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ABSTRACT

Optimizing computing circuits such as multipliers and adders is a fundamental
challenge in modern integrated circuit design. Recent efforts propose formulating
this optimization problem as a reinforcement learning (RL) proxy task, offering
a promising approach to search high-speed and area-efficient circuit design solu-
tions. However, we show that the RL-based formulation (proxy task) converges to
a local optimal design solution (original task) due to the deceptive reward sig-
nals and incrementally localized actions in the RL-based formulation. To ad-
dress this challenge, we propose a novel model-based circuit genetic evolution
(MUTE) framework, which reformulates the problem as a genetic evolution pro-
cess by proposing a grid-based genetic representation of design solutions. This
novel formulation avoids misleading rewards by evaluating and improving gener-
ated solutions using the true objective value rather than proxy rewards. To pro-
mote globally diverse exploration, MUTE proposes a multi-granularity genetic
crossover operator that recombines design substructures at varying column ranges
between two grid-based genetic solutions. To the best of our knowledge, MUTE
is the first to reformulate the problem as a circuit genetic evolution process, which
enables effectively searching for global optimal design solutions. We evaluate
MUTE on several fundamental computing circuits, including multipliers, adders,
and multiply-accumulate circuits. Experiments on these circuits demonstrate that
MUTE significantly Pareto-dominates state-of-the-art approaches in terms of both
area and delay. Moreover, experiments demonstrate that circuits designed by
MUTE well generalize to large-scale computation-intensive circuits as well.

1 INTRODUCTION

Computing circuits such as multipliers and adders serve as the fundamental building blocks in nu-
merous real-world circuits, particularly in central processing units, graphics processing units, and
artificial intelligence (AI) chips (Holdsworth, 1987; Das et al., 2019; Sze et al., 2020). The mul-
tiplication and addition operations stand out as the most fundamental and frequently utilized arith-
metic operations across various computation-intensive applications, including deep neural networks
(DNNs), digital signal processors, and microprocessors (Hashemian, 2002; Elguibaly, 2000; Zuo
et al., 2023). Notably, in many popular DNN architectures such as ResNet (He et al., 2016), ViT
(Dosovitskiy et al., 2021), Transformer (Vaswani et al., 2017), and BERT (Devlin et al., 2019), the
multiplication and addition operations constitute over 99% of all operations. Therefore, the design
of high-speed and area-efficient computing circuits plays a pivotal role in enhancing the performance
of computation-intensive applications, especially in AI chips.

However, computing circuit optimization is a challenging combinatorial optimization problem due
to its NP-hard nature (Hillar & Lim, 2013; Song et al., 2022). On one hand, the combinatorial
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design space grows exponentially with the input bit widths of the computing circuits (Roy et al.,
2021). On the other hand, evaluating the post-synthesis performance of a circuit design (i.e., design
performance) with circuit synthesis tools is highly time-consuming, leading to high sampling costs.
Therefore, searching high-speed and area-efficient circuits in the vast design space using limited
samples emerges as a significant challenge.

To search high-speed and area-efficient circuits, recent efforts (Roy et al., 2021; Zuo et al., 2023;
Song et al., 2022) propose formulating the computing circuits optimization problem as a reinforce-
ment learning (RL) proxy task, offering a promising avenue for optimizing circuit designs using
limited samples. Specifically, they start from an initial design solution, learn policies to incremen-
tally modify the local design structure, and utilize design performance gains between two consec-
utive designs as reward signals. Intuitively, the manually designed rewards can guide RL agents to
explore directions that progressively improve design performance at each step.

However, we show that the RL-based formulation (proxy task) converges to a local optimal de-
sign solution (original task) due to the deceptive reward signals and incrementally localized actions.
First, the reward signals based on performance gains between two consecutive designs are deceptive,
as maximizing the cumulative discounted rewards misaligns with the true objective. More specif-
ically, the proxy RL formulation indeed optimizes the cumulative discounted performance of all
encountered design solutions across a trajectory, while the true objective is to find the single best-
performing designs. Second, the actions based on the incrementally local modifications of design
structure suffer from poor exploration capability, and thus struggle to escape local optima.

To address these challenges, we propose a novel model-based circuit genetic evolution (MUTE)
framework, which proposes a grid-based genetic representation of solutions and reformulates the
problem as a circuit genetic evolution process. The evolution formulation is an iterative pro-
cess between circuit genetic variation and model-based selection, where each iteration evaluates
and improves solutions using the true objective value, thus gradually converging toward the best-
performing solution (i.e., the original task). To promote globally diverse exploration for escaping
local optima, MUTE proposes a multi-granularity crossover operator that recombines design sub-
structures at varying column ranges between two grid-based genetic solutions. Moreover, to tackle
the problem of high sampling costs, MUTE introduces a model-based selection method, which
learns a model for rapid evaluation of a large number of solutions.

We evaluate MUTE on several fundamental computing circuits, including multipliers, adders, and
multiply-accumulate circuits. Experiments on these circuits, spanning a wide range of input widths,
demonstrate that MUTE discovers state-of-the-art designs that significantly Pareto-dominate those
produced by manual design, mathematical optimization, and learning-based approaches, improving
the hypervolume by up to 38%. Moreover, we deploy circuits optimized by MUTE and the base-
lines into large-scale computation-intensive circuits, and experiments show that MUTE significantly
outperforms the baselines in terms of both area and delay. Our results highlight the superior abil-
ity of MUTE to discover high-speed and area-efficient circuits for real-world important computing
applications, especially for high-performance AI chips.

We summarize our major contributions as follows. (1) We show that the RL-based formulation for
computing circuits optimization converges to a local optimal design solution, indicating a signif-
icant objective gap between the RL-based formulation and the true objective. (2) To the best of
our knowledge, our MUTE is the first to reformulate the optimization problem as a novel circuit
genetic evolution process, which enables effectively searching for the global optimal circuit design
solutions. (3) MUTE proposes a multi-granularity genetic crossover operator to promote globally
diverse exploration of the design space. (4) Experiments show that MUTE significantly outperforms
state-of-the-art approaches in terms of both area and delay.

2 BACKGROUND

2.1 COMPUTING CIRCUITS ARCHITECTURE

Most computing circuits such as prefix adders, vector adders, subtracters, multipliers, and multiply-
accumulate circuits rely on two fundamental circuit structures, i.e., the Compressor Tree and Prefix
Tree (Weste & Harris, 2015; Roy et al., 2021; Zuo et al., 2023; Wang et al., 2024g). Note that the
Compressor Tree and Prefix Tree both share similar tree structures that can both be represented by
grid-based design solutions. We take a multiplier circuit with four input bits as an example to in-
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Figure 1: An illustration of the multiplication process and multiplier architecture.

troduce the Compressor Tree structure as shown in Figure 1. In binary multiplication, two unsigned
binary numbers—the multiplicand and the multiplier—are combined to yield their product. Contem-
porary multiplier designs typically comprise three primary components: a partial product generator
(PPG), a Compressor Tree, and a carry propagation adder (CPA). Initially, the PPG generates a bit
matrix based on the multiplicand and multiplier, with each element representing a partial product.
Subsequently, the Compressor Tree compresses each column of the bit matrix to one or two bits by
concurrently summing up the partial products within each column. Finally, the CPA aggregates the
resultant bit matrix from the Compressor Tree to derive the final product.

In constructing a Compressor Tree, a large number of full and half adders are typically employed
to execute the summation of generated partial products concurrently. A full adder, i.e., a 3:2
compressor, accepts three inputs—two single-bit values and a carry-in bit—and produces two out-
puts: a sum bit and a carry-out bit. A half adder, i.e., a 2:2 compressor, takes two single-bit values as
inputs and yields two outputs: a sum bit and a carry-out bit. Notably, when a 3:2 (2:2) compressor is
applied to the 𝑖-th column, it reduces two (one) bits in column 𝑖 while increasing one bit in column
(𝑖 + 1). Thus, a Compressor Tree employs numerous compressors (i.e., full and half adders) across
multiple stages to compress the partial products matrix into only two rows in parallel, significantly
dominating the final performance of a multiplier circuit. Moreover, modifying the arrangement of
3:2 and 2:2 compressors within a Compressor Tree can result in significantly different tree structure
designs, leading to variable design performance.

2.2 RL FOR COMPUTING CIRCUITS OPTIMIZATION

As the Compressor Tree and/or Prefix Tree usually dominates the final performance of a comput-
ing circuit (Zuo et al., 2023; Xiao et al., 2021), recent efforts have focused on optimizing the tree
structure by formulating the optimization problem as a reinforcement learning (RL) proxy task (Zuo
et al., 2023; Roy et al., 2021). We take the existing RL-based Compressor Tree optimization method
as an example. RL-MUL starts from an initial Compressor Tree design solution, learns policies to
sequentially modify the design structure locally, and utilizes design performance gains as reward
signals. We specify the state space, action space, and reward function as follows. (1) State Space
S. RL-MUL formulates each legal design solution as a state, where each state is represented by a
grid-based image. (2) Action Space A. RL-MUL designs four types of local modifications to a
Compressor Tree solution at a certain column. These local modifications include adding a 2:2 com-
pressor, removing a 2:2 compressor, replacing a 3:2 compressor with a 2:2 compressor, and replacing
a 2:2 compressor with a 3:2 compressor. The action space is a discrete set composed of 4 × 𝑁𝐶 dis-
crete actions, where 𝑁𝐶 denotes the number of columns. Each action 𝑖 ∈ [0, 1, . . . , (4 × 𝑁𝐶 − 1)]
is represented by executing the 𝑗-th modification type at the 𝑘-th column, where 𝑗 = 𝑖 (mod 4) and
𝑘 = ⌊ 𝑖4 ⌋. (3) Reward Function 𝑟 . RL-MUL uses a circuit synthesis tool to obtain the performance
of the designed solution at each step. The reward 𝑟𝑡 is defined as the difference between the area
(delay) of the design at step 𝑡−1 and that at step 𝑡. That is, 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1), where 𝑓
denotes the design evaluation function. Finally, RL-MUL leverages the deep Q-network algorithm
(Mnih et al., 2015) to train Q-networks. We defer details to Appendix D.

