
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LeanAttention

A RAGGED BATCHING IN DECODE.
Ragged Batching in Decode. For the purpose of our evaluations, we quantify the heterogeneity of a ragged batch as the
ratio of average context length to the maximum context length present in the batch. Figure 11 shows the speedup of LA over
FD. We observe that as the heterogeneity of batch increases, LA delivers a higher speedup because of better distribution of
work across SMs.

Figure 11. Speedup offered by LA over FD at different batch sizes with heterogeneous context lengths. Batch context ratio(%) shows the
ratio of average context length over maximum context length



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

LeanAttention

B LEANTILE ALGORITHM

Algorithm 1 LeanTile() for a sequence of lean tile iterations.
1: function LeanTile(tile idx, iter begin, iter end)
2: shared Oacc[Tm, d]
3: shared Qf [Tm, d]
4: shared Kf [Tn, d]
5: shared Vf [Tn, d]
6: shared m[Tm, 1]
7: shared l[Tm, 1]
8: Initialize Oacc to (0)Tm×d ∈ RTm×d in SMEM.
9: Initialize m to (−∞)Tm×1 and l to (0)Tm×1 ∈ RTm×1 in SMEM.

10: mm = Tm× (tile idx / 1)
11: nn = d× (tile idx % 1)
12: Perform lean tile iterations for this output tile.
13: for iter = iter begin to iter end do
14: kk = iter × Tn

15: load fragments from GMEM to SMEM
16: Qf = LoadFragment(Q,mm,nn)
17: Kf = LoadFragment(K,nn, kk)
18: Vf = LoadFragment(V, nn, kk)
19: Compute on chip:
20: Sf = QfKf where Sf ∈ RTm×Tn

21: mnew = max(m, rowmax(Sf ))
22: Pf = exp(Sf −mnew) where Pf ∈ RTm×Tn

23: lnew = em−mnew

l + rowsum(Pf )
24: Oacc = PfVf + diag(em−mnew

)Oacc

25: l = lnew,m = mnew

26: end for
27: return Oacc, l, m
28: end function



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

LeanAttention

C PARTITION STRATEGY

Without loss of generality, we describe this process of reduction to obtain one row vector of the attention score matrix S, of
the form

[
S(x) S(y)

]
consisting of some unequal length vectors S(x),S(y) where S(x) ∈ R1×B(x)

c and S(y) ∈ R1×B(y)
c ,

where 1 is the query length and B
(x)
c and B

(y)
c are the unequal context lengths. The vectors S(x) and S(y) were computed

from Q× (K(x))T and Q× (K(y))T (illustrated Figure in Appendix C). Note that, to generalize this procedure for blocks
of any size, the context length of K(x) and K(y) are B

(x)
c and B

(y)
c and are not necessarily equal.

Figure 12. Illustrative diagram showing LeanAttention’s partitioning strategy with two differently sized work volumes of a head assigned
to different CTAs. The un-scaled outputs are independently computed and re-scaled later in a reduction operation. Note that this can be
generalized to any arbitrary-sized work volume split.



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

LeanAttention

D PROOF OF ASSOCIATIVITY

Proving that f(f(x, y), z) = f(x, y, z):
f(x, y) = Õ(x,y)

f(f(x, y), z) = diag(em
(x,y)−m((x,y),z)

)Õ(x,y)

+ diag(em
(z)−m((x,y),z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)Õ(x,y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)

× (diag(em
(x)−m(x,y)

)Õ(x)

+ diag(em
(y)−m(x,y)

)Õ(y))

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= diag(em
(x)−m(x,y,z)

)Õ(x)

+ diag(em
(y)−m(x,y,z)

)Õ(y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= Õ(x,y,z) = f(x, y, z)

Therefore, f(f(x, y), z) = f(x, y, z) and similarly ℓ((x,y),z) = ℓ(x,y,z). For brevity, we omit the proof of f(x, f(y, z)) =
f(x, y, z), but it can deduced in a similar manner.

This associativity of softmax re-scaling is leveraged in LeanAttention to concurrently calculate the “partial” outputs
produced from unequally sized KV blocks and then “reduce” them to obtain exact attention.



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

LeanAttention

E DETAILED ALGORITHM OF LEANATTENTION

Algorithm 2 Lean Attention
1: shared O[Tm, d]
2: shared m[Tm, 1]
3: shared l[Tm, 1]
4: Number of output tiles: Cm = ⌈Nq/Tm⌉
5: Number of iterations for each output tile: Cn = ⌈Nk/Tn⌉
6: Total number of iterations: I = CmCn

7: Number of iterations per CTA: IG = I/G
8: fork CTAg in G do
9: cta start = g IG and cta end = cta start + IG

10: for iter = cta start to cta end do
11: Index of current output tile: tile idx = iter / Cn

12: tile iter = tile idx ×Cn

13: tile iter end = tile iter + Cn

14: local iter = iter - tile iter
15: local iter end = min(tile iter end, cta end) - tile iter
16: O, m, l = LeanTile(tile idx, local iter, local iter end)
17: host-block if: iter == tile iter
18: finishing-block if: cta end >= tile iter end
19: if !(host-block) then
20: StorePartials(Op[g], O)
21: StorePartials(mp[g], m)
22: StorePartials(lp[g], l)
23: Signal(flags[g])
24: else
25: if !(finishing-block) then
26: last cta = tile iter end / Cn

27: for cta = (g + 1) to last cta do
28: Wait(flags[cta])
29: mcta = LoadPartials(mp[cta])
30: lcta = LoadPartials(lp[cta])
31: Octa = LoadPartials(Op[cta])
32: mnew = max(mcta,m)
33: lnew = emcta−mnew

lcta + em−mnew

l
34: Onew = emcta−mnew

i Octa + em−mnew
i O

35: Update m = mnew
i , l = lnewi

36: end for
37: end if
38: Write O = diag(l)−1O to GMEM.
39: Write L = m+ log(l) to GMEM.
40: end if
41: iter = tile iter end
42: end for
43: join



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

LeanAttention

F ENERGY CONSUMPTION EVALUATION

Fixed-split partitioning results in imbalanced workloads across the SMs, leaving many of them idle during the final stages
of computation. This inefficiency makes fixed-split attention mechanisms energy-inefficient. As shown in Figure 13, the
disparity in energy consumption between FlashDecoding, FlashInfer, and LeanAttention increases as context lengths grow
over 128k. LeanAttention, with its well-balanced load partitioning strategy, ensures more consistent utilization of SMs,
making it significantly more energy-efficient.

Figure 13. Ratio of Energy consumed by attention kernel to energy consumed by FlashDecoding kernel of different attention mechanisms
for batch size = 1, number of heads = 56, head dimension = 64 on a single Nvidia-A100-80GB GPU as measured using NVML APIs.


