIS, is
difficult.

3 METHOD
Problem Statement. In this study, we consider the feature X,
which is extracted from the backbone or enhanced by transformer
encoder, and a set of object queries 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}. Our goal
is to learn queries that encode the information of the extracted
feature set X into 𝑄 .
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Figure 2: The overall architecture of adaptive query selection. The overall strcture is shown in the figure above, including two
core modules, BPE and AQSFormer block. At the same time, we show three key steps in AQSFormer in detail. Figure (a) depicts
the process of evaluating the importance of queries, which involves comparing the attention scores obtained with a predefined
threshold. Queries with scores above the threshold are marked as valid, while those below it are deactivated. Figure (b) shows
the Top-𝜉 queries selection mechanism operating across multiple heads. In this case, the Top-𝜉 valid queries from each head are
selected based on their importance scores, and the resulting set of queries is used for subsequent computations. Finally, Figure
(c) illustrates the interaction between the valid queries and the features in the network. Specifically, the valid queries attend to
relevant features, which are then aggregated and processed by the feed-forward network to produce the final output.

General Cross Attention. The conventional approach for infor-
mation mapping involves implementing a cross-attention module
between all queries and features. Here, we introduce the positional
embedding of the query as 𝑄𝑝 and the content part as 𝑄𝑐 . After
applying a linear layer, X is uniformly mapped to a 𝑑-dimensional
representation as key 𝐾 and value 𝑉 . The query content 𝑄𝑐 and
query positional embedding 𝑄𝑝 correspond to the content 𝐾𝑐 and
positional embedding 𝐾𝑝 of 𝐾 , respectively. The attention of the
𝑖-th query is defined as the probabilistic form of kernel smoothing:

A(𝑞𝑖 , 𝐾,𝑉 ) =
∑︁

𝑗
𝑘 (𝑞𝑖 , 𝑘 𝑗 )∑
𝑙

𝑘 (𝑞𝑖 , 𝑘 𝑗 )
𝑣 𝑗 = EP(𝑘 𝑗 |𝑞𝑖 ) [𝑣 𝑗 ], (1)

where 𝑞𝑖 , 𝑘𝑖 , and 𝑣𝑖 represent the 𝑖-th row of 𝑄 , 𝐾 , and 𝑉 , respec-
tively. Here, the attention of the 𝑖-th query to all keys is defined as
the probability P(𝑘 𝑗 |𝑞𝑖 ):

P(𝑘 𝑗 |𝑞𝑖 ) =
𝑘 (𝑞𝑖 , 𝑘 𝑗 )∑
𝑙

𝑘 (𝑞𝑖 , 𝑘𝑙 )
, 𝑘 (𝑞𝑖 , 𝑘 𝑗 ) = exp(

𝑞𝑖𝑘
𝑇
𝑗
)

√
𝑑

) (2)

While general cross attention has been successful in evaluating
the correlation between each query and content features with scaled
dot-product attention, it also has drawbacks. Firstly, the number of
instances in the image is typically much smaller than the number
of queries, indicating that most queries are redundant. Retaining all
queries is highly prone to false positive instances of these redundant
queries, which is especially problematic in camouflaged instance
segmentation due to the high similarity between background and

foreground instances. Through visual analysis of P(𝑘 𝑗 |𝑞𝑖 ) in Fig-
ure 1, we further find that not every retrieved query is valuable,
and a large number of queries do not pay special attention to any
area during the interaction. Secondly, unlike query 𝑄 and key 𝐾 in
self-attention [15] that come from the same feature space and own
natural position correspondence, 𝐾 and𝑄 lack position correlation,
making it difficult to accurately correspond.

The natural question that arises is whether there exists an ap-
proach to circumvent the current limitations of the query paradigm.
In response, we propose an adaptive query selection mechanism
that provides an affirmative answer.

3.1 Valid Query Selection
Importance evaluations of the queries. The dot-product atten-
tion mechanism is a powerful way for selecting relevant informa-
tion from extracted features. Its attention probability distribution
is key to identifying the most important elements in the input.
However, in practice, only a small number of queries are effective,
while a large number are redundant and can lead to false positive
predictions. Our goal is to select effective queries while retaining
the maximum amount of attention information.