3 LIMITATIONS OF EXISTING RL FORMULATION

3.1 DECEPTIVE REWARD SIGNALS

Existing methods formulate the optimization problem as an infinite-horizon Markov decision pro-
cess (MDP) denoted by a tuple (S,A, 𝑟, 𝑇, 𝛾, 𝜇0), where S denotes the state space, A denotes the
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action space, 𝑟 : S×A×S → R denotes the reward function, 𝑇 denotes the deterministic transition
function, 𝛾 denotes the discount factor, and 𝜇0 denotes the given initial design solution. Based on
the MDP, the return of a deterministic policy 𝜋 is defined as 𝑅𝜋 =

∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), where
𝑠0 = 𝜇0, 𝑎𝑡 = 𝜋(𝑠𝑡 ), and 𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡 ). Note that the reward is defined by the performance gain
between the states 𝑠𝑡 and 𝑠𝑡+1, i.e.,

𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1). (1)

Here 𝑓 : S → R denotes the underlying evaluation function of design solutions given by circuit
synthesis tools. Note that multiple evaluation functions are employed, such as area and delay evalu-
ation functions. For ease of analysis and consistent with previous work (Roy et al., 2021; Zuo et al.,
2023), we assume that the evaluation function 𝑓 is a linear weighted average of these evaluation
functions. Intuitively, the manually designed proxy rewards based on performance gains are able to
guide RL agents toward directions that progressively improve design performance, as the RL agent
receives positive rewards for improving design performance. Thus, a desired question is: Does the
optimal policy in the RL formulation converge to the global optimal design solution?

To investigate this question, we first theoretically show the RL-based optimal policy converges to
a local optimal design solution. Then we empirically show that the underlying evaluation function
𝑓 is highly oscillatory, resulting in the local optimal design solutions found by the optimal policy
diverging significantly from the global optimal solution.

Theoretical Analysis We assume that the state space S is finite. For simplicity, we assume a ter-
minal action for each state that can terminate the episode at this state. We define a state 𝑠 ∈ S as a
local optimum of the function 𝑓 if for all action 𝑎 ∈ A we have 𝑓 (𝑇 (𝑠, 𝑎)) ≥ 𝑓 (𝑠).
Theorem 3.1. The optimal RL policy 𝜋∗ := arg max𝜋 𝑅𝜋 terminates at a state, and the state is a
local optimal design solution of the evaluation function 𝑓 .

This theorem demonstrates the superior capability of RL methods in achieving local optimal solu-
tions. However, this raises a further question: Is the converged local optimal point also the global
optimum? Given the lack of detailed information about the optimization objective function 𝑓 , a
rigorous analysis of this problem is currently infeasible. Therefore, we present an intuitive and em-
pirical analysis to demonstrate that the converged local optimal solution can significantly diverge
from the global optimal solution as follows.

Illustrative Example We revisit the optimization objective in the RL formulation, i.e.,

𝑅𝜋 =

∞∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) = 𝑓 (𝑠0) −
∞∑︁
𝑡=0

𝛾𝑡 (1 − 𝛾) 𝑓 (𝑠𝑡+1). (2)

This implies that standard RL methods in the existing formulation aim to minimize the cumulative
discounted performance of all visited solutions across a trajectory, except the initial state, when the
discount factor 𝛾 < 1. This is a practical discount factor setting in standard RL and previous methods
(Roy et al., 2021; Zuo et al., 2023). In contrast, the circuit optimization task is a best-case-seeking
task, i.e., the final performance is measured by the single or few best-performing design solutions
found during training. Consequently, the RL-based optimization objective is inconsistent with the
original optimization objective, possibly leading to a significant optimization objective gap.
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Figure 2: (Left) A motivating example of two distinct tra-
jectories with conflicting returns and found best solutions.
(Right) A practical training curve of the EA method.

To illustrate the optimization objec-
tive gap problem, we provide a mo-
tivating example as shown in Fig-
ure 2 (Left). Specifically, we il-
lustrate two distinct trajectories in
the circuit optimization environment
from a given starting solution fol-
lowing two deterministic policies 𝜋1
and 𝜋2. We denote the two trajec-
tories by (𝑠𝜋1

0 , 𝑎
𝜋1
0 , 𝑠
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), re-

spectively. Each point in Figure 2
(Left) corresponds to the performance of a state across the trajectory. As shown in Figure 2 (Left),
the return of the policy 𝜋2 is larger than that of the policy 𝜋1, while the best solution found by 𝜋1
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is better than that found by 𝜋2. This illustrates a significant optimization objective gap between the
RL-based formulation and the original true objective.

3.2 INCREMENTALLY LOCALIZED ACTIONS

Non-smooth Objective Functions We further empirically investigate the properties of the objective
function 𝑓 . As the domain of 𝑓 is the high-dimensional space S, directly visualizing the landscape
of the objective function is challenging. Instead, we sample a large number of diverse state points
from the state space to approximate the function’s behavior. Specifically, we visualize the training
curve produced by a simple evolutionary algorithm (EA) that uses random actions from the RL
action space 𝑎 ∈ A to repeatedly perturb the current best solution locally (see Appendix E for
details.) As shown in Figure 2 (Right), the sampled function values exhibit significant oscillations,
indicating that the underlying objective function is highly oscillatory as well. The major reason
for the oscillations of the evaluation function stems from the complex optimization mechanisms
employed by circuit synthesis tools. Even minor modifications to the circuit structure can result
in substantial performance variations when evaluated by these tools. Consequently, the oscillatory
nature of the optimization objective results in numerous local optimal solutions.

Limited Exploration Ability of Localized Actions The oscillatory nature of the objective functions
results in numerous local optimal solutions, thus requiring globally diverse exploration of the design
space to escape local optima. However, the actions in the existing RL formulation are limited to
local modifications of design structure at a certain column, severely constraining the agent’s ability
to explore diverse or distant regions of the search space. As a result, the search process may become
confined to suboptimal regions, limiting the chances of discovering global optima.

4 A MODEL-BASED CIRCUIT GENETIC EVOLUTION FRAMEWORK

We start with an overview of our proposed MUTE in Section 4.1. Next, we outline the formal
procedure at the core of MUTE, specifying the circuit genetic evolution formulation and population
initialization in Section 4.2, our proposed efficient and effective circuit genetic variation operators
in Section 4.3, and model-based cascade ranking for selection in Section 4.4.

4.1 OVERVIEW OF OUR FRAMEWORK

We provide an illustration of our MUTE in Figure 3. To bridge the gap between the RL-based
formulation and the original task, we design a grid-based genetic representation of solutions, and
reformulate the computing circuits optimization problem as a circuit genetic evolution process. The
evolution formulation is an iterative process between circuit genetic variation and model-based se-
lection, where each iteration evaluates and improves solutions using the true objective value, thus
bridging the objective gap. First, we propose a learning-based population initialization method to
accelerate the evolution process by leveraging the existing RL methods to generate a population of
high-performing design solutions. Then, we propose efficient and effective genetic variation oper-
ators to avoid redundant exploration and promote globally diverse exploration. Finally, to further
improve sample efficiency, we propose a model-based cascade ranking method for efficient selection
from a large number of generated offspring design solutions.
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4.2 GENETIC EVOLUTION FORMULATION AND POPULATION INITIALIZATION

Circuit Genetic Evolution Formulation For computing circuits such as adders and multipliers, we
can represent each circuit design solution by a grid of numbers. We take a compressor tree design
solution as an example. As the total number of different full and/or half adders at each column
implicitly encodes the structure of a compressor tree, it significantly impacts the post-synthesis
performance of multipliers (Xiao et al., 2021; Zuo et al., 2023). Specifically, we employ a 2 × 𝑁𝐶
grid to represent the compressor tree design solution, where two rows denote the total number of
full and half adders across 𝑁𝐶 columns, respectively.

To enable circuit genetic evolution, we propose to formulate each element in the grid-based design
solution representation as a circuit gene, and thus the grid as a genetic individual. Note that the
existing RL-based method can formulate the grid-based design solution as the state representation
as well. Thus, the grid-based genetic formulation allows us to seamlessly incorporate learning into
our genetic evolution framework, which can significantly improve sample efficiency.

To directly optimize the original circuit design performance, we formulate the fitness function as
the underlying design evaluation function 𝑓 given by circuit synthesis tools. Thus, the optimization
objective of our circuit genetic formulation takes the form of arg min𝑠∈S 𝑓 (𝑠), where S denotes the
set of all possible legal design solutions.

Learning-Based Population Initialization Although the performance of existing RL methods is
limited by deceptive reward signals, they can efficiently converge to a local optimal design solution.
Thus, to speed up the evolution process, we incorporate the learning method into our population ini-
tialization to generate a set of high-performing circuit design solutions. During the learning process,
we maintain an elite pool of 𝑁 best-performing design solutions, and progressively update the pool
at each training episode. Finally, we use the elite pool as an initial population.

Following previous work (Song et al., 2022; Zuo et al., 2023; Wang et al., 2024g), we use a scalarized
version of the Deep Q-network (DQN) algorithm (Mnih et al., 2015) to learn solution modification
policies. We maintain a progressively updated elite pool, and each episode starts the environment
with a design solution 𝑠0 sampled from the elite pool. Every action 𝑎𝑡 from the Q-network 𝑄 𝜃
modifies the design solution 𝑠𝑡 to another design solution 𝑠𝑡+1, and returns a weighted reward 𝑟𝑡 that
indicates the decrease in the normalized circuit area and delay. That is,

𝑟𝑡 = 𝑤𝑎 (area(𝑠𝑡 ) − area(𝑠𝑡+1)) + 𝑤𝑑 (delay(𝑠𝑡 ) − delay(𝑠𝑡+1)). (3)

After each episode, we insert each design solution at this episode into the elite pool when its design
performance is better than the worst solution in the current elite pool.

4.3 EFFICIENT AND EFFECTIVE GENETIC VARIATION OPERATORS

Designing efficient and effective genetic variation operators is important for the success of genetic
algorithms (Zhu et al., 2023a; Bai et al., 2023b; Li et al., 2024a). Thus, we propose a sequential mu-
tation operator for efficient long-term exploration via sequential modifications of design solutions
based on the Q-network learned during initialization. We propose a multi-granularity crossover op-
erator for globally diverse exploration by recombining two genetic solutions across diverse granu-
larities. By using these genetic variation operators, we can generate a large set of offspring solutions
from a population of design solutions at each iteration. We present details as follows.

