LeanA ttention

A RAGGED BATCHING IN DECODE.

Ragged Batching in Decode. For the purpose of our evaluations, we quantify the heterogeneity of a ragged batch as the
ratio of average context length to the maximum context length present in the batch. Figure 11 shows the speedup of LA over
FD. We observe that as the heterogeneity of batch increases, LA delivers a higher speedup because of better distribution of

work across SMs.
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Figure 11. Speedup offered by LA over FD at different batch sizes with heterogeneous context lengths. Batch context ratio(%) shows the
ratio of average context length over maximum context length
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B LEANTILE ALGORITHM

Algorithm 1 LeanTile() for a sequence of lean tile iterations.

1: function LeanTile(tile_idx, iter_begin, iter_end)
2: shared_ O[Ty, d]
3: _shared_ Q¢[T},, d]
4: shared_ K;[T,,d]
5: _shared_V;[T,,d]
6: _shared_m/|T,,, 1]
7: shared_I[T},,1]
8: Initialize Ogee to (0)7, xa € RT*4 in SMEM.
9: Initialize m to (—o0)7,, 1 and [ to (0)7,, x1 € RT>*1 in SMEM.
10: mm = T, x (tile_idx / 1)
11: nn = dx (tile_idx % 1)
12: Perform lean tile iterations for this output tile.
13: for iter = iter_begin to iter_end do
14:  kk =iter x T,
15:  load fragments from GMEM to SMEM
16: Qg = LoadFragment(Q, mm,nn)
17:  Kj = LoadF'ragment(K,nn, kk)
18:  Vy = LoadFragment(V,nn, kk)
19:  Compute on chip:
20: St = QK¢ where Sf € RTmxTn
21:  m™" = max(m, rowmaz(Sy))
22: Py =exp(Sy — m™") where Py € RTm>Tn
23 " = ™" 4 rowsum(Py)
24: Ogee = PfVy + diag(em_mnew)Oacc
25: l — lnew, m = mnew
26: end for
27: return O, I, m

: end function
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C PARTITION STRATEGY

Without loss of generality, we describe this process of reduction to obtain one row vector of the attention score matrix S, of
the form [S(w) S(y)} consisting of some unequal length vectors S(*), S®) where S(*) R1XB( and S®) ¢ R1XB ,
where 1 is the query length and Bﬁ“ and Béy) are the unequal context lengths. The vectors S(*) and S(¥) were computed
from Q x (K@) and Q x (K®)T (illustrated Figure in Appendix C). Note that, to generalize this procedure for blocks
of any size, the context length of K(*) and K*) are BE””) and Béy) and are not necessarily equal.
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Figure 12. Illustrative diagram showing LeanAttention’s partitioning strategy with two differently sized work volumes of a head assigned
to different CTAs. The un-scaled outputs are independently computed and re-scaled later in a reduction operation. Note that this can be

generalized to any arbitrary-sized work volume split.
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D PROOF OF ASSOCIATIVITY

Proving that £(f(z,9), 2) = /(.1 2)
fla.y) = 06

f(f(z,y),2) = diag(e Y —m ) 2)>O(x7y)
+ diag(em ) =l z))o(Z)
= diag(em(T - (m’y’z>)0(w¢y)
+ diag(e™” "0
= diag(em _m@,y,z))
X (diag(emm—m(m‘y))()(m)
+ diag(e™"” (I’y))O(y))

m(®:Y:2)

+ diag(em )0
= diag(em mE Z))O
+ diag(emm_mu v 2))0 v)
+ diag(em m( ) )0

=0V = f(z,y,2)

Therefore, f(f(z,y), 2) = f(z,y, z) and similarly £((*¥):2) = ¢(=.¥:2) _For brevity, we omit the proof of f(x, f(y,z)) =
f(z,y, z), but it can deduced in a similar manner.

This associativity of softmax re-scaling is leveraged in LeanAttention to concurrently calculate the “partial” outputs
produced from unequally sized KV blocks and then “reduce” them to obtain exact attention.
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E DETAILED ALGORITHM OF LEANATTENTION

Algorithm 2 Lean Attention

1: _shared_ O[T, d|

_shared_m|[T},, 1]

_shared_1[[T,,, 1]

Number of output tiles: C,,, = [N, /T},, ]|

Number of iterations for each output tile: C,, = [Ny /T, ]
Total number of iterations: I = C,,,C,,

Number of iterations per CTA: I = I /G

fork CTA, in G do

cta_start = g [ and cta_end = cta_start + I&

10: for iter = cta_start to cta_end do

11:  Index of current output tile: tile_idx =iter / C,,
12:  tile_ter = tile_idx xC,,

13:  tile_iter_end = tile_iter + C,,

14:  local_iter = iter - tile_iter

15:  local_iter_end = min(tile_iter_end, cta_end) - tile_iter
16: O, m, 1= LeanTile(tile_idx, local_iter, local_iter_end)
17:  host-block if: iter == tile_iter

18:  finishing-block if: cta_end >= tile_iter_end
19:  if !(host-block) then

20: StorePartials(Op[g], O)

21: StorePartials(mp[g], m)

22: StorePartials(Ip[g], 1)

23: Signal(flags[g])

24:  else

25: if !(finishing-block) then

26: last_cta = tile_iter_end / C,,

27: for cta= (g + 1) to last_cta do

28: Wait(flags[cta])

29: metq = LoadPartials(mp[cta])

30: lcta = LoadPartials(Ip[cta])

31: O¢tq = LoadPartials(Op[cta])

32: m"™" = max(meq, m)

33: [new = eMeta—m" ] Ly emem™Y]
34: Onew = eMeta=m O 0 4 emm O
35: Update m = m}*, [ = [V

36: end for

37: end if

38: Write O = diag(l)~*O to GMEM.

39: Write L = m + log(l) to GMEM.

40:  end if

41:  iter =tile_iter_end

42: end for

43: join
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F ENERGY CONSUMPTION EVALUATION

Fixed-split partitioning results in imbalanced workloads across the SMs, leaving many of them idle during the final stages
of computation. This inefficiency makes fixed-split attention mechanisms energy-inefficient. As shown in Figure 13, the
disparity in energy consumption between FlashDecoding, FlashInfer, and LeanAttention increases as context lengths grow
over 128k. LeanAttention, with its well-balanced load partitioning strategy, ensures more consistent utilization of SMs,
making it significantly more energy-efficient.
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Figure 13. Ratio of Energy consumed by attention kernel to energy consumed by FlashDecoding kernel of different attention mechanisms
for batch size = 1, number of heads = 56, head dimension = 64 on a single Nvidia-A100-80GB GPU as measured using NVML APIs.