From the data compression perspective, we aim to maximize
the amount of information after query selection to represent the
original attention distribution. Entropy and variance are two key
indicators of information quantity. Maximizing entropy and vari-
ance is necessary to maximize the amount of information quantity.
We use relative entropy with the uniform distribution to quantify
entropy, which measures the distance between two distributions
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and provides insights into the information quantity gained using
the attention mechanism. Variance provides an indication of how
well attention is focused on the most important elements. By using
these two metrics, we are able to evaluate the effectiveness of our
attention mechanism and ensure that it selects the most important
information from the input. Ultimately, our approach helps to ad-
dress the issue of redundant queries in the dot-product attention
mechanism and enables more accurate predictions.

As previously mentioned, the difference between the probability
distributions P(𝑘 𝑗 |𝑞𝑖 ) and the uniform distributionQ(𝑘 𝑗 |𝑞𝑖 ) can be
used to differentiate valid queries. This difference can be measured
using the relative entropy, given by:

𝐷𝐾𝐿 (P||Q) =
𝐿𝑘∑︁
𝑗=0

P(𝑘 𝑗 |𝑞𝑖 ) (logP(𝑘 𝑗 |𝑞𝑖 ) − (logQ(𝑘 𝑗 |𝑞𝑖 )) . (3)

Here, the uniform distribution is defined as Q(𝑘 𝑗 |𝑞𝑖 ) = 1
𝐿𝑘

,
which assumes that the probability of a query attending to each 𝑘 𝑗
is the same. Using 𝑒 as the base of the logarithm, the expression for
𝐷𝐾𝐿 (P||Q) can be simplified to:

𝐷𝐾𝐿 (P||Q) = ln
𝐿𝑘∑︁
𝑗=1

exp(
𝑞𝑖𝑘

𝑇
𝑗√
𝑑

) − 1
𝐿𝑘

𝐿𝑘∑︁
𝑗=1

𝑞𝑖𝑘
𝑇
𝑗√
𝑑

− ln𝐿𝑘 , (4)

where the first term is a Log-Sum-Exp (LSE) over all keys, the second
term is their arithmetic mean, and the third term is a constant
that can be ignored during comparison. We integrate the variable
into𝑀 (𝑞𝑖 , 𝐾), which is an approximation of the evaluations of the
queries expressed as the difference between the maximum and
the mean. However, the LSE computation may lead to numerical
stability issues, such as overflow or underflow. To address this,
we approximate LSE using the convex property of the function,
resulting in the following approximation for𝑀 (𝑞𝑖 , 𝐾):

𝑀 (𝑞𝑖 , 𝐾) = max𝑗 (
𝑞𝑖𝑘

𝑇
𝑗√
𝑑

) − 1
𝐿𝐾

𝐿𝑘∑︁
𝑗=1

𝑞𝑖𝑘
𝑇
𝑗√
𝑑
. (5)

It can be found that an approximation of the evaluations of the
queries can be expressed as the difference between the maximum
and the mean. In order to avoid the influence of noise, we introduce
the variance of the 𝑞(𝑘 𝑗 |𝑞𝑖 ) with scale factor 𝜆 to further estimate
the degree of dispersion, so the final importance evaluationmeasure
𝐸 (𝑞𝑖 , 𝐾) can be expressed as:

𝐸 (𝑞𝑖 , 𝐾) = 𝑀 (𝑞𝑖 , 𝐾) + 𝜆𝜎2 (
𝑞𝑖𝐾

𝑇

√
𝑑

) . (6)

However, computing the importance score of the queries over all
keys brings additional computation, so we only compute a fraction
of the keys sampled under the assumption that the dot product
results follow a long-tailed distribution. Therefore, we can calculate
𝑀 (𝑞𝑖 , 𝐾) by randomly sampling the set of 𝐿𝑞 ln𝐿𝑘 dot product pairs.
The 𝐿𝑘 and 𝐿𝑞 represent the length of keys and queries.
Adaptive Top-𝜉 queries selection. The Top-𝜉 strategies used in
scale-dot production in transformers [49] suffer from a key draw-
back: the fixed value of 𝜉 . This is problematic because there can
be significant variations in the number of instances contained in
each sample image, rendering a fixed 𝜉 meaningless for a single

sample. To address this issue, we propose a method for dynamically
selecting an appropriate number of queries for each sample.