A Sequential Mutation Operator for Efficient Exploration To explore the design solution space,
a common idea is to perform random local modifications on design solutions. However, the random
modification strategy can lead to redundant and myopic exploration, thus resulting in low sample
efficiency and sub-optimal solutions. To promote efficient long-term exploration, we propose a se-
quential mutation operator to perform sequential local modifications on a given solution based on
the learned Q-network. Specifically, for a design solution 𝑠0 sampled from the current generation
of populations, we leverage the learned Q-network 𝑄 𝜃 to guide episodic modifications on the de-
sign solution by sampling 𝑇 local modification actions for generating mutated solutions. Thus, we
generate 𝑇 mutated offspring solutions by sampling a sequence of modification actions from the Q-
network, i.e., 𝑎𝑡 = arg max𝑎 𝑄 𝜃 (𝑠𝑡 , 𝑎), 𝑡 = 0, . . . , 𝑇 . To prevent premature convergence, we follow
the 𝜖-greedy strategy (Sutton & Barto, 1998) to sample actions.

This sequential mutation operator offers two key advantages. (1) Guided by the learned Q-function,
we can prioritize modifications that enhance design performance, rather than relying on random
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modifications. (2) By leveraging the long-term predictive capabilities of the learned Q-function, we
can identify strong combinations of local modifications, leading to more effective design solutions.

A Multi-Granularity Crossover Operator for Diverse Exploration As shown in Figure 2, the
objective function 𝑓 is highly oscillatory, resulting in many local optimal design solutions. However,
relying solely on existing local modifications severely restricts the exploration capability, as it only
incrementally adjusts the number of full or half adders at a single column within a specific design
solution. To enable global exploration for escaping local optima, it is crucial to develop design
variation operators capable of making globally diverse exploration of the design space.

To this end, we propose a multi-granularity genetic crossover operator that recombines design sub-
structures at varying column ranges between two grid-based genetic solutions. The key advantage of
this approach is its ability to expand design variation from the single-gene level to the cross-column
level. This allows for transitions from small changes involving a single column to more signifi-
cant modifications that span multiple columns. This significantly enhances our global exploration
capability, improving the ability to escape local optima.

Single Gene/Column Crossover Given two high-performing design solutions 𝑠0 and 𝑠1, we view
the solutions as a sequence of genes, i.e., 𝑠0 =

{
(𝑔0

3:2 (0), 𝑔
0
2:2 (0)), · · · , (𝑔

0
3:2 (𝑁), 𝑔

0
2:2 (𝑁))

}
and

𝑠1 =
{
(𝑔1

3:2 (0), 𝑔
1
2:2 (0)), · · · , (𝑔

1
3:2 (𝑁), 𝑔

1
2:2 (𝑁))

}
.

To recombine the two high-performing solutions to obtain diverse offspring solutions, the single
column crossover randomly selects a column and recombines the genes at that column. Specifically,
the column granularity crossover operator generates two children in the following form:

𝑠0𝑐 =
{
· · · , (g1

3:2 (i), g
1
2:2 (i)), · · ·

}
and 𝑠1𝑐 =

{
· · · , (g0

3:2 (i), g
0
2:2 (i)), · · ·

}
, (4)

where 𝑖 is the selected column. Meanwhile, the single gene crossover only recombines the genes
representing a certain adder type at the selected column.

Cross Columns Crossover Given two high-performing design solutions 𝑠0 and 𝑠1, the cross columns
crossover randomly selects two columns and recombines the two grid-based genetic solutions within
the selected two columns. Specifically, the cross columns crossover generates two offspring solu-
tions in the following form:

𝑠0𝑐 =
{
· · · , (g1

3:2 (i), g
1
2:2 (i)), · · · , (g

1
3:2 (j), g

1
2:2 (j)), · · ·

}
and

𝑠1𝑐 =
{
· · · , (g0

3:2 (i), g
0
2:2 (i)), · · · , (g

0
3:2 (j), g

0
2:2 (j)), · · ·

}
, (5)

where 𝑖 and 𝑗 are the selected two columns. Depending on the values of 𝑖 and 𝑗 , this crossover can
recombine substructures across any different columns, thereby promoting global diverse exploration.

Note that the crossover operator could lead to illegal solutions. Thus, we design simple legalization
rules following previous work (Zuo et al., 2023) to ensure that these generated children are legal
design solutions. Please refer to Appendix F.5 for details.

4.4 MODEL-BASED CASCADE RANKING FOR EFFICIENT SELECTION

The success of genetic algorithms often relies on sampling a large number of solutions (Zhu et al.,
2023a; Bai et al., 2023b; Li et al., 2024a). However, in circuit optimization tasks, evaluating each
design solution using circuit synthesis tools is highly time-consuming, which significantly limits the
number of samples for searching. To significantly improve sample efficiency, we propose learning a
design evaluation model 𝑓Θ using the collected populations during evolution.

Model Training Inspired by standard model-based RL (Janner et al., 2019; Wang et al., 2023c), we
first train a prediction model using the collected replay buffer during the population initialization
process, and then adaptively update the model using a few populations with true evaluations during
the evolution process. In terms of the model architecture, we employ the ResNet-18 as the state
encoder and a multi-head decoder to predict the area and delay of the input state. The multi-head
decoder comprises two multi-layer perceptrons (MLPs), each with two hidden layers with 256 units
and ReLU activations. In terms of the training details, we use the mean squared error loss to update
the model parameters. We use the Adam optimizer with a learning rate of 1e-3.

Model Usage Previous model-based RL methods (Janner et al., 2019; Wang et al., 2023c) have
shown that directly using the learned model to replace the real environment suffers from model ex-
ploitation, i.e., overfitting to model errors. To address this challenge, we propose a model-based

7



Published as a conference paper at ICLR 2025

400 450 500 550
Area ( m2)

0.60

0.65

0.70

0.75

D
el

ay
 (n

s)

8-bit (And)

1750 2000 2250 2500
Area ( m2)

1.2

1.4

D
el

ay
 (n

s)

16-bit (And)

7000 8000 9000 10000
Area ( m2)

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (And)

30000 35000 40000
Area ( m2)

2.0

2.5

3.0

D
el

ay
 (n

s)

64-bit (And)

500 600
Area ( m2)

0.7

0.8

D
el

ay
 (n

s)

8-bit (Booth)

1500 1750 2000 2250
Area ( m2)

1.0

1.2

1.4

D
el

ay
 (n

s)

16-bit (Booth)

6000 7000 8000
Area ( m2)

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (Booth)

20000 22500 25000 27500
Area ( m2)

2.0

2.5

3.0

3.5

D
el

ay
 (n

s)

64-bit (Booth)

Wallace GOMIL RL-MUL AdaReset HAVE MUTE (Ours)

Figure 4: The results demonstrate that the multipliers optimized by MUTE consistently and signif-
icantly Pareto-dominate the designs optimized by all five baselines across eight multiplier design
problems, improving the hypervolume by up to 38%.

cascade ranking method to efficiently and accurately select high-performing solutions from a large
set of generated solutions. The key idea is to progressively select solutions through two-stage rank-
ing models, where the first stage model is our learned model and the second stage model is the
real circuit synthesis environment. Specifically, we primarily use the model to rapidly evaluate the
children solutions generated by the designed genetic variation operators. We generate at least 100
children solutions at each iteration, and use the model to pre-rank these solutions. The top-5 solu-
tions are then selected for evaluation in the true environment. This approach allows us to generate a
substantial number of children solutions, promoting diverse global exploration.

5 EXPERIMENTS

We first introduce the experimental setup, baselines, and evaluation metrics in Section 5.1. Then,
our experiments are designed with four primary objectives. 1) We evaluate the performance of
MUTE in optimizing computing circuits, including multipliers, adders, and MACs, across a broad
range of input widths in Section 5.2. 2) We investigate the generalization performance of multipliers
optimized by MUTE to large-scale macros widely-used in real-world AI chips in Section 5.3. 3) We
perform carefully designed ablation studies to demonstrate the importance of our genetic evolution
formulation and provide insights into each component in MUTE in Section 5.4. 4) We conduct a
thorough trade-off evaluation of the runtime and performance gains of MUTE in Section 5.5.

5.1 EXPERIMENTAL SETTINGS

Experimental Setup Throughout our experiments, we utilize the OpenROAD flow (Ajayi &
Blaauw, 2019) alongside the NanGate 45nm open-cell library (Nangate Inc., 2008) for circuit syn-
thesis, coupled with OpenSTA (Parallax Software Inc.) for timing analysis. The setting follows
previous work (Zuo et al., 2023). These tools represent the state-of-the-art open-source EDA tools,
and are widely used in research of EDA (Kahng, 2021; Tan et al., 2021; Pilipović et al., 2021).
Our training procedure employs the Adam optimizer (Ruder, 2016) within the PyTorch framework
(Paszke et al., 2019). For fair comparison, we controlled the training time of our method to be
comparable with the baseline methods (see Appendix H.2). We apply our method to eight distinct
multiplier design tasks, encompassing 8-bit, 16-bit, 32-bit, and 64-bit multipliers based on both
AND gate-based and Booth encoding-based PPG techniques. Moreover, we apply our method to six
distinct adder and MAC design tasks as well. We defer more results to Appendix H.

Baselines Our baselines encompass five competitive approaches, ranging from traditional human-
designed heuristics to state-of-the-art (SOTA) learning-based methods. 1) Wallace Tree (Wallace,
1964) represents a classical human-designed compression algorithm. 2) GOMIL (Xiao et al., 2021)
is an expert-designed algorithmic method based on integer programming. 3) RL-MUL (Zuo et al.,
2023), 4) AdaReset (Song et al., 2022), and 5) HAVE (Wang et al., 2024g) are three recent SOTA
RL-based multiplier and adder optimization methods.

Evaluation Metrics The computing circuits optimization problem is an optimization task with
multiple conflicting objectives, such as area and delay. Thus, we employ two widely-used multi-
objective optimization evaluation metrics (Basaklar et al., 2022; Hung et al., 2023) to compare the
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Table 1: The results demonstrate that MUTE significantly outperforms previous SOTA approaches
in terms of the hypervolume on both adder and MAC design tasks.

