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LeanAttention

A RAGGED BATCHING IN DECODE.
Ragged Batching in Decode. For the purpose of our evaluations, we quantify the heterogeneity of a ragged batch as the
ratio of average context length to the maximum context length present in the batch. Figure 11 shows the speedup of LA over
FD. We observe that as the heterogeneity of batch increases, LA delivers a higher speedup because of better distribution of
work across SMs.

Figure 11. Speedup offered by LA over FD at different batch sizes with heterogeneous context lengths. Batch context ratio(%) shows the
ratio of average context length over maximum context length
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LeanAttention

B LEANTILE ALGORITHM

Algorithm 1 LeanTile() for a sequence of lean tile iterations.
1: function LeanTile(tile idx, iter begin, iter end)
2: shared Oacc[Tm, d]
3: shared Qf [Tm, d]
4: shared Kf [Tn, d]
5: shared Vf [Tn, d]
6: shared m[Tm, 1]
7: shared l[Tm, 1]
8: Initialize Oacc to (0)Tm×d ∈ RTm×d in SMEM.
9: Initialize m to (−∞)Tm×1 and l to (0)Tm×1 ∈ RTm×1 in SMEM.

10: mm = Tm× (tile idx / 1)
11: nn = d× (tile idx % 1)
12: Perform lean tile iterations for this output tile.
13: for iter = iter begin to iter end do
14: kk = iter × Tn

15: load fragments from GMEM to SMEM
16: Qf = LoadFragment(Q,mm,nn)
17: Kf = LoadFragment(K,nn, kk)
18: Vf = LoadFragment(V, nn, kk)
19: Compute on chip:
20: Sf = QfKf where Sf ∈ RTm×Tn

21: mnew = max(m, rowmax(Sf ))
22: Pf = exp(Sf −mnew) where Pf ∈ RTm×Tn

23: lnew = em−mnew

l + rowsum(Pf )
24: Oacc = PfVf + diag(em−mnew

)Oacc

25: l = lnew,m = mnew

26: end for
27: return Oacc, l, m
28: end function
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LeanAttention

C PARTITION STRATEGY

Without loss of generality, we describe this process of reduction to obtain one row vector of the attention score matrix S, of
the form

[
S(x) S(y)

]
consisting of some unequal length vectors S(x),S(y) where S(x) ∈ R1×B(x)

c and S(y) ∈ R1×B(y)
c ,

where 1 is the query length and B
(x)
c and B

(y)
c are the unequal context lengths. The vectors S(x) and S(y) were computed

from Q× (K(x))T and Q× (K(y))T (illustrated Figure in Appendix C). Note that, to generalize this procedure for blocks
of any size, the context length of K(x) and K(y) are B

(x)
c and B

(y)
c and are not necessarily equal.

Figure 12. Illustrative diagram showing LeanAttention’s partitioning strategy with two differently sized work volumes of a head assigned
to different CTAs. The un-scaled outputs are independently computed and re-scaled later in a reduction operation. Note that this can be
generalized to any arbitrary-sized work volume split.
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D PROOF OF ASSOCIATIVITY

Proving that f(f(x, y), z) = f(x, y, z):
f(x, y) = Õ(x,y)

f(f(x, y), z) = diag(em
(x,y)−m((x,y),z)

)Õ(x,y)

+ diag(em
(z)−m((x,y),z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)Õ(x,y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= diag(em
(x,y)−m(x,y,z)

)

× (diag(em
(x)−m(x,y)

)Õ(x)

+ diag(em
(y)−m(x,y)

)Õ(y))

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= diag(em
(x)−m(x,y,z)

)Õ(x)

+ diag(em
(y)−m(x,y,z)

)Õ(y)

+ diag(em
(z)−m(x,y,z)

)Õ(z)

= Õ(x,y,z) = f(x, y, z)

Therefore, f(f(x, y), z) = f(x, y, z) and similarly ℓ((x,y),z) = ℓ(x,y,z). For brevity, we omit the proof of f(x, f(y, z)) =
f(x, y, z), but it can deduced in a similar manner.

This associativity of softmax re-scaling is leveraged in LeanAttention to concurrently calculate the “partial” outputs
produced from unequally sized KV blocks and then “reduce” them to obtain exact attention.
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E DETAILED ALGORITHM OF LEANATTENTION

Algorithm 2 Lean Attention
1: shared O[Tm, d]
2: shared m[Tm, 1]
3: shared l[Tm, 1]
4: Number of output tiles: Cm = ⌈Nq/Tm⌉
5: Number of iterations for each output tile: Cn = ⌈Nk/Tn⌉
6: Total number of iterations: I = CmCn

7: Number of iterations per CTA: IG = I/G
8: fork CTAg in G do
9: cta start = g IG and cta end = cta start + IG

10: for iter = cta start to cta end do
11: Index of current output tile: tile idx = iter / Cn

12: tile iter = tile idx ×Cn

13: tile iter end = tile iter + Cn

14: local iter = iter - tile iter
15: local iter end = min(tile iter end, cta end) - tile iter
16: O, m, l = LeanTile(tile idx, local iter, local iter end)
17: host-block if: iter == tile iter
18: finishing-block if: cta end >= tile iter end
19: if !(host-block) then
20: StorePartials(Op[g], O)
21: StorePartials(mp[g], m)
22: StorePartials(lp[g], l)
23: Signal(flags[g])
24: else
25: if !(finishing-block) then
26: last cta = tile iter end / Cn

27: for cta = (g + 1) to last cta do
28: Wait(flags[cta])
29: mcta = LoadPartials(mp[cta])
30: lcta = LoadPartials(lp[cta])
31: Octa = LoadPartials(Op[cta])
32: mnew = max(mcta,m)
33: lnew = emcta−mnew

lcta + em−mnew

l
34: Onew = emcta−mnew

i Octa + em−mnew
i O

35: Update m = mnew
i , l = lnewi

36: end for
37: end if
38: Write O = diag(l)−1O to GMEM.
39: Write L = m+ log(l) to GMEM.
40: end if
41: iter = tile iter end
42: end for
43: join
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LeanAttention

F ENERGY CONSUMPTION EVALUATION

Fixed-split partitioning results in imbalanced workloads across the SMs, leaving many of them idle during the final stages
of computation. This inefficiency makes fixed-split attention mechanisms energy-inefficient. As shown in Figure 13, the
disparity in energy consumption between FlashDecoding, FlashInfer, and LeanAttention increases as context lengths grow
over 128k. LeanAttention, with its well-balanced load partitioning strategy, ensures more consistent utilization of SMs,
making it significantly more energy-efficient.

Figure 13. Ratio of Energy consumed by attention kernel to energy consumed by FlashDecoding kernel of different attention mechanisms
for batch size = 1, number of heads = 56, head dimension = 64 on a single Nvidia-A100-80GB GPU as measured using NVML APIs.