Specifically, we first count the most typical queries in each head
which is more importance than the average in the current head. We
then calculate the mean of the selected query numbers of all heads
as the selected query number of the image. To facilitate mini-batch
training , the largest 𝜉 in the mini-batch sample is chosen as the final
𝜉 . Note that this step is not necessary for testing since there is only
one sample. The proposed adaptive Top-𝜉 query selection method
overcomes the limitations of fixed 𝜉 values and allows for more
appropriate query selection in the context of varying instances
across samples.
Queries Interaction with Features Ideally, we want valid queries
to collect as much instance information as possible, while ignoring
invalid queries. To achieve this, we only perform cross-attention
on selected valid queries, while preventing invalid queries from in-
teracting with features to avoid introducing false positive instances.
We adopt the following strategies:

A(𝑞𝑖 , 𝐾,𝑉 ) =
{
E𝑃 (𝑘 𝑗 |𝑞𝑖 ) [𝑣 𝑗 ], 𝑞𝑖 ∈ Top-𝜉,

0 𝑞𝑖 ∉ Top-𝜉 .
(7)

There are two aspects to consider when using zero padding di-
rectly for invalid queries: (i) Directly throwing away invalid queries
is not suitable for iterative optimization. (ii) Using feature-related
means to establish the relationship between invalid queries and
features is somewhat contrary to our original intention.

3.2 Boundary Positional Embedding
To address the second question, we propose the boundary positional
embedding method for queries. Our approach involves deriving the
positional embedding of each query from the important boundary
points of the corresponding object instance. We take into account
the isotropic nature of the objects in all directions and extract
the boundary feature by compensating for the contour using the
Laplacian second-order operator, denoted by ∇2 (·). The boundary
feature 𝐻𝑒 can be obtained from the feature X as follows:

𝐻𝑒 = ∇2 (𝑓med (X, 𝑘𝑠), 𝑘𝑠), (8)

where 𝑘𝑠 is the kernel size and is set to 3. Since the Laplacian
operator is a second-order operator, it is more sensitive to noise.
Hence, we first use the median blur filter 𝑓med (·) for noise reduction.

We observed that directly selecting the Top-𝜅 features can result
in a clustering effect, which leads to invalidation of the Top-𝜅 fea-
ture selection. To avoid this, we filter out the highest local response
point in a patch of 𝑠 × 𝑠 as follows:

𝐻 = max𝑠,𝑠
𝑖=1, 𝑗=1𝐻𝑒 (𝑖, 𝑗), (9)

The boundary information represented by different scale features
is more abundant, so we combine the multi-scale features to obtain
the final edge features. Finally, we select the most representative
boundary feature point denoted as 𝑄𝑝 , which is the Top-𝜅 feature:

𝑄𝑝 = Top-𝜅 (𝐻 ), (10)

where Top-𝜅 is equal to the number of queries.
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3.3 Network Instantiation
Feature Extraction and Enhancement. As shown in Figure 2,
the feature extraction of our proposed query paradigm architecture
comprises a feature extrctor and feature emhancement. To ensure
a fair comparison with previous works, we employ CNNs such as
ResNet-50 [22] and ResNet-101 [22] as the extrctor to extract scale
features. We also use a transformer encoder with six layers and
deformable attention for feature enhancement, similar to [6, 43,
57]. Finally, we obtain multi-scale feature 𝑋𝑖 , 𝑖 = {1, 3} for query
learning and a single-scale pixel feature 𝑋4 for prediction [6, 30].
Query Learning. The query learning process is mainly carried out
in the transformer decoder stage. To optimize the query, we adopt
a supervision strategy after initialization, using the self-attention
layer, AQS block, and feed-forward network layer order in the
transformer decoder. Additionally, we employ multiple iterations
to optimize the query.
Prediction Head. To obtain the final location prediction, the op-
timized queries from the feature enhancement is passed through
a MLP layer. Likewise, the final mask prediction is obtained by
embedding into the pixel features [6, 7, 43]. We calculate the loss
function using binary matching based on the Hungarian matching
algorithm’s sample allocation strategy. We use the cross-entropy
loss function for location prediction and a combination of dice
loss and cross-entropy loss for mask prediction to balance the two
prediction tasks. The weightage for location prediction and binary
mask prediction is set to 0.5 and 5, respectively.