Adder 16-bit 32-bit 64-bit

Methods HyperVolume ↑ Improvement(%)↑ HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
RL-MUL 88.03 NA 211.76 NA 503.45 NA
AdaReset 92.66 5.26 213.71 0.92 513.07 1.91

HAVE 113.92 29.41 254.09 19.99 566.26 12.48
MUTE (Ours) 116.94 32.84 281.66 33.01 582.73 15.75

MAC 16-bit 32-bit 64-bit

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
RL-MUL 371.10 NA 4114.00 NA 6184.50 NA
AdaReset 369.60 -0.40 5123.00 24.53 10212.62 65.13

HAVE 401.80 8.27 5221.24 26.91 10604.57 71.47
MUTE (Ours) 414.80 11.78 5843.00 42.03 11487.37 85.74
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Figure 5: The results illustrate that PE arrays designed by MUTE consistently and significantly
outperform the designs discovered by all five baselines in terms of Pareto-dominance across four
multiplier design problems, i.e., 16-bit (And), 32-bit (And), 16-bit (Booth), 32-bit (Booth).

performance of our method with the baselines. First, we visualize the found Pareto points in terms
of the area and delay for circuits designed by both our method and the baselines. Second, we utilize
the hypervolume (HV) of the found Pareto points, which is defined by the volume of the region
between a reference point and these found Pareto points. We defer more details to Appendix F.7.

5.2 MAIN EVALUATION OF OPTIMIZING COMPUTING CIRCUITS

Multiplier Design We highlight the superiority of MUTE through a comparative analysis with five
competitive baselines on eight multiplier design problems across a wide range of input sizes. The
results in Figure 4 demonstrate that multipliers optimized by MUTE consistently and significantly
outperform designs produced by all baselines across all eight multiplier design tasks. Moreover, we
present the hypervolume of the Pareto points discovered by MUTE in Tables 6 and 7 in Appendix
H.1. The results demonstrate that MUTE achieves a substantial improvement over the previous
SOTA, improving the hypervolume by up to 38%. Overall, these results demonstrate the strong
ability of MUTE to optimize multipliers, leading to significant reductions in both area and delay.

Broad Applicability to Adders and MACs To demonstrate that our approach is able to optimize a
broad class of computing circuits, we apply our MUTE to optimizing two more fundamental com-
puting circuits, i.e., adders and MACs. Specifically, we compare our MUTE with the three SOTA
RL-based computing circuits optimization methods, i.e., RL-MUL (Zuo et al., 2023), AdaReset
(Song et al., 2022), and HAVE (Wang et al., 2024g), on adders and MACs. As shown in Table 1, the
results demonstrate that MUTE significantly outperforms previous SOTA approaches, improving the
hypervolume by up to 42% compared to RL-MUL. The results not only highlight the superiority of
our MUTE over previous SOTA approaches on optimizing computing circuits, but also demonstrate
the broad applicability of our MUTE to a wide range of fundamental computing circuits.

5.3 GENERALIZATION TO LARGE-SCALE CIRCUITS

To evaluate the generalization ability of our designed computing units to large-scale real-world
computing circuits with numerous circuit units, we integrate these units optimized by MUTE and
baselines into Processing Element (PE) arrays (Park & Chung, 2020; Son et al., 2023), which follows
previous work (Zuo et al., 2023; Wang et al., 2024g). PE arrays are widely used in parallel computing
tasks and large-scale data processing like Deep Neural Network (DNN) accelerators.

The results in Figure 5 show that PE arrays incorporating multipliers optimized by MUTE consis-
tently and significantly Pareto-dominate those utilizing multipliers obtained from baselines. Fur-
thermore, we present the hypervolume of the Pareto frontiers discovered by MUTE in Table 11
in Appendix H.4. The results demonstrate a significant improvement in hypervolume achieved by
MUTE, outperforming previous SOTA by up to 48.18%. We provide detailed results in Appendix
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Table 3: Analysis on the trade-off between performance gains and runtime of each module in MUTE.
16-bit And 32-bit And

Methods HyperVolume Improvement(%) RunTime (h) HyperVolume Improvement(%) RunTime (h)
Wallace 332.91 -25.96 - 1685.61 -70.09 -
HAVE 505.83 12.50 20.33 5822.03 3.29 37.27

SA 449.63 NA 9.33 5636.51 NA 17.40

CGE 594.15 32.14 10.96 6285.00 11.51 18.35
CGE+Learning 608.25 35.28 15.17 6336.50 12.42 26.25

CGE+Learning+Model (MUTE) 622.55 38.46 17.33 6461.65 14.64 37.11

H.4. Overall, the results highlight the strong capability of MUTE to well generalize to large-scale
computation-intensive circuits, thereby substantially improving real-world AI chips.

5.4 ABLATION STUDY

We present carefully designed ablation studies on multiplier design tasks as follows.
Table 2: The results demonstrate that each com-
ponent within MUTE is significant.

16-bit And 32-bit And

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
Wallace 332.91 NA 1685.61 NA

MUTE (Ours) 622.55 87.00 6461.65 283.34
Genetic Variation Module

w/o Crossover 585.30 75.81 5996.00 255.72
w/o Mutation 600.10 80.26 6385.00 278.79

Model-Based Module

w/o Model 605.20 81.79 6278.00 272.45

Learning Module

w/o Learning 578.10 73.65 5766.00 242.07

Contribution of Each Component To demon-
strate the effectiveness of each component
within MUTE, we conduct a thorough ablation
study on multiplier design tasks.

In terms of the efficient and effective genetic
variation module, we have designed two meth-
ods, called MUTE without Crossover (w/o
Crossover) and MUTE without Mutation (w/o
Mutation). MUTE without Crossover and
MUTE without Mutation removes the designed
genetic crossover and mutation operators, respectively. The results in Table 2 show that our designed
genetic mutation and crossover operators are both critical for optimizing computing circuits, demon-
strating the strong ability of the designed operators for promoting efficient and diverse exploration.

In terms of the model module, we have designed MUTE without Model (w/o Model) by removing
the model-based module. The results in Table 2 show that learning a model can further improve
the found designs in terms of the hypervolume. In terms of the learning module, we have designed
MUTE without Learning (w/o Learning) by removing the learning module. The results demonstrate
the significance of introducing learning into our genetic evolution for improving sampling efficiency.

5.5 PERFORMANCE GAIN AND RUNTIME TRADE-OFF EVALUATION

To further investigate the cost-effectiveness of each module of MUTE, we conducted an ablation
study evaluating the trade-off between runtime and performance gains. MUTE consists of three
modules: (1) the Circuit Genetic Evolution (CGE) module, (2) the Learning module, and (3) the
Model-based module. The CGE module reformulates the multiplier design as a genetic evolution
problem, using grid-based genetic representation and a random mutation policy. The Learning mod-
ule introduces policy-guided population initialization and mutation. The Model-based module in-
corporates a learned model and a cascade ranking selection procedure.

Experimental results, summarized in Table 3, show that the CGE module significantly improves
performance, achieving up to 32.14% gain with minimal runtime increase. The Learning module,
while increasing runtime due to its computational overhead, enhances exploration efficiency and
improves hypervolume. The Model-based module further improves hypervolume by 3.18%, though
it increases runtime due to model training and additional sample collection. Despite these increases,
the total runtime of MUTE remains comparable to the recent state-of-the-art approach, HAVE, high-
lighting the balance between performance gains and computational costs.

6 CONCLUSION
In this paper, we theoretically and empirically show a significant objective gap between the existing
RL-based formulation and the original task due to the deceptive reward signals and incrementally
localized actions in the RL-based formulation. To address this challenge, we propose a novel model-
based circuit genetic evolution (MUTE) framework, which reformulates the problem as a genetic
evolution process by proposing a grid-based genetic representation of design solutions. Experiments
on these circuits demonstrate that MUTE significantly Pareto-dominates state-of-the-art approaches
in terms of both area and delay, improving the hypervolume by up to 38%.
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In this study, to ensure the reproducibility of our approach, we provide key information from the
main text and Appendix as follows.

1. Algorithm. We provide the architecture and illustration of our MUTE in Figure 3 and
Section 4. We also provide the detailed implementation of MUTE in Appendix F. See
Appendix F.6 for the hyperparameters of MUTE.

2. Source Code. To facilitate the evaluation process and support a thor-
ough review, we have released our source code at the following link:
https://anonymous.4open.science/r/AI4MUL-4199.

3. Experimental Details. We provide detailed experiment settings in Section 5.1.

4. Theoretical Proofs. We provide all proofs in Appendix A.
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A THEORETICAL ANALYSIS

This section presents a theoretical analysis of the significant misalignment between the result of
the optimal policy obtained through RL and the original optimal circuit design. First, the proof of
Theorem 3.1 is provided in subsection A.1. Second, subsection A.2 offers further theoretical insights
into the deceptive nature of the existing reward formulation.

Throughout the following theoretical analysis, we assume that the state space S is finite, and there is
a terminal action for each state that can terminate the episode at this state. The assumptions usually
hold in practical multiplier optimization problems. We focus on deterministic policies.

A.1 PROOF OF THEOREM 3.1

Lemma A.1. For any policy 𝜋 in the MDP, there exists a policy 𝜋′ that terminates at a certain state
such that 𝑅𝜋

′ ≥ 𝑅𝜋 .

Proof. Since state space S is finite, the states in trajectory generated by policy 𝜋 are finite as well.
Therefore, there exists a state 𝑠𝑇 = arg min𝑠∈𝜏𝜋 𝑓 (𝑠), where 𝜏𝜋 is the set of states in the trajectory
of 𝜋 and 𝑇 is a finite number. We denote the trajectory 𝜏𝜋 by {𝑠0, 𝑠1, . . . , 𝑠𝑇 , . . . }.
Then we construct a new policy 𝜋′ that generates a trajectory 𝜏𝜋′ = {𝑠′0, . . . , 𝑠

′
𝑇
}, where 𝑠′𝑡 = 𝑠𝑡 ,∀𝑡 ≤

𝑇 . Note that the trajectory 𝜏𝜋′ terminates at the state 𝑠𝑇 . Then we have

𝑅𝜋
′
=

𝑇−1∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) (6)

=

𝑇−1∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡 ) −
𝑇−1∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) (7)

= 𝑓 (𝑠0) −
𝑇−2∑︁
𝑡=0

(𝛾𝑡 − 𝛾𝑡+1) 𝑓 (𝑠𝑡+1) − 𝛾𝑇−1 𝑓 (𝑠𝑇 ) (8)

= 𝑓 (𝑠0) − (1 − 𝛾)
𝑇−2∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) − (1 − 𝛾)
∞∑︁

𝑡=𝑇−1
𝛾𝑡 𝑓 (𝑠𝑇 ) (9)

≥ 𝑓 (𝑠0) − (1 − 𝛾)
𝑇−2∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) − (1 − 𝛾)
∞∑︁

𝑡=𝑇−1
𝛾𝑡 𝑓 (𝑠𝑡+1) (10)

= 𝑅𝜋 (11)

□

Then we prove Theorem 3.1 as follows.

Proof. Recall that Theorem 3.1 states that ”The optimal RL policy 𝜋∗ := arg max𝜋 𝑅𝜋 terminates at
a state, and the state is a local optimal state of the evaluation function 𝑓 .” We prove this Theorem in
the following two steps.

(1) 𝜋∗ has a terminal state If the optimal policy 𝜋∗ doesn’t terminate, then according to Lemma
A.1 there exists a distinct policy with a higher return, which contradicts with the definition of the
optimal policy 𝜋∗. Thus, 𝜋∗ terminates at a certain state.

(2) Local Minimality Denote the terminate state of 𝜋∗ as 𝑠𝑇 . By contradiction, suppose ∃𝑎0 ∈
A, 𝑎0 ≠ terminate such that 𝑓 (𝑇 (𝑠𝑇 , 𝑎0)) < 𝑓 (𝑠𝑇 ). Then consider a new policy 𝜋′ whose trajectory
is identical to 𝜋 before the 𝑇-th step but execute action 𝑎0 rather than terminating at 𝑇-th step, and
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Figure 6: Sampled points from the training curve illustrating the oscillatory properties of the evalu-
ation function.

execute terminate at step 𝑇 + 1. Then the return of policy 𝜋′ is

𝑅𝜋
′
=

𝑇∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) (12)

= 𝑅𝜋
∗ + 𝛾𝑇 ( 𝑓 (𝑠𝑇 ) − 𝑓 (𝑇 (𝑠𝑇 , 𝑎0))) (13)

> 𝑅𝜋
∗

(14)

which contradicts the definition of the optimal 𝜋∗. □

A.2 MULTIPLE HIGH HILLS CONDITION FOR GAP EXISTENCE

Theorem 3.1 indicates that the existing reward formulation guides the RL agent to evolve the circuit
from an initial design to a locally optimal solution. However, the conditions under which this local
optimum is the same as the global optimum remain unclear. In this subsection, we provide heuristic
conclusions based on the oscillatory behavior of the objective function.

First, we sample a trajectory from the sigh-dimensional solution space using a basic EA algorithm
for the purpose of visualization and simplified analysis, denoted as 𝜏𝑆𝑖𝑚, as shown in Figure 2. Our
analysis focuses on the impact of the proxy reward function on the optimization objective along
the sampled one-dimensional function curve, avoiding the complexities of the high-dimensional
state space. Using the sampled trajectory 𝜏𝑆𝑖𝑚, we define a simplified MDP (Sim-MDP) with
the tuple (SSim,ASim, 𝑇Sim, 𝑟, 𝛾, 𝜇0). Here, SSim = 𝜏𝑆𝑖𝑚. The action space is simplified into
ASim = {Go,Terminate}. The transition function is defined as 𝑇Sim (𝑠𝑡 ,Go) = 𝑠𝑡+1, and the episode
terminates upon executing the terminate action. The reward function, discount factor, and initial
state are consistent with the original MDP. Any policy in this Sim-MDP corresponds to a trajectory
terminating at a certain state. The Sim-MDP simplifies state and action spaces while keeping the
reward function unchanged, facilitating the analysis of the optimization objective gap.

Based on the Sim-MDP, we calculate the cumulative discounted rewards of policies starting from the
initial state and terminating at various points along the curve. We then compare the returns of these
policies with the return of the policy 𝜋𝑠∗ that converges to the global minimum point 𝑠∗ in the Sim-
MDP. For discount factors of 0.8, 0.9, and 0.99, the proportions of policies with returns higher than
𝜋𝑠∗ accounts for approximately 54.14%, 54.07%, and 45.71%, respectively. Moreover, for discount
factors of 0.8, 0.9, and 0.99, the relative objective gap between the optimal RL policy and the
global optimal point are roughly 35.52%, 34.75%, and 26.19%, respectively. This demonstrates a
significant gap between the RL proxy optimization objective and the original optimization objective,
attributed to the highly oscillatory nature of the optimization objective function.

Second, to further understand the reasons for this gap, we theoretically show conditions for the
existence of optimization objective gap in the Sim-MDP, based on the observation that the evaluation
function is highly oscillatory, leading to many peak and trough points. We first rigorously formulate
the evaluation function 𝑓 across the sampled trajectory 𝜏𝑆𝑖𝑚 by using many repeated hills, which
is inspired by the properties of oscillatory functions. A state 𝑠𝑡 ∈ SSim is a Peak Point if 𝑓 (𝑠𝑡 ) >
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𝑓 (𝑠𝑡−1) and 𝑓 (𝑠𝑡 ) > 𝑓 (𝑠𝑡+1). In contrast, a state 𝑠𝑡 ∈ SSim is a Trough Point if 𝑓 (𝑠𝑡 ) < 𝑓 (𝑠𝑡−1)
and 𝑓 (𝑠𝑡 ) < 𝑓 (𝑠𝑡+1). Without loss of generality, we assume the initial state of Sim-MDP is a
through point. We denote 𝑝𝑖 as the step index of the 𝑖-th peak point, and 𝑡𝑖 as the step index of the
𝑖-th through point. The 𝑖-th Hill is defined by a set of states between the 𝑖-th trough point and the
(𝑖 + 1)-th trough point, i.e., 𝑃𝑖 := {𝑠𝑡 |𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1}. We denote the number of ascending steps
𝑝𝑖 − 𝑡𝑖 by 𝑚𝑖 , and the number of descending steps 𝑡𝑖+1 − 𝑝𝑖 by 𝑛𝑖 . Inspired by the fact that the action
will always affine the structure of the multiplier which changes the evaluation function, for the 𝑖-
th Hill we denote the lower bound of the variation of 𝑓 as 𝛿𝑖 := min 𝑗∈[𝑡𝑖 , 𝑝𝑖 )

{
| 𝑓 (𝑠 𝑗+1) − 𝑓 (𝑠 𝑗 ) |

}
;

on the other hand the evaluation function 𝑓 is bounded, thus we denote the upper bound of the
variation of as 𝜖𝑖 := max 𝑗∈[𝑝𝑖 ,𝑡𝑖+1 )

{
| 𝑓 (𝑠 𝑗 ) − 𝑓 (𝑠 𝑗+1) |

}
. The formulation is illustrated in Figure 6.

With the multiple hills formulation, we provide a Multiple High Hills Condition for the existence of
optimization objective gap.
Theorem A.2 (Multiple High Hills Condition). Denote the number of hills in the Sim-MDP before
𝑠∗ as 𝑁 , where 𝑠∗ := arg min𝑠∈Ssim 𝑓 (𝑠) is the global optimal state in Sim-MDP. If there exists the
𝑖-th trough point 𝑠𝑡𝑖 such that

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗−𝑡𝑖
[
𝛾𝑚 𝑗 (1 − 𝛾𝑛 𝑗 )

1 − 𝛾 𝜖 𝑗 −
1 − 𝛾𝑚 𝑗

1 − 𝛾 𝛿 𝑗

]
< 0, (15)

then the optimization objective gap exists, i.e., the optimal policy in Sim-MDP 𝜋∗Sim converges to a
sub-optimal solution rather than the global optimal state 𝑠∗.

Proof. Suppose 𝑠∗ is achieved at step 𝑇 , and denote the policy that terminates at 𝑠∗ as 𝜋0. For any
through point 𝑠𝑡𝑖 , consider a new policy 𝜋′ that terminates at 𝑠𝑡𝑖 and its return is

𝑅𝜋
′
=

𝑡𝑖−1∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) (16)

Then we have

𝑅𝜋0 − 𝑅𝜋′ =
𝑇−1∑︁
𝑡=𝑡𝑖

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) (17)

=

𝑁∑︁
𝑗=𝑖

𝑡 𝑗+1−1∑︁
𝑡=𝑡 𝑗

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) (18)

=

𝑁∑︁
𝑗=𝑖


𝑡 𝑗+𝑚 𝑗−1∑︁
𝑡=𝑡 𝑗

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) +
𝑡 𝑗+𝑚 𝑗+𝑛 𝑗−1∑︁
𝑡=𝑡 𝑗+𝑚 𝑗

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1))
 (19)

=

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗
𝑚 𝑗−1∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1)) + 𝛾𝑡 𝑗+𝑚 𝑗

𝑛 𝑗−1∑︁
𝑡=0

𝛾𝑡 ( 𝑓 (𝑠𝑡 ) − 𝑓 (𝑠𝑡+1))
 (20)

≤
𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗
𝑚 𝑗−1∑︁
𝑡=0

𝛾𝑡 (−𝛿𝑖) + 𝛾𝑡 𝑗+𝑚 𝑗

𝑛 𝑗−1∑︁
𝑡=0

𝛾𝑡𝜖𝑖

 (21)

=

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗

{
1 − 𝛾𝑚 𝑗

1 − 𝛾 (−𝛿𝑖) + 𝛾𝑚 𝑗
1 − 𝛾𝑛 𝑗

1 − 𝛾 𝜖𝑖

}
(22)

(23)

Then
∑𝑁
𝑗=𝑖 𝛾

𝑡 𝑗

{
1−𝛾𝑚𝑗

1−𝛾 (−𝛿𝑖) + 𝛾𝑚 𝑗 1−𝛾𝑛𝑗

1−𝛾 𝜖𝑖
}
< 0 ⇒ 𝑅𝜋0 < 𝑅𝜋

′
, i.e. 𝜋′ has higher return, and further

the optimal policy in Sim-MDP 𝜋∗Sim converges to a sub-optimal solution rather than the global
optimal state 𝑠∗. □

This Theorem implies that if there are multiple high hills, i.e., unexpected high peak points (large
𝛿 𝑗 ), on the trajectory between a trough point (i.e., a local optimum) and the global optimum, then
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Figure 7: Optimization objective landscape of 16-bit and gate-based multiplier. The global minimum
is marked as the red point. The grey lines mark RL-MUL and HAVE trajectories, with points
indicating the optimal solutions found every five episodes. The optimum found by RL-MUL and
HAVE is marked as the yellow point, with the objective value annotated nearby.

the RL optimization objective converges to the local optimum rather than the global optimum, due
to the noisy information in the cumulative discounted performance objective from those unexpected
high peak points.