4 EXPERIMENTS AND RESULTS
4.1 Implementation Details
Training Details. We utilize ResNet-50 [22] and ResNet-101 [22]
pre-trained on ImageNet-1k [27] as our backbones. The batch size
and number of training iterations are set to 16 and 15,000, re-
spectively. We use the current CIS datasets include COCO [34],
COD10K[17], and NC4K [39]. To evaluate the model’s accuracy, we
measure the common instance segmentation evaluation metrics,
including AP, AP50, and AP75.

4.2 Comparisons with State-of-the-arts
Results on COD10K. Table 1 presents the results of our proposed
AQSFormer and other models for camouflaged instance segmen-
tation on the test set of COD10K. Our algorithm overcomes this
challenge and outperforms the CIS-specific model OSFormer and
UQFormer. Specifically, on the ResNet-50 backbone, compared with
the baseline model, our approach achieves 3.4%, 3.5%, and 5.2%
improvements in AP, AP50 and AP75, respectively. Moreover, our
architecture achieves better results than OSForemr, with 3.8%, 0.9%
and 5.6% improvements in AP, AP50 and AP75, respectively. When
we report the results on the ResNet-101 backbone, the difference
between our architecture on ResNet-50 and ResNet-101 is signifi-
cantly smaller than that of OSForemr and Mask2Foremr, indicating
the robustness of our architecture even with lightweight backbones.
Results on NC4K dataset. In Table 1, we also evaluate the gen-
eralization performance of the models on the NC4K dataset. Our
analysis reveals two key findings: (i) the NC4K dataset is compara-
tively easier than the COD10K dataset, and (ii) the baseline model,