B VISUALIZATION OF OPTIMIZATION OBJECTIVE LANDSCAPE

In this section, we visualize the optimization objective landscape using the 16-bit AND gate-based
multiplier optimization task.

Visualizing optimization objective landscape

(1) Data Collection To ensure comprehensive sampling and maximize coverage of the solution
space, we first employ the RL-MUL (Zuo et al., 2023) and HAVE (Wang et al., 2024g) algorithms to
generate initial populations, each comprising 2,500 solutions. Building on this initial population, we
extensively apply our genetic variation operators, ultimately producing a total of 50,000 solutions.

(2) Data Visualization To visualize the high-dimensional solution space, we use Principal Compo-
nent Analysis (PCA) (Abdi & Williams, 2010) to reduce its dimensionality to two dimensions. This
enables the creation of a 3D surface plot depicting the relationship between solutions and their fit-
ness values, i.e., our optimization objective landscape. We reconstruct the objective function surface
from the data points using Delaunay triangulation, which is widely used in surface reconstruction
from a set of points (Amenta et al., 1998; 2000; Cazals & Giesen, 2006).

(3) Results As shown in Figure 7, the results reveal that the optimization surface is highly oscillatory
and characterized by numerous local optima. Using the visualization method described above, we
transformed the points collected during the training processes of RL-MUL and HAVE into curves.
The results reveal that both RL-MUL and HAVE converged to specific local optima.

The convergence into local optima of RL-MUL and HAVE

Using the visualization method described above, we transformed the points collected during the
training processes of RL-MUL and HAVE into curves. The results reveal that both RL-MUL and
HAVE converged to specific local optima.

C RELATED WORK

C.1 COMPUTING CIRCUITS OPTIMIZATION

Computing circuits like adders and multipliers are widely employed in practical applications, lever-
aging Compressor Tree and Prefix Tree for efficient parallel operations. Generally, optimization
methods for these circuits can be categorized into three main approaches. (1) Manual designs in-
volve leveraging human expertise to craft architectures derived from regular designs, which require
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substantial engineering effort. Various compressor Trees have been devised to reduce partial prod-
ucts, as shown in (Wallace, 1964; Dadda, 1983; Itoh et al., 2005; Oklobdzija et al., 1996), while
Prefix Trees are optimized for more efficient parallel addition, as demonstrated in (Beaumont-Smith
& Lim, 2001; Sklansky, 1960; Brent & Kung, 1982). (2) Conventional algorithmic methods (Xiao
et al., 2021; Zuo et al., 2024a; Liu et al., 2003; Roy et al., 2013) generate circuit architectures using
specific strategies such as mathematical programming and heuristic search. However, they often
optimize circuits using proxy metrics such as size and depth, which may result in a significant dis-
crepancy from actual performance in the real design flow. (3) Recent methods (Zuo et al., 2023;
2024b; Roy et al., 2021; Song et al., 2022; Wang et al., 2024g; Lai et al., 2024) propose using
reinforcement learning to optimize circuits based on the post-synthesis metrics, incorporating syn-
thesis into the optimization loop, This offers promising approaches to bridge the gap between proxy
metrics and actual performance. In this paper, we focus on optimizing computing circuits using
post-synthesis metrics as well.

C.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) has achieved great success in sequential decision-making problems,
encompassing applications from video game playing to robotic control(Mnih et al., 2015; Kaiser
et al., 2020; Duan et al., 2016; Zhang et al., 2024; Liu et al.). RL approaches can be generally
divided into model-free Haarnoja et al. (2018); Wang et al. (2023e); Yang et al. (2022b); Liu et al.
(2024d); Wang et al. (2023b); Liu et al. (2021); Yang et al. (2022a); Liu et al. (2023d), model-based
Janner et al. (2019); Liu et al. (2023f); Wang et al. (2022), and offline RL Hu et al. (2021); Chen
et al. (2024b); Jia et al. (2024); Liu et al. (2023e); Yang et al. (2024); Liu et al. (2024c) approaches.
In this paper, our MUTE falls into the model-based category.

C.3 GENETIC EVOLUTION ALGORITHMS

Genetic evolutionary algorithms (GA) are one of the most established and famous optimization
methods, encompassing a diverse range of variants that find extensive applications across various
fields (Garai, 2022; Alhijawi & Awajan, 2024). Inspired by Darwinian theories of species evolution
in nature, genetic algorithms utilize selection, crossover, and mutation operators to evolve solutions,
ultimately achieving global optimization (Slowik & Kwasnicka, 2020). Recently, Evolutionary Re-
inforcement Learning algorithms (ERLs) have emerged as a promising solution, effectively integrat-
ing the strengths of both reinforcement learning and evolutionary algorithms (Zhu et al., 2023a; Bai
et al., 2023b; Li et al., 2024a). In this paper, we propose a learning-based population initialization,
a sequential mutation operator, a multi-granularity crossover operator, and a model-based cascade
ranking within a genetic algorithm framework for optimizing computing circuits.

C.4 MACHINE LEARNING FOR CHIP DESIGN

With the exponential growth in chip complexity driven by advances in semiconductor technology,
the application of machine learning (ML) to assist in the automated chip design workflow has gar-
nered significant attention in recent years (Mirhoseini et al., 2021; Huang et al., 2021; Sánchez
et al., 2023; Neto et al., 2021; Lai et al., 2022; 2023). The chip design process encompasses several
stages (Huang et al., 2021; Ren & Hu, 2023), including high-level synthesis (Yao et al., 2024a; Liu
et al., 2022; Yao et al., 2024b), logic synthesis (Li et al., 2023; Zhu et al., 2023b; Li et al., 2024c;
Liu et al., 2023b;c; 2024b; Bai et al., 2025; Wang et al., 2024f;d; Chen et al., 2024a), placement (Lai
et al., 2022; 2023; Geng et al., 2024; Chen et al., 2023; Shi et al., 2023a; 2025a; Wang et al., 2024e;
Geng et al., 2025b), and design space exploration (Chen et al., 2024c; Bai et al., 2023a; 2021),
among others.

C.5 MACHINE LEARNING FOR COMBINATORIAL OPTIMIZATION

Optimizing multiplier circuit designs is also essentially a combinatorial optimization problem. The
use of machine learning to tackle combinatorial optimization problems has been an active topic of
significant interest in recent years (Bengio et al., 2021; Gasse et al., 2019; Shi et al., 2025b; 2023b;
2024; Geng et al., 2023; Wang et al., 2023d; 2024b; Ling et al., 2024; Li et al., 2024d; Wang et al.,
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Figure 8: State representation in RL-MUL.

2021; 2024a; 2023a; Wang & Yu, 2023; Wang et al., 2024c; Geng et al., 2025a; Liu et al., 2023a;
2025; 2024a; Li et al., 2024f;e).

D IMPLEMENTATION DETAILS OF RL-MUL

State Representation We use the total number of 3:2 and 2:2 compressors in each column to present
the multiplier structure. As illustrated in Figure 8, 4-bit multiplier structure and its matrix represen-
tation 𝑀 are shown. Given a matrix 𝑀 ∈ R𝐾×(𝑁𝑏+𝑀𝑏 ) , where 𝑚𝑖 𝑗 indicates the quantity of the 𝑖-th
compressor used in column 𝑗 . RL-MUL follows a fixed scheme to extend the matrix 𝑀 to a tensor
to obtain a unique representation for the assignment of compressors in multiplier stages. As shown
in Figure 8, RL-MUL utilizes T ∈ R𝐾×(𝑀𝑏+𝑁𝑏 )×𝑆𝑇 to represent a multi-stage state, where 𝐾 is the
total types of compressors, 𝑆𝑇 is the number of compression stages, and 𝑁𝑏 and 𝑀𝑏 is the input
width. For any element 𝑡𝑘

𝑖 𝑗
within T , it signifies the utilization of the 𝑖-th type of compressor at

column 𝑗 and stage 𝑖. The assignment method is to assign the compressors from the least significant
bit (LSB) columns to the most significant bit (MSB) columns and assign the 3:2 compressors first
as many as possible. After assigning the 3:2 compressors, if at column j there are still more than
two PPs, it assigns the 2:2 compressors. Repeat this progress until all compressors are assigned. For
example at column 4 in Figure 8, we first assign a 3:2 compressor in the first stage, then assign a 2:2
compressor in the second stage.

Legalization Rules When selecting actions, RL-MUL exclusively considers whether the action re-
duces the final production products to either 1 or 2. RL-MUL has four actions, including adding a
3:2 compressor, removing a 2:2 compressor, replacing a 3:2 compressor, and replacing a 2:2 com-
pressor. Furthermore, an action performed at column j will have an impact on column j+1 and cause
column j+1 illegal due to the propagation of the carry bit. RL-MUL employs a legalization strategy
that refines the state from column j+1 to the most significant bit, ensuring that the PPs in every line
are reduced to 1 or 2 following the actions. The strategy adds a 3:2 or replaces a 2:2 compressor if
there is an over of PPs, and deletes a compressor if there is a lack of PPs.

E IMPLEMENTATION DETAILS OF THE BASELINES

GOMIL (Xiao et al., 2021) is a global optimization method that simultaneously considers the CT
and CPA. The author provides the open-source C++ code. We can extract the required structure
from its solution files.

E.1 RL-BASED BASELINES

RL-MUL (Zuo et al., 2023) encodes the state into a tensor T described in Appendix D, using
ResNet-18 as the network backbone and training based on the DQN algorithm. Different from the
Random method, RL-MUL only chooses the action randomly in warm-up steps. In future steps, it
chooses the action that can maximize the masked Q-value of the network.
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MBPO Janner et al. (2019) is a state-of-the-art model-based RL method, which can significantly
improve sample efficiency by learning an environment model. We implement the algorithm in our
multiplier optimization environment by setting the Update-To-Data ratio as five.