Mask2Former, outperforms the CIS-specific OSFormer on NC4K.
However, our proposed architecture exhibits stable generalization
performance on NC4K. Specifically, our model achieves an improve-
ment of 3.5% AP over ResNet-50, and a significant improvement of
5.6% AP over OSFormer.
Importance Evaluation Strategies.We first analyze the impact
of the query importance evaluation strategies on the performance
in Table 2. We can observe that using KL divergence for evalu-
ation is relatively more efficient than using variance (+0.7% AP).
This is because the variance is single number related while the KL
divergence is distribution related, which is more stable. In other
words, variance directly judges the distance between the query
and its mean, thereby expressing the degree of dispersion, which
is related to its own numerical range. The KL divergence is the
similarity between the judgment and the uniform distribution, and
has nothing to do with the value. The combination of these two
strategies achieves an optimal sparsity measure with almost no
computational overhead.
Adaptive Top-𝜉 Selection. The adaptive selection Top-𝜉 scheme is
a critical component of our method, and its value has a significant
impact on the final predictions. Previous schemes uses a fixed value
of 𝜉 to filter out Top-𝜉 queries with a relatively high degree of
dispersion. However, in our experiments, we find that varying 𝜉 led
to better results. Specifically, setting 𝜉 = 10works well, likely due to
the number of instances in the dataset. Nonetheless, the fixed Top-𝜉
method does not allow for customization of sparsity for individual
samples, making it difficult to find an appropriate value. By contrast,
our adaptive Top-𝜉 selection mechanism can independently screen
each sample, resulting in improvements of 1.0% AP, 1.1% AP50, and
1.9% AP75 compared to the fixed 𝜉 = 10 scheme. As a result, our
approach achieves state-of-the-art performance.
Padding of Invalid Queries. We conduct a comparison of two
schemes for padding invalid queries in Table 2: using themean value
of feature 𝑉 and setting it to zero. Our results indicate that setting
the value to zero results in a 1.0% improvement in AP compared
to using the mean. This finding suggests that we expect invalid
queries to be irrelevant to the data, and setting their mean value
may introduce more interference information. Thanks to the three
effective component designs discussed earlier, our adaptive query
selection scheme achieves significant improvement. Specifically, as
shown in Table 4, our scheme improves AP by 2.6%, AP50 by 1.8%,
and AP75 by 3.5% compared to the baseline.
Boundary Positional Embedding.We propose a novel method
that improves the accuracy of query selection for overlapping and
occluded object instances. In Table 3, we demonstrate the impact
of three key components: 𝑓med, lab, and Laplace change. We find
that all three components are indispensable, with lab being the
most critical component (-1.9% AP decrease when missing). This
highlights the importance of Laplace change, a core component that
plays a key role in our method. Additionally, the median filter and
max also play important roles in suppressing redundant noise and
the aggregation of boundary points. Our method utilizes boundary
positional embedding, as shown in Table 4, resulting in a significant
improvement of 2.3% AP, 1.3% AP50, and 3.2% AP75 compared to
the baseline. Moreover, building upon our adaptive query selection
scheme, we achieve a further improvement of 0.9% AP, 0.8% AP50,
and 1.2% AP75.
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Table 1: Quantitative comparison of camouflaged instance segmentation with 14 SOTA methods on the test set of COD10K [17]
and NC4K [39]. We report the results on different backbones (e.g., ResNet-50 [22] and ResNet-101 [22]). For computational
complexity comparisons (#Params, #FLOPs), all comparedmodels are tested on the backbone of ResNet-50, with FLOPs averaged
over 100 samples.

Backbone ResNet-50 [22] ResNet-101 [22]
#Params #FLOPsDataset COD10K [17] NC4K [39] COD10K [17] NC4K [39]

Metric AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
Two stage methods

Mask R-CNN [ICCV17] [21] 25.0 55.5 20.4 27.7 58.6 22.7 28.7 60.1 25.7 36.1 68.9 33.5 43.9M 186.3G
MS R-CNN [CVPR19] [23] 30.1 57.2 28.7 31.0 58.7 29.4 33.3 61.0 32.9 35.7 63.4 34.7 60.0M 198.5G
Cascade R-CNN [TPAMI19] [2] 25.3 56.1 21.3 29.5 60.8 24.8 29.5 61.0 25.9 34.6 66.3 31.5 71.7M 334.1G
HTC [CVPR19] [5] 28.1 56.3 25.1 29.8 59.0 26.6 30.9 61.0 28.7 34.2 64.5 31.6 76.9M 331.7G
BlendMask [CVPR20] [4] 28.2 56.4 25.2 27.7 56.7 24.2 31.2 60.0 28.9 31.4 61.2 28.8 35.8M 233.8G
Mask Transfiner [CVPR22] [24] 28.7 56.3 26.4 29.4 56.7 27.2 31.2 60.7 29.8 34.0 63.1 32.6 44.3M 185.1G

One stage methods
YOLACT [ICCV19] [1] 24.3 53.3 19.7 32.1 65.3 27.9 29.0 60.1 25.3 37.8 70.6 35.6 - -
CondInst [ECCV20] [47] 30.6 63.6 26.1 33.4 67.4 29.4 34.3 67.9 31.6 38.0 71.1 35.6 34.1M 200.1G
QueriesInst [ICCV21] [18] 28.5 60.1 23.1 33.0 66.7 29.4 32.5 65.1 28.6 38.7 72.1 37.6 - -
SOTR [ICCV21] [20] 27.9 58.7 24.1 29.3 61.0 25.6 32.0 63.6 29.2 34.3 65.7 32.4 63.1M 476.7G
SOLOv2 [NIPS20] [50] 32.5 63.2 29.9 34.4 65.9 31.9 35.2 65.7 33.4 37.8 69.2 36.1 46.2M 318.7G
SparseInst [CVPR22] [8] 32.8 60.5 31.2 34.3 61.3 32.8 36.0 63.2 35.4 38.3 65.9 37.8 31.6M 165.8G
Mask2Former [CVPR22] [6] 41.4 68.5 41.6 44.6 71.7 45.7 44.3 70.5 46.0 49.2 76.2 51.4 44.0M 232.0G
OSFormer [ECCV22] [43] 41.0 71.1 40.8 42.5 72.5 42.3 42.0 71.3 42.8 44.4 73.7 45.1 46.6M 324.7G
UQFormer [ACMMM23] [12] 45.2 71.6 46.6 47.2 74.2 49.2 45.4 71.8 47.9 50.1 76.8 52.8 37.5M 221.0G
AQSFormer [Ours] 44.8 72.0 46.4 48.1 74.3 50.4 46.5 73.8 48.5 50.5 76.8 53.5 34.4M 200.5G

Table 2: Ablation analysis of internal components of adaptive
query selection.

Step Strategy AP AP50 AP75

Evaluation
Variance 46.8 73.5 48.5

KL divergence 47.5 74.1 50.1
Together [Ours] 48.1 74.3 50.4

Selection
Fixed 𝜉 = 10 47.1 73.2 48.9
Fixed 𝜉 = 15 46.1 72.6 47.8

Dynamic [Ours] 48.1 74.3 50.4

Padding Mean 47.1 73.4 48.9
Zero [Ours] 48.1 74.3 50.4

Table 3: Effectiveness of our boundary positional embedding
on NC4K dataset. 𝑓med and ∇2 denote the median blur filter,
the Laplacian second-order operator, respectively. max is to
filter out the highest local response point.

𝑓med ∇2 max AP AP50 AP75
✓ ✓ 46.8 73.2 49.0

✓ ✓ 46.2 72.5 47.8
✓ ✓ 47.6 73.7 49.6
✓ ✓ ✓ 48.1 74.3 50.4

We also demonstrate the effectiveness of boundary extraction in
Figure 3.We observe that evenwithout supervision from the ground
truth of the boundary, we can obtain clear boundary features. More-
over, the extracted boundaries are not continuous, which aligns
with our expectations. Sparse boundary representation can avoid

Table 4: Comparison of volatility evaluation methods for
query on the NC4K dataset. "AQS" and "BPE" are the abbrevi-
ation of adaptive query selection and boundary positional
embedding, respectively.

baseline AQS BPE AP AP50 AP75
✓ 44.6 71.7 45.7
✓ ✓ 47.2 73.5 49.2
✓ ✓ 46.9 73.0 48.9
✓ ✓ ✓ 48.1 74.3 50.4

the aggregation effect caused by sampling Top-𝜅 boundary points
and has better discriminative ability for camouflaged instances. In
Figure 4, we provide additional evidence demonstrating the impact
of boundary positional embedding (w/o BPE) on detecting occluded
object instances. Our method successfully detects occluded objects
with high accuracy.
Interactive Method Comparisons. To provide a comprehensive
evaluation of our adaptive query selection scheme, we compare it
with two widely used interaction modules, namely cross-attention
and masked attention. The results are presented in Table 6. Our
adaptive query selection scheme outperforms masked attention in
terms of improving the removal of redundant query interference.
While masked attention primarily focuses on foreground regions,
our design maximizes the adaptiveness of query selection, resulting
in an improvement of 0.9% AP, 0.7% AP50, and 0.8% AP75.
More Transformer Backbones We find that the backbone of the
swin transformer can stimulate the potential of the proposed model
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Table 5: Performance of different transformer backbone.