E.2 EVOLUTIONARY ALGORITHMS

MFEA Slowik & Kwasnicka (2020) is a population-based global optimization method inspired by
biological evolution. We maintain a population of candidate solutions, iteratively evolving them
through random mutations, crossovers, and selections. The population is then updated based on the
fitness values of the individuals.

MBBO Garnett (2023) is a global optimization method. We model the solution space as a high-
dimensional vector space. We first sample a trajectory using a random walk. Then during each
iteration, we fit an RBF kernel Gaussian Process model and use UCB (Upper Confidence Bound) as
the acquisition function to determine the next sampling point.

F IMPLEMENTATION DETAILS OF OUR MUTE

F.1 HARDWARE SPECIFICATION

Our experiments were executed on a Linux-based system equipped with a 3.60 GHz Intel Xeon Gold
6246R CPU and NVIDIA RTX 3090 GPU.

F.2 SYNTHESIS TOOL SETUP

Nangate45 is a widely used standard cell library in the semiconductor industry. It is open source
and free, and we can obtain it at https://silvaco.com/services/library-design/.
Readers can refer to https://github.com/The-OpenROAD-Project/
OpenROAD-flow-scripts, seeking the artifact of OpenROAD flow matched with the
distribution.

In terms of the verilog generation, previous work uses EasyMAC Zhang et al. (2022) to imple-
ment it. We encode our CT following EasyMAC Zhang et al. (2022) rules which use a sequence
𝑠𝑐𝑡 = 𝑝0𝑝1 · · · 𝑝𝑟 to represent a CT. Each 𝑝𝑖 = (𝑖𝑛𝑑𝑒𝑥𝑖 , 𝑡𝑦𝑝𝑒𝑖) signifies the index and type of a
compressor. Considering that generating Verilog HDL codes by EasyMAC and running the logical
synthesis are still time-consuming, we directly generate multiplier Verilog codes using our designed
template. Compared to EasyMAC, our method can generate verilog code faster. To ensure fairness
in comparison, we have employed a uniform default adder to implement CPA for all methods.

F.3 DETAILS ON THE LEARNING-BASED POPULATION INITIALIZATION

F.3.1 BEST-CASE LEARNING

In terms of population Initialization, we propose a best-case learning module, which maintains an
elite pool with 20 currently found best design solutions for enhanced diversity. We restart the initial
state by sampling a state from the elite pool at the beginning of each episode. In terms of the RL
algorithms, we follow previous work (Zuo et al., 2023; Wang et al., 2024g) to use a DQN agent
to learn Q-functions for selecting modification actions. In terms of the Q-network architecture, we
use the ResNet-18 as the tensor state encoder, and use a multi-layer perceptron (MLP) to predict
Q-values for each candidate action. The MLP contains two hidden layers with 256 units and the
ReLU activation function. To train the Q-network, we use an Adam optimizer, and set the learning
rate as 1e-4. For a fair comparison, we set hyperparameters to align with previous work (Zuo et al.,
2023; Wang et al., 2024g).

F.3.2 EVALUATION MODEL LEARNING AND CONSERVATIVE MODEL USAGE

In terms of the model architecture, we employ the ResNet-18 as the tensor state encoder and a multi-
head decoder to predict the area and delay of the input state. The multi-head decoder comprises two
multi-layer perceptrons (MLPs), each with two hidden layers with 256 units and ReLU activation.
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In terms of the training details, we use the mean squared error loss to update the model parameters.
We use the Adam optimizer with a learning rate of 1e-3.

In terms of model usage, we primarily use the model to fast evaluate the children solutions generated
by the designed genetic variation operators. Specifically, we generate at least 100 children solutions
at each iteration, and use the model to pre-rank these solutions. The top-5 solutions are then selected
for evaluation in the true environment. This approach allows us to generate a substantial number of
children solutions, promoting extensive globally diverse exploration. Note that we do not use the
model in the RL learning, as it will suffer from the cumulative multi-step model errors due to the
sequential characteristics of RL methods. In contrast, using the model in our evolution process only
suffers from single-step model errors.

Table 4: Runtime comparison
RunTime (s, every 100 samples)

Method/Circuit 32-bit And 64-bit And
EasyMAC+OpenRoad 2930 10930

Vgen+OpenRoad 303 973
Model (Ours) 1.4 1.44

RunTime of Design Evaluation As demonstrated in Ta-
ble 4, our learned model can significantly reduce the de-
sign evaluation time compared to calling synthesis tools.
RL-MUL (Zuo et al., 2023) employs EasyMAC and
OpenRoad, while Vgen refers to a Verilog generation
method we implemented, detailed in Appendix F.2. Al-
though Vgen considerably accelerates evaluation compared to EasyMAC, it remains inefficient when
evaluating large volumes of design solutions.

F.4 DETAILS ON THE RL-GUIDED MUTATION OPERATOR

The action space The actions consist of four types of local modifications to a Compressor Tree
solution at a specific column. These modifications include adding a 2:2 compressor, removing a 2:2
compressor, replacing a 3:2 compressor with a 2:2 compressor, and replacing a 2:2 compressor with
a 3:2 compressor.

Q-network model Our Q-network comprises a ResNet-18 (He et al., 2016) as an encoder to repre-
sent the input state, and a multi-layer perceptron as a decoder to predict Q-values. The input state
is a grid-based genetic representation of the design solution. The output comprises the state-action
values for each action.

The learning process We employ the Deep Q-network (DQN) algorithm (Mnih et al., 2015) to train
the Q-network. During the population initialization phase, we train the Q-network using collected
interactions with the circuit synthesis environment. We then periodically update the Q-network by
sampling some interactions with the circuit synthesis environment throughout the evolution process.

Managing invalid designs We indeed apply a legalization rule to transforming any invalid design
solution into a valid solution, which is designed by RL-MUL (Zuo et al., 2023). Specifically, a
valid design requires each column to have exactly one or two remaining partial products after com-
pression. Invalid designs—resulting from actions that impact subsequent columns—occur when a
column has either zero or three remaining partial products. To resolve this, we implement a le-
galization process that starts from the affected column and progresses toward the most significant
column. For columns with three remaining partial products, a 2:2 compressor is either replaced
with or augmented by a 3:2 compressor. For columns with zero remaining partial products, a 2:2 or
3:2 compressor is removed, as appropriate. This process ensures that all columns maintain a valid
number of remaining partial products (either one or two).

F.5 DETAILS ON THE MULTI-GRANULARITY CROSSOVER OPERATOR

Legalization Mechanism Note that the crossover operators may lead to illegal solutions. Thus,
we need to design a reasonable and simple legalization mechanism. Fortunately, we can follow
the legalization rule proposed in RL-MUL (Zuo et al., 2023) to legalize these illegal solutions.
Specifically, given a state that is modified from column i to any column, we can refine the state from
column i to the most significant bit, ensuring that the final partial products (PPs) in every line are
reduced to 1 or 2 following the actions. The legalization rule adds a 3:2 or replaces a 2:2 compressor
if there is an over of PPs, and deletes a compressor if there is a lack of PPs.
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Figure 9: (a) An example for a Pareto optimal set with 2 objectives and 5 Pareto optimal solutions
(Pareto points). (b) An example for hypervolume with a selected reference point 𝑟0. Integrated area
𝐻 (𝑃, 𝑟0) is the union of the rectangular areas where the reference point 𝑟0 and the Pareto point 𝑃(𝑖)
are diagonally opposite corners.

F.6 ADDITIONAL COMMON HYPERPARAMETERS

In the above sections, we have provided implementation details and hyperparameters. Here, we list
the common parameters used in the comparative evaluation and ablation study in Table 5. Note that
we use the same hyperparameter as that of previous work (Zuo et al., 2023; Wang et al., 2024g) if
possible for fair comparison.

Table 5: Common parameters used in the comparative evaluation and ablation study.

Parameter Value

Learning-Based Population Initialization Module

environment steps per learning episode 25
policy updates per environment step 1
optimizer Adam
discount (𝛾) 0.8
total learning episodes for initialization 40

Genetic Variation Module

samples generated by sequential mutation operator at each iteration 100
samples generated by genetic crossover operator at each iteration 200
total iterations for evolution 400

Model-Based Module

samples for circuit synthesis evaluation at each iteration 5

F.7 EVALUATION METRICS

Indeed, the multiplier optimization problem is a multi-objective optimization task with multiple
conflicting objectives, such as area and delay. Thus, we use two evaluation metrics to compare our
method with baselines. First, we visualize the approximated Pareto front in terms of the area and
delay for multipliers designed by our method and baselines. Second, we use the hypervolume of the
approximated Pareto front. We present details on the two metrics as follows.

Multi-Objective Optimization Metrics
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Without loss of generality, considering a maximization optimization problem in n objectives, we aim
to find the set of optimal solutions known as the Pareto optimal set. For an 𝑛-objective optimization
problem, a solution 𝑥 Pareto dominates another solution 𝑦 if 𝑥 is not worse than y in all objectives
and has at least one strictly better value, i.e., ∀𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) ≥ 𝑓𝑖 (𝑦) ∧ ∃𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) > 𝑓𝑖 (𝑦).
A Pareto optimal solution is not dominated by any solution, and the set composed of all Pareto
optimal solutions is referred to as the Pareto optimal solution set. One metric to evaluate the quality
of a Pareto optimal solution set is hypervolume, which is illustrated in Figure 9. The hypervolume
of a set is the volume of the space that is dominated by the solution in the set. When calculating
the hypervolume of a set, we need to choose a reference point. When reference points are fixed, a
Pareto solution set with a larger hypervolume is considered superior.
Definition F.1 (Hypervolume metric). Let 𝑃 be a Pareto front approximation in an 𝑛-dimensional
objective space and contain 𝑁 solutions. Let 𝑟0 ∈ 𝑅𝑚 be the reference point. Then, the hypervolume
metric is defined as:

H(𝑃, 𝑟0) =
∫
𝑅𝑛

𝟙𝐻 (𝑃,𝑟0 ) (𝑧)𝑑𝑧

, where 𝐻 (𝑃, 𝑟0) = {𝑧 ∈ 𝑍 |∃1 ≤ 𝑖 ≤ |𝑃 | : 𝑟0 ⪯ 𝑧 ⪯ 𝑃(𝑖)}.𝑃(𝑖) is the i-th solution in 𝑃, ⪯ is
the relation operator of objective dominance, and 𝟙𝐻 (𝑃,𝑟0 ) is a Dirac delta function that equals 1 if
𝑧 ∈ 𝐻 (𝑃, 𝑟0) and 0 otherwise.

F.8 CONTRIBUTION OF OUR WORK TO AI COMMUNITY

Advancing AI Chips Our work directly contributes to the advancement of AI chips, such as
NVIDIA’s GPUs and Google’s TPUs, by introducing an innovative optimization framework for the
design of high-speed, area-efficient, and energy-efficient computing circuits. Note that NVIDIA’s AI
researchers have integrated AI-designed adders into their H100 chip [5], demonstrating the potential
of our AI-based approach for advancing AI chips. The ability to optimize AI chips is crucial for ad-
dressing the ever-growing computational demands of modern AI systems, ensuring their scalability,
efficiency, and sustainability.

A Novel and Broadly Applicable Genetic Evolution Algorithm Our work introduces a sequen-
tial mutation operator and a multi-granularity crossover operator that leverages a grid-based genetic
solution representation to facilitate efficient and diverse exploration of large search spaces. This
approach presents a broadly applicable framework suitable for addressing a wide range of search
problems. Moreover, we propose a model-based cascade ranking approach, which efficiently and
accurately selects high-performing solutions from a large pool of generated candidates. These con-
tributions offer a versatile and robust methodology for tackling complex optimization problems.

Identifying the Limitations of a Commonly-Used RL Formulation for Combinatorial Opti-
mization The existing RL formulation for computing circuit optimization adheres to a widely
adopted paradigm in neural combinatorial optimization [6, 7, 8], commonly referred to as the ”learn-
to-improve” framework. In this paradigm, the state is defined as a candidate solution, the action
represents a local modification to the solution, and the reward is based on the performance improve-
ment achieved. This paper theoretically and empirically demonstrates that the RL-based formulation
tends to converge to local optima, primarily due to deceptive reward signals and incrementally lo-
calized actions. These findings provide valuable insights for developing more robust and effective
methods applicable to a broad class of neural combinatorial optimization problems.

G LICENSES

We credit the following open-source code and data used in this paper. We will also open-source our
code once the paper is accepted.

Environment

1. OpenRoadFlowScripts BSD 3-Clause License
2. OpenRoad BSD 3-Clause License
3. Yosys ISC License
4. EasyMAC No License
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Algorithms

1. GOMIL No License

2. MBPO MIT License

3. NovelD Creative Commons Public Licenses

H MORE RESULTS

H.1 MORE RESULTS OF MAIN EVALUATION

The details about the hypervolume of MUTE and other baselines can be found at Table 6 and Table
7. Table 6 records the hypervolumes of the method on four multipliers with different bit-widths
based on the And-Gate, showing that our method has the greatest improvement. Table 7 shows our
improvements on the multipliers based on Booth-encode.

Table 6: We record the hypervolume of multipliers based on And-Gate.The results demonstrate that
MUTE has the maximum hypervolume on each circuit design task.

8-bit And 16-bit And 32-bit And 64-bit And

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 149.94 NA 332.91 NA 1685.61 NA 13870.80 NA
GOMIL 153.02 2.05% 394.25 18.43% 3304.67 96.05% 16628.51 19.88%

RL-MUL 160.84 7.27% 470.78 41.41% 5329.71 216.19% 25311.45 82.48%
AdaReset 168.34 12.27% 473.20 42.14% 5768.29 242.21% 32827.17 136.66%

HAVE 179.49 19.71% 504.94 51.67% 5822.03 245.40% 33030.52 138.13%
MUTE (Ours) 189.68 26.50% 622.55 87.00% 6461.65 283.34% 36419.85 162.56%

Table 7: We record the hypervolume of multipliers based on Booth-encode. The results demonstrate
that MUTE has the maximum hypervolume on each circuit design task.

8-bit Booth 16-bit Booth 32-bit Booth 64-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 304.86 NA 625.70 NA 4045.40 NA 13184.57 NA
GOMIL 314.22 3.07% 773.43 23.61% 3686.76 -8.87% 11456.09 -13.11%

RL-MUL 339.72 11.43% 897.02 43.36% 6090.67 50.56% 19341.59 46.70%
AdaReset 339.72 11.43% 910.00 45.44% 6970.98 72.32% 23946.19 81.62%

HAVE 339.72 11.43% 975.94 55.98% 7452.70 84.23% 25910.38 96.52%
MUTE (Ours) 366.63 20.26% 1060.86 69.55% 8057.07 99.17% 29441.15 123.30%

Table 8: The runtime of MUTE is comparable to or shorter than that of the recent state-of-the-art
HAVE, while MUTE significantly improves hypervolume.

16-bit And 32-bit And

RL/ERL Method RunTime (hours) HV ↑ Iterations RunTime (hours) HV ↑ Iterations

MUTE (Ours) 17.33 622.55 400 37.11 6461.65 400
RL-MUL 14.75 470.78 400 31.17 5329.71 400

ParetoReset 15.37 473.2 400 31.37 5606 400
HAVE 20.33 505.83 400 37.27 5822.03 400

VEB-RL 33.17 485 400 64.97 5402 400
MBPO 28.4 491.53 400 51.73 4978.11 400

EA Method
MFEA 10.7 473.39 400 19.7 5478.03 400
MBBO 12.7 473.36 400 35.1 5445.18 400

H.2 RUNTIME COMPARISON OF MUTE WITH BASELINES

The results in Table 8 indicate that the runtime of our method is comparable to or shorter than that
of the recent state-of-the-art HAVE (Wang et al., 2024g), while our method significantly improves
the hypervolume of found Pareto points.

H.3 MORE RESULTS OF COMPARISON WITH RL METHODS

Figure 10 illustrates the Pareto frontier of our MUTE and all RL-based methods. Moreover, we
provide the results of hypervolume on 16-bit Booth and 32-bit Booth in Table 9. Through the table
and figure, we can observe that MUTE outperforms other RL methods comprehensively, achieving
the smallest area and delay.
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Table 9: Results of comparison with RL methods on 16-bit Booth and 32-bit Booth.
16-bit Booth 32-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 625.70 NA 4045.40 NA

RL-MUL 897.02 43.36 6090.67 50.56
NoveID 873.31 39.57 6436.80 59.11

PD-MORL 871.02 39.21 6639.44 64.12
DDQN 894.74 43.00 6504.40 60.79
MBPO 942.20 50.58 6056.30 49.71
RL-EA 910.00 45.44 6970.98 72.32

MBPO-EA 932.86 49.09 6772.67 67.42
MUTE (Ours) 1060.86 69.55 8057.07 99.17
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Figure 10: The results demonstrate that multipliers optimized by MUTE consistently and signifi-
cantly outperform designs produced by all RL-based methods in terms of Pareto-dominance across
four multiplier design problems.

H.4 MORE RESULTS OF GENERALIZATION

Table 11 shows the hypervolume of PE arrays designed by MUTE and other baselines. MUTE
achieves the highest hypervolume across all circuit designs.

H.5 MORE ABLATION STUDY

Table 10: MUTE significantly outperforms ad-
vanced (evolutionary) RL methods.

16-bit And 32-bit And

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
Wallace 332.91 NA 1685.61 NA

Specifically Designed RL Methods

RL-MUL 470.78 41.41 5329.71 216.19
AdaReset 473.20 42.14 5768.29 242.21

HAVE 504.94 51.67 5822.03 245.40

Advanced Standard RL Methods

NoveID 473.20 42.14 4953.97 193.90
PD-MORL 485.03 45.69 4665.43 176.78

DDQN 473.20 42.14 4773.51 183.19
MBPO 491.53 47.65 4978.11 195.33

SOTA Evolutionary RL Method

VEB-RL 485.00 45.69 5402.00 220.48

Our Genetic Evolution Formulation

MUTE (Ours) 622.55 87.00 6461.65 283.34

The Importance of Our Genetic Evolution
Formulation Although we have compared our
MUTE with three specifically designed RL
methods for computing circuits optimization,
i.e., RL-MUL, AdaReset, and HAVE, the three
methods are all based on the deep Q-network
(DQN) algorithm (Mnih et al., 2015), which is
a classical RL method. To further demonstrate
the superiority of our formulation over the ex-
isting RL formulation, we further apply five ad-
vanced RL methods to multiplier design tasks.
Specifically, we compare MUTE with four ad-
vanced RL methods, including NovelD (Zhang
et al., 2021), PD-MORL (Basaklar et al., 2022),
DDQN (Van Hasselt et al., 2016), and MBPO
(Janner et al., 2019), and an evolutionary RL method, i.e., VEB-RL (Li et al., 2024b).

The results in Table 10 suggest the following key conclusions. (1) MUTE significantly outperforms
these advanced (evolutionary) RL methods, demonstrating the superiority of our proposed circuit
genetic evolution formulation. (2) Advanced RL methods do not consistently and significantly out-
perform DQN-based circuit optimization methods, i.e., RL-MUL, AdaReset, and HAVE. This im-
plies that the multiplier optimization task diverges significantly from standard RL benchmarks, such
as Mujoco control (Todorov et al., 2012), due to its unique challenges.
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Table 11: We record the hypervolume of PE arrays across four PE array design problems. The
results demonstrate that MUTE has the maximum hypervolume on each circuit design task.

16-bit And 32-bit And 16-bit Booth 32-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement(%) HyperVolume Improvement(%)
Wallace 73073.23 NA 329263.00 NA 156874.00 NA 692705.30 NA
GOMIL 84820.07 16.08% 627041.10 90.44% 174168.70 11.02% 628020.70 -9.34%

RL-MUL 103507.80 41.65% 944998.90 187.00% 219779.80 40.10% 1049519.00 51.51%
AdaReset 104073.20 42.42% 1009747.00 206.67% 230816.90 47.14% 1237265.00 78.61%

HAVE 108277.90 48.18% 1019332.00 209.58% 247851.40 57.99% 1306568.00 88.62%
MUTE (Ours) 143485.40 96.36% 1165307.00 253.91% 258221.60 64.60% 1388204.00 100.40%
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