AP AP50 AP75
Mask2Former Swin-Tiny 46.7 73.4 49.1
OSFormer Swin-Tiny 46.8 73.5 49.1
AQSFormer Swin-Tiny [Ours] 54.8 80.6 58.5
AQSFormer Swin-Base [Ours] 57.9 83.5 62.0
AQSFormer PVT-B0 [Ours] 47.2 70.5 48.9
AQSFormer PVT-B1 [Ours] 50.8 74.4 53.3
AQSFormer PVT-B2 [Ours] 53.2 78.5 57.1

Image GT Ours Boundary Feature

Figure 3: The boundary features extracted in boundary posi-
tional embedding

Image GT w/o BPE Ours

Figure 4: Advantages of boundary position encoding.

Table 6: Comparisons of interactivemethods between feature
and queries.

Setting AP AP50 AP75
Cross attention 46.9 73.0 48.9
Masked attention 47.2 73.0 49.6
AQSFormer [Ours] 48.1 74.3 50.4

more significantly than the Mask2Former and OSFormer. Therefore,
we show more results with different vision transforemr backbone
(eg., PVT, Swin). As shown in Table 8, we compare the benefits of
two different backbones (PVT, Swin), and find that compared to
PVT, Swin performs better in CIS. This is conducive to inspiring
subsequent research on the backbone of the transformer.
Computational Cost. Furthermore, we compare the computa-
tional complexity of these models, and find that our model achieves
the best trade-off between accuracy and computational cost, as
shown in Table 1. Specifically, the parameters and FLOPs reduce
26.1% and 38.3%, respectively, compared to OSFormer.We also inves-
tigate the effect of the number iteration of transformer encoder and
decoder, as shown in Table 7. We find that increasing the number
of encoder iterations has a more significant impact on performance
than increasing the decoder iterations, as more encoder iterations
allowed us to extract more discriminative features.

Table 7: Comparison of different encoder and decoder lay-
ers on the NC4K dataset. "AP" refers to the AP results of
COD10K/NC4K.

Encoder AP #Params #FPS #FLOPs #Memory
Mask2Former 41.4/44.3 44.0M 17.9 230.0G 8.3G
OSFormer 41.0/42.5 46.6M 23.6 324.7G 6.5G
3 #E, 1 #D 42.3/44.1 29.0M 27.0 155.9G 4.4G
3 #E, 2 #D 41.9/45.0 30.6M 25.6 156.0G 4.5G
3 #E, 3 #D 42.4/45.3 32.2M 25.0 156.1G 4.6G
6 #E, 1 #D 44.5/47.3 31.2M 23.8 200.3G 6.0G
6 #E, 2 #D 44.1/46.8 32.8M 22.9 200.4G 6.1G
6 #E, 3 #D 44.8/48.1 34.4M 21.6 200.5G 6.2G

Table 8: Performance under transformer backbone (e.g., Swin
tiny transformer [37]).

AP AP50 AP75 #FLOPs
Mask2Former 46.7 73.4 49.1 238.3G
OSFormer 46.8 73.5 49.1 331.2G
AQSFormer [Ours] 54.8 80.6 58.5 206.7G

Table 9: Comparisons on COCO instance segmentation
dataset.

Setting AP #Params #FLOPs
Mask2former 43.7 44.0M 230.0G
AQSFormer [Ours] 44.5 34.4M 200.5G

General Instance Segmentation Task.Moreover, we apply our
proposed model to the general instance segmentation task and
report competitive experimental results on the COCO instance seg-
mentation task in Table 9. Our approach outperforms Mask2former
by 0.8% using less parameters and FLOPs.

5 CONCLUSION
In this study, we investigate the issue of query redundancy in cam-
ouflage instance segmentation by examining the correspondence
between queries and instances, as well as the interaction between
queries and features. Our contribution is three-fold: Firstly, we
propose an adaptive query selection mechanism based on informa-
tion entropy and variance, which effectively addresses the issue of
redundant queries. Secondly, we introduce a boundary position em-
bedding that incorporates the boundaries of camouflaged instances,
which addresses the challenges of occlusion and overlapping in-
stances that affect the query selection. Finally, we conduct extensive
experiments on two challenging datasets, demonstrating the supe-
rior performance of our model exceeds the cutting edge methods.
Additionally, we perform a detailed comparative analysis of each
component of our design scheme to demonstrate its effectiveness.
